
Finite Sum Acceleration vs. Adaptive Learning Rates
for the Training of Kernel Machines on a Budget

Tobias Glasmachers
Institute for Neural Computation

Ruhr-University Bochum, Germany
tobias.glasmachers@ini.rub.de

Abstract

Training predictive models with stochastic gradient descent is widespread practice
in machine learning. Recent advances improve on the basic technique in two
ways: adaptive learning rates are widely used for deep learning, while acceleration
techniques like stochastic average and variance reduced gradient descent can
achieve a linear convergence rate. We investigate the utility of both types of
methods as well as combinations thereof for the training of kernel machines on a
budget.

1 Introduction

Stochastic gradient descent (SGD) is a standard optimization technique for regularized risk mini-
mization [1, 8]. It is conceptually simple and is easy to implement. It yields an anytime (online)
learning algorithm applicable to large-scale problems with millions of instances, where it often
delivers non-trivial models even before the first sweep through the data is completed. Therefore, the
method is preferred to the full gradient method, also known in machine learning as batch training.
For a convex objective function, standard SGD converges rather slowly at a rate of only O(1/

√
t)

(with suitably chosen learning rates, where t is the iteration counter), and at a faster but still slow rate
of O(1/t) if the objective is strongly convex.

Recently, the development of SGD-type approaches has seen rapid progress, in two directions. Driven
by the practical needs of deep network training, a variety of online adaptation methods for parameter-
wise learning rates has been proposed (see [5, 3] and references therein), culminating in the widely
applied ADAM algorithm [3]. Around the same time specialized methods for the optimization of
finite sums were developed, e.g., with stochastic average gradients (SAG) [4, 6] or with stochastic
variance reduced gradients (SVRG) [2] and related methods. They achieve the same convergence
rate as batch gradient descent (O(1/t) in general and, astonishingly, linear convergence O(ρt) in the
strongly convex case), while maintaining the low iteration cost of SGD. Interestingly, ADAM and
finite sum methods can be easily combined.

It is by no means clear with (combination) of these techniques is best suited for a given problem. All
of them have been tested for neural network training. In contrast, in the present paper we focus on
kernel machines. We empirically investigate the practical utility of both types of methods as well as
hybrids for the training of kernel machines on a budget.

2 Kernel machines on a budget

Given a labeled collection
(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y )n, we consider training of a kernel-

based decision function f(x) =
∑m
j=1 αjk(x, x̃j) via minimization of the regularized empirical risk

λ · Ω(f) + 1
n

∑n
i=1 L

(
yi, f(xi)

)
with respect to α = (α1, . . . , αm) ∈ Rm. Here, k : X ×X → R

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



is a Mercer kernel, Ω is a convex regularizer (often the squared norm Ω(f) = ‖f‖2k induced by k),
λ ≥ 0 is a regularization hyperparameter, and the loss L : Y × R→ R is convex in f [7].

In general, the collection {x̃1, . . . , x̃m} of basis points does not need to coincide with the set of
training points. Instead, we consider a budgeted setting withm� n by clustering or sub-sampling the
data, to avoid the so-called curse of kernelization [10], i.e., the unbounded growth of the computational
requirements of a single prediction and its gradient with n. However, our considerations apply to any
generalized linear model f(x) =

∑m
j=1 αjφj(x).

3 Fast stochastic gradient descent: finite sums and adaptive learning rates

Early methods like PEGASOS [9] essentially apply plain SGD to the above training problem. Here
we briefly review advanced SGD acceleration methods. Due to space constraints we refer to the
literature for details of the algorithms under consideration (see [6, 2, 3]).

For the important special case Ω(f) = 1
2‖f‖

2
k the objective function can be written as a finite sum

consisting of m+ n terms: m components fl = λ
2

∑m
j=1 αjαlk(x̃j , x̃l) of the regularizer, and n loss

terms fi = 1
nL
(
yi,
∑m
j=1 αjk(x̃j , xi)

)
. The gradient of each term requires O(m) kernel evaluations.

For many kernels the evaluation time is linear in the number of non-zero features. If the kernel values
are cached, then the number of actual operations is reduced to O(m). Hence SAG [6] and SVRG
[2] are directly applicable. Note that the memory requirement of SAG is as low as O(m+ n) for a
(generalized) linear model.

The ADAM algorithm [3] is the state-of-the-art method for online adaptation of individual learning
rates for each coefficient αj . Not only SGD, but also SAG and SVRG (except for SVRG’s full
gradient steps) compute one update vector per iteration. These updates can be directly plugged into
the ADAM procedure, yielding the hybrid methods ADAM/SAG and ADAM/SVRG.

4 Empirical evaluation

We empirically evaluated SAG and SVRG for the training of kernel machines on a budget. We run
batch gradient descent (GD) and stochastic gradient descent (SGD) as baselines. All three stochastic
methods were run with and without ADAM for the adjustment of parameter-wise learning rates.

We consider three different loss functions: the logistic loss, giving rise to kernel logistic regression,
the squared hinge loss yielding a support vector machine model, and the squared loss for kernel
ridge regression. We apply the Gaussian kernel k(x, x′) = exp

(
− γ‖x− x′‖2

)
in all experiments.

The data sets a9a, cod-rna, cover type, ijcnn1, and skin/non-skin for binary classification, as well
as E2006 and year prediction (Million Song Dataset, MSD) for regression were obtained from the
libSVM data website.1 Details on the experimental setup and the tuned parameter values are provided
in the supplementary material. The code for reproducing the experiments is available online.2

The learning curves of GD, SGD, SAG, and SVRG, with and without ADAM, are found in figures 1
and 2. Overall, SVRG and SAG perform clearly better than SGD, and of course, than plain GD. In all
cases they are more successful at minimizing the training objective, and they are more stable. They
are also more successful in terms of learning, yielding reduced test errors. Interestingly, the ADAM
method is harmful in all cases, including its application to plain SGD, hinting at the interpretation
that individual learning rates are not needed, and that noisy learning rate estimates are harmful.

5 Conclusion

We have presented an investigation of two different types of acceleration schemes of SGD to the
training of kernel machines. Despite its importance for deep learning, online adaptation of parameter-
wise learning rates turned out to be counter-productive for the problem under consideration. This
result is somewhat unexpected. In contrast, methods specialized in the minimization of finite sums
turned out to be highly effective. They significantly outperform plain SGD. These methods are well
suited for the training of kernel machines.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2 https://www.ini.rub.de/PEOPLE/glasmtbl/code/budgeted_kernel_machine/

2

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.ini.rub.de/PEOPLE/glasmtbl/code/budgeted_kernel_machine/


0 200 400 600 800 1000

0.31

0.32

0.33

0.34

0.35

0.36

0 200 400 600 800 1000

0.16

0.18

kernel logistic regression

 on a9a

objective value

test error

0 200 400 600 800 1000

0.12

0.14

0.16

0 200 400 600 800 1000

0.04

0.06

0.08

kernel logistic regression

 on cod−rna

objective value

test error

0 200 400 600 800 1000

0.4

0.41

0.42

0.43

0.44

0.45

0 200 400 600 800 1000

0.18

0.19

0.2

0.21

0.22

0.23

kernel logistic regression

 on cover type

objective value

test error

0 200 400 600 800 1000

0.04

0.05

0.06

0.07

0.08

0 200 400 600 800 1000

0.02

0.03

0.04

kernel logistic regression

 on ijcnn1

objective value

test error

0 200 400 600 800 1000

−0.0

0.01

0.02

0.03

0.04

0 200 400 600 800 1000

−0.0

0.002

0.004

kernel logistic regression

 on skin/non−skin

objective value

test error

0 200 400 600 800 1000

0.14

0.16

0 200 400 600 800 1000

0.14

0.16

0.18

kernel ridge regression

 on E2006

objective value

test error

Figure 1: Evolution of median objective value (top part of each sub-figure) and test error (bottom part
of each sub-figure) over 1000 epochs. Gray squares: (batch) GD, triangles: SAG, diamonds: SVRG,
circle: SGD; blue: without ADAM, red: with ADAM. The 25% and 75% quantiles are indicated as
error bars accompanying the symbols.

3



0 200 400 600 800 1000

0.21

0.22

0.23

0.24

0.25

0 200 400 600 800 1000

0.15

0.16

0.17

0.18

0.19

support vector machine

 on a9a

objective value

test error

0 200 400 600 800 1000

0.07

0.08

0.09

0.1

0.11

0.12

0 200 400 600 800 1000

0.04

0.05

0.06

support vector machine

 on cod−rna

objective value

test error

0 200 400 600 800 1000

0.27

0.28

0.29

0.3

0.31

0 200 400 600 800 1000

0.19

0.2

0.21

support vector machine

 on cover type

objective value

test error

0 200 400 600 800 1000

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

0.02

0.03

0.04

0.05

support vector machine

 on ijcnn1

objective value

test error

0 200 400 600 800 1000

−0.0

0.01

0.02

0.03

0.04

0 200 400 600 800 1000

−0.0

0.002

0.004

support vector machine

 on skin/non−skin

objective value

test error

0 200 400 600 800 1000

88.0

90.0

92.0

94.0

96.0

0 200 400 600 800 1000

88.0

90.0

92.0

94.0

96.0

kernel ridge regression

 on year prediction

objective value

test error

Figure 2: See caption of figure 1 for details.

Acknowledgments The author gratefully acknowledges support from the Deutsche Forschungsge-
meinschaft (DFG) under grant number GL 839/3-1.

4



References
[1] L. Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, pages

421–436. Springer, 2012.

[2] R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance
Reduction. In Advances in Neural Information Processing Systems (NIPS), pages 315–323,
2013.

[3] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. Technical Report
arXiv:1412.6980, arxiv.org, 2014.

[4] N. Le Roux, M. Schmidt, and F. Bach. A Stochastic Gradient Method with an Exponential
Convergence Rate for Finite Training Sets. In Advances in Neural Information Processing
Systems (NIPS), pages 2663–2671, 2012.

[5] T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning rates. In International Conference
on Machine Learning (ICML), pages 343–351. JMLR conferece proceedings, 2013.

[6] M. Schmidt, N. Le Roux, and F. Bach. Minimizing Finite Sums with the Stochastic Average
Gradient. Technical Report arXiv:1309.2388, arxiv.org, 2013.

[7] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, 2002.

[8] S. Shalev-Shwartz. Online Learning and Online Convex Optimization. Foundations and Trends
in Machine Learning, 4(2):107–194, 2012.

[9] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated sub-gradient
solver for SVM. Mathematical programming, 127(1):3–30, 2011.

[10] Z. Wang, K. Crammer, and S. Vucetic. Breaking the Curse of Kernelization: Budgeted Stochastic
Gradient Descent for Large-Scale SVM Training. The Journal of Machine Learning Research
(JMLR), 13(1):3103–3131, 2012.

[11] Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26(2):289–315, 2007.

5



Supplementary Material for the Paper
Finite Sum Acceleration vs. Adaptive Learning Rates

for the Training of Kernel Machines on a Budget

Appendix A: Data Sets

The data sets a9a, cod-rna, cover type (binary), ijcnn1, skin/non-skin, E2006, and year prediction
were obtained from the LIBSVM data website:

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

If a data set did not come with a pre-defined split into training and test set, then 10,000 random
points were split off as a test set; the rest was used for training. For all data sets except a9a and
E2006 the features were scaled to unit variance to improve prediction performance. In contrast to
standardization, the mean was not subtracted, in order to preserve sparsity.

The following table lists elementary properties of each learning problem (given by data set and loss):
n is the number of training instances, nnz denotes the average number of non-zero features per data
point, memory refers to the size of the kernel matrix between n training points and m = 1000 basis
points in megabytes (using double precision numbers occupying 8 bytes each, 1 MB = 220 bytes),
and the column ‘# repetitions’ lists the number of independent runs per problem.

data set loss n nnz memory (MB) # repetitions
a9a cross entropy 32,561 13.9 248 15
a9a squared hinge 32,561 13.9 248 15
cod-rna cross entropy 59,535 8.0 454 15
cod-rna squared hinge 59,535 8.0 454 15
cover type cross entropy 571,012 11.9 4,356 5
cover type squared hinge 571,012 11.9 4,356 5
ijcnn1 cross entropy 39,990 13.0 305 15
ijcnn1 squared hinge 39,990 13.0 305 15
skin/non-skin cross entropy 235,057 3.0 1,793 15
skin/non-skin squared hinge 235,057 3.0 1,793 15
E2006 squared loss 16,087 1241.4 123 15
year prediction squared loss 463,715 90 3,537 15

Appendix B: Parameter Settings

The following parameters were subject to tuning:

• the regularization parameter λ ≥ 0,
• the kernel parameter γ > 0,
• the learning rate η > 0 (for SGD the initial learning rate),
• and the budget m > 0.

After initial experimentation the budget was set to m = 1000 for all data sets. For the data set sizes
considered in this work, this value turns out to be close to the “sweet spot” of the trade-off between
computational and storage complexity on the one hand, and predictive performance on the other hand.

The parameters λ and γ were tuned over the grid λ ∈ {0, 10−6, 10−5, 10−4, 10−3} and γ ∈
{2−10, 2−9, . . . , 25}. The setting λ = 0 corresponds to no regularization at all. This is feasi-
ble since the budget constraint as well as early stopping after a fixed number of epochs both have a
regularizing effect [11]; in fact, models with λ = 0 performed well in many cases.

6

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


data set loss λ γ
a9a cross entropy 10−6 1/32
a9a squared hinge 10−4 1/16
cod-rna cross entropy 10−6 1/4
cod-rna squared hinge 10−5 1/4
cover type cross entropy 0 1/16
cover type squared hinge 0 1/16
ijcnn1 cross entropy 0 1/16
ijcnn1 squared hinge 0 1/16
skin/non-skin cross entropy 0 2
skin/non-skin squared hinge 0 2
E2006 squared loss 0 16
year prediction squared loss 0 1/1024

The learning rate η was tuned as follows, with the goal to use an as large as possible value. We started
with η = 1. If a run diverged (the objective function value exceeded the initial value at the end of a
sweep over the data) then the experiment was repeated with a halved learning rate. Note that the SAG
algorithm contains a mechanism for adapting the learning rate online, hence the effective learning
rate is usually lower. Of course, the same holds for all experiments involving the ADAM algorithm.
Also note that for SGD the learning rate in iteration t is of the form η(t) = η · n+m

n+m+t , where n+m
is the number of terms in the sum (length of one epoch). We obtained the following problem-specific
learning rates (median values):

data set loss learning rate η
GD SGD SVRG SAG

a9a cross entropy 1/64 1/32 1/128 1/4
a9a squared hinge 1/64 1/128 1/256 1/8
cod-rna cross entropy 1 1 1/4 1
cod-rna squared hinge 1/4 1/8 1/16 1
cover type cross entropy 1 1 1/4 1
cover type squared hinge 1/2 1/8 1/16 1
ijcnn1 cross entropy 1 1 1 1
ijcnn1 squared hinge 1/2 1/8 1/8 1
skin/non-skin cross entropy 1 1 1 1
skin/non-skin squared hinge 1 1/8 1/16 1
E2006 squared loss 1/32 1/128 1/256 1/16
year prediction squared loss 1/128 1/512 1/128 1/16

Appendix C: Selection of Basis Points

We defined basis functions k(x̃i, ·) by sampling a representative subset of the training points through
a diversive hierarchical clustering approach based on a binary space partitioning tree. The root node
is formed by the training set. For each cluster we estimate its extent as the maximal distance of 59
random pairs of points, yielding one of the 5% largest distances with probability > 95%.3 We keep
track of the corresponding pair of points. We keep splitting the cluster with maximal extent into
two sub-clusters until there are m leaf nodes in the tree. The set of basis functions is obtained by
centering Gaussian kernels on the centroids of the leaf nodes. The complexity of this algorithm is
O(np log(m)). In our experiments, it was usually faster than parsing the data files.

3The probability is computed as 1− (1− 0.05)59 ≈ 0.9515.

7


	Introduction
	Kernel machines on a budget
	Fast stochastic gradient descent: finite sums and adaptive learning rates
	Empirical evaluation
	Conclusion

