Site menu:
Optimization@NIPS
We welcome you to participate in the 9th NIPS Workshop on Optimization for Machine Learning, to be held at: Barcelona, Spain on Dec 10th, 2016.Location: Room 112
Accepted Papers
- Finite Sum Acceleration vs. Adaptive Learning Rates for the Training of Kernel Machines on a Budget - Tobias Glasmachers
- Bounding the Integrality Distance of LP Relaxations for Structured Prediction - Ben London, Ofer Meshi and Adrian Weller
- Asaga: Asynchronous Parallel SAGA - Rémi Leblond, Fabian Pedregosa and Simon Lacoste-Julien
- A distance saving approach to the K-means problem for massive data - Marco Vinicio Capo Rangel, Aritz Pérez Martínez and Jose A. Lozano
- Accelerate Stochastic Subgradient Method by Leveraging Local Error Bound - Yi Xu, Qihang Lin and Tianbao Yang
- Frank-Wolfe Algorithms for Saddle Point Problems - Gauthier Gidel, Tony Jebara and Simon Lacoste-Julien
- Tracking Objects with Column Generation - Shaofei Wang, Steffen Wolf, Charless Fowlkes and Juliian Yarkony
- Constrained Robust Submodular Optimization - Thomas Powers, Jeff Bilmes, Scott Wisdom, David W. Krout and Les Atlas
- Stochastic Function Norm Regularization of DNNs - Amal Rannen Triki and Matthew B. Blaschko
- Quantized Stochastic Gradient Descent - Dan Alistarh, Jerry Li, Ryota Tomioka and Milan Vojnovic
- Riemannian stochastic variance reduced gradient on Grassmann manifold - Hiroyuki Kasai, Hiroyuki Sato and Bamdev Mishra
- Screening Rules for Convex Problems - Anant Raj, Jakob Olbrich, Bernd Gärtner, Bernhard Schoelkopf and Martin Jaggi
- Subsampled online matrix factorization with convergence guarantees - Arthur Mensch, Julien Mairal, Gaël Varoquaux and Bertrand Thirion
- Sparse and low-rank decomposition for big data systems via smoothed Riemannian optimization - Yuanming Shi and Bamdev Mishra
- A Riemannian gossip approach to decentralized matrix completion - Bamdev Mishra, Hiroyuki Kasai and Atul Saroop
- Reliably Learning the ReLU in Polynomial Time - Surbhi Goel, Varun Kanade, Adam Klivans and Justin Thaler
- Iterative regularization via a dual diagonal descent method - Guillaume Garrigos, Lorenzo Rosasco and Silvia Villa
- A simple algorithm for computing Nash-equilibria in incomplete information games - Elvis Dohmatob
- Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure - Alberto Bietti and Julien Mairal
- Gossip training for deep learning - Michael Blot, David Picard, Matthieu Cord and Nicolas Thome
- QuickeNing: A Generic Quasi-Newton Algorithm for Faster Gradient-Based Optimization - Hongzhou Lin, Julien Mairal and Zaid Harchaoui
- Online Learning with Maximal No-Regret L1 Regularization - Daniel Golovin, H. Brendan McMahan and D. Sculley
- Nonlinear Spectral Methods for Nonconvex Optimization with Global Optimality - Quynh Nguyen, Antoine Gautier and Matthias Hein
- Block-Coordinate Frank-Wolfe Optimization for Counting Objects in Images - Fei Xia and Shanghang Zhang
- Stochastic Frank-Wolfe Methods for Nonconvex Optimization - Sashank J. Reddi, Suvrit Sra, Barnabas Poczos and Alex Smola
- Markov chain lifting and distributed ADMM - Guilherme Franca and Jose Bento
- Optimized sampling for Monte Carlo simulations via dimension reduction - Nabil Kahale
- SVRG++ with Non-uniform Sampling - Tamas Kern and Andras Gyorgy
- Bregman Projections over Submodular Base Polytopes - Swati Gupta, Michel Goemans and Patrick Jaillet
- Multiple Kernel Learning via Multi-Epochs SVRG - Mitchel Alioscha-Perez, Meshia Cédric Oveneke, Dongmei Jiang and Hichem Sahli
- Facet Guessing for Finding the M-Best Integral Solutions of a Linear Program - Erik M. Lindgren, Alexandros G. Dimakis and Adam R. Klivans
- A Simple Proof for the Iteration Complexity of the Proximal Gradient Algorithm - Nuri Vanli, Mert Gurbuzbalaban and Asu Ozdaglar
- A Unified Modular Analysis of Online and Stochastic Optimization: Adaptivity, Optimism, Non-Convexity - Pooria Joulani, Csaba Szepesvari and Andras Gyorgy
- Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression - Aymeric Dieuleveut, Nicolas Flammarion and Francis Bach