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Abstract

In this paper, we propose an accelerated stochastic subgradient method for
stochastic non-strongly convex optimization problems by leveraging a generic
local error bound condition. The novelty of the proposed method lies at smartly
leveraging the recent historical solution to tackle the variance in the stochastic
subgradient. The key idea of method is to iteratively solve the original problem
approximately in a local region around a recent historical solution with size of
the local region gradually decreasing as the solution approaches the optimal set.
We establish the improved iteration complexity in a high probability for achieving
an ε-optimal solution. Besides the improved order of iteration complexity with
a high probability, the proposed algorithm also enjoys a logarithmic dependence
on the distance of the initial solution to the optimal set. When applied to the
`1 regularized polyhedral loss minimization (e.g., hinge loss, absolute loss), the
proposed stochastic method has a logarithmic iteration complexity.

1 Introduction

In this paper, we are interested in solving the following stochastic optimization problem:

min
w∈K

F (w) , Eξ[f(w; ξ)] (1)

where ξ is a random variable, f(w; ξ) is a convex function of w and K is a convex domain. We
denote by ∂f(w; ξ) a subgradient of f(w; ξ). Let K∗ denote the optimal set of (1) and F∗ denote the
optimal value.

Traditional stochastic subgradient (SSG) method updates the solution according to

wt+1 = ΠK[wt − ηt∂f(wt; ξt)] (2)

for t = 1, . . . , T , where ξt is a sampled value of ξ at t-th iteration, ηt is a step size and ΠK is a
projection operator that projects a point into K (c.f. Eqn. (4)). Under the following assumptions i)
‖∂f(w; ξ)‖2 ≤ G, ii) there exists w∗ ∈ K∗ such that ‖wt −w∗‖2 ≤ B for t = 1, . . . , T 1, and by
setting the step size ηt = B

G
√
T

in (2), we can show that with a high probability 1− δ

F (ŵT )− F∗ ≤ O
([
GB(1 +

√
log(1/δ))

]
/
√
T
)

where ŵT =
∑T
t=1 wt/T . The above convergence implies that in order to obtain an ε-optimal

solution by SSG, i.e., finding a w such that F (w)− F∗ ≤ ε with a high probability 1− δ, one needs

at least T = O

(
G2B2(1+

√
log(1/δ))2

ε2

)
in the worst-case.

1This holds if we assume the domain K is bounded such that maxw,v∈K ‖w − v‖2 ≤ B or if assume
dist(w1,K∗) ≤ B/2 and project every solution wt into K ∩ B(w1, B/2).



The slow convergence of SSG is due to the variance in the stochastic subgradient, which therefore
requires a decreasing step size or a very small step size. Recently, there emerges a stream of studies
on various variance reduction techniques to accelerate stochastic gradient method [16, 21, 8, 18, 3].
However, they all hinge on the smoothness assumption. In this paper, we tackle the issue of variance
in stochastic subgradient without the smoothness assumption. The key idea is to iteratively solve
the original problem approximately in a local region around a recent historical solution using the
SSG method with an adaptive constant step size. By leveraging the local error bound, we gradually
reduce the size of the local region and the step size as well in a stage-wise manner, which yields
faster convergence. This strategy is fundamentally different from traditional SSG that reduces the
step size after every iteration or simply adoptes a very small step size. This new strategy is the main
message that we would like to convey. We refer to the proposed methods as accelerated stochastic
subgradient (ASSG) methods.

In particular, we show that the proposed algorithm enjoys an iteration complexity of Õ
(

1
ε2(1−θ)

)
2 for

obtaining an ε-optimal solution in a high probability 1− δ, where θ ∈ (0, 1] is a constant in the local
error bound condition (Definition 2) that captures the local sharpness of the objective function F (w)
near the optimal set. Thus, for a family of problems with the constant θ = 1 (e.g., `1 regularized
empirical hinge loss minimization), the proposed algorithms have a logarithmic iteration complexity.
To the best of our knowledge, this is the first work that improves the convergence of SSG method by
exploring the local error bound, though it has been recently explored to improve the convergence of
deterministic subgradient method in [19].

2 Preliminaries

We present some preliminaries in this section. For the optimization problem in (1), we make the
following assumption throughout the paper.
Assumption 1. For a stochastic optimization problem (1), we assume (i) there exist w0 ∈ K and
ε0 ≥ 0 such that F (w0)− F∗ ≤ ε0;(ii) K∗ is a non-empty convex compact set; (iii) There exists a
constant G such that ‖∂f(w; ξ)‖2 ≤ G.
For any w ∈ K, let w∗ denote the closest optimal solution in K∗ to w, i.e., w∗ = arg minv∈K∗ ‖v−
w‖22, which is unique. We denote by Lε the ε-level set of F (w) and by Sε the ε-sublevel set of F (w),
respectively, i.e.,

Lε = {w ∈ K : F (w) = F∗ + ε}, Sε = {w ∈ K : F (w) ≤ F∗ + ε}.
Given K∗ is bounded, it follows from [14, Corollary 8.7.1] that the sublevel set Sε is bounded for any
ε ≥ 0 and so as the level set Lε. Let w†ε denote the closest point in the ε-sublevel set to w, i.e.,

w†ε = arg min
v∈Sε

‖v −w‖22 (3)

It is easy to show that w†ε ∈ Lε when w /∈ Sε (using the KKT condition).

Let B(w, r) = {u ∈ Rd : ‖u − w‖2 ≤ r} denote an Euclidean ball centered w with a radius r.
Denote by dist(w,K∗) the distance between w and the set K∗, i.e., dist(w,K∗) = minv∈K∗ ‖w −
v‖2. Let ΠK[·] be a projection operator:

ΠK[w] = arg min
v∈K
‖w − v‖22 (4)

The key to our development is to explore the local error bound condition, which is stated below.
Definition 2 (Local error bound (LEB)). A function F (w) is said to satisfy a local error bound
condition on the ε-sublevel set if there exist θ ∈ (0, 1] and c > 0 such that for any w ∈ Sε

dist(w,K∗) ≤ c(F (w)− F∗)θ. (5)
Remark: We emphasize that the local error bound is a generic condition. A broad family of functions
(including almost all commonly seen functions in machine learning) obey the local error bound
condition. In literature, the inequality in (5) is also known as Hölderian error bound or Łojasiewicz
error bound inequality. When functions are semi-algebraic and “regular" (for instance, continuous),
the above inequality is known to hold on any compact set (c.f. [2] and references therein). For
many functions, the constant c and the exponent θ are known [11, 10, 12, 2]. We give an example

2Õ() suppresses a logarithmic factor.
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Algorithm 1 the ASSG algorithm for solving (1)
1: Input: the number of stages K, the number of iterations t per stage, and the initial solution w0,
η1 = ε0/(3G

2) and D1 ≥ cε0
ε1−θ

2: for k = 1, . . . ,K do
3: Let wk

1 = wk−1
4: for τ = 1, . . . , t do
5: Update wk

τ+1 = ΠK∩B(wk−1,Dk)[w
k
τ − ηk∂f(wk

τ ; ξkτ )]
6: end for
7: Let wk = 1

t

∑t
τ=1 w

k
τ

8: Let ηk+1 = ηk/2 and Dk+1 = Dk/2.
9: end for

10: Output: wK

of its applications in machine learning. We can consider the polyhedral loss minimization with an
`1 regularization: minw∈Rd F (w) = 1

n

∑n
i=1 `(w

>xi, yi) + τ‖w‖1. The term `(z, y) denotes a
polyhedral loss, whose examples include hinge loss [17], generalized hinge loss [1], absolute loss [6],
ε-insensitive loss [15], and piecewise linear loss [9]. For particular forms of these loss functions,
please refer to [20]. The epigraph of F (w) defined by sum of a polyhedral loss function and an `1
norm regularizer is still a polyhedron. According to the polyhedral error bound condition [5, 13, 19],
there exists c > 0 such that dist(w,K∗) ≤ c(F (w)− F∗) for any w ∈ K, meaning that θ = 1. The
local error bound will be explored with the following lemma in the proof of the main theorems.
Lemma 1 ([19]). For any w ∈ K and ε > 0, we have

‖w −w†ε‖2 ≤
dist(w†ε ,K∗)

ε
(F (w)− F (w†ε))

where w†ε ∈ Sε is the closest point in the ε-sublevel set to w as defined in (3).

3 Accelerated Stochastic Subgradient Method

In this section, we will present the proposed ASSG method and establish its improved iteration
complexity with a high probability. The detailed steps are presented in Algorithm 1. The algorithm
runs in stages and each stage runs t iterations of updates similar to the SSG update except that
the intermediate solutions are projected into the intersection of the problem domain K and a ball
B(wk−1, Dk). The radius Dk geometrically decreases as wk−1 approaches to the optimal set. The
step size keeps the same during each stage and geometrically decreases between stages. It is notable
that ASSG is similar to the Epoch-GD method by [7] and the (multi-stage) AC-SA method with
domain shrinkage by [4] for stochastic strongly convex optimization, and is also similar to the
restarted subgradient method (RSG) proposed by [19]. However, the difference between ASSG
and Epoch-GD/AC-SA is that the number of iterations t for all stages are the same in ASSG while
it geometrically increases between stages in Epoch-GD/AC-SA. Compared to RSG, the solutions
updated along gradient direction in ASSG are projected back into a local neighborhood around wk−1,
which is the key to establish the faster convergence of ASSG. The convergence of ASSG is presented
in the theorem below.
Theorem 3. Suppose Assumption 1 holds and F (w) obeys the local error bound condition. Given
δ ∈ (0, 1), let δ̃ = δ/K, K = dlog2( ε0ε )e, D1 ≥ cε0

ε1−θ
and t be the smallest integer such that

t ≥ max{1728 log(1/δ̃), 9}G
2D2

1

ε20
. Then ASSG-c guarantees that, with a probability 1−δ, F (wK)−

F∗ ≤ 2ε. As a result, the iteration complexity of ASSG for achieving an 2ε-optimal solution with a
high probability 1− δ is Õ(log(1/δ)/ε2(1−θ)) provided D1 = O( cε0

ε(1−θ)
).

Remark: It is worth mentioning that unlike traditional high-probability analysis of SSG that usually
requires the domain to be bounded, the convergence analysis of ASSG does not rely on such a
condition. Furthermore, the iteration complexity of ASSG has a logarithmic dependence on ε0. If we
known dist(w0,K∗) ≤ B, then we can set ε0 = GB. Hence, the iteration complexity of ASSG has
only a logarithmic dependence on the distance of the initial solution to the optimal set. It is notable
that Epoch-GD [7] and AC-SA [4] have a complexity of O(log(1/δ)/ε) and O((log(1/δ))2/ε)
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respectively. Compared to their results, our ASSG method can have a better complexity if θ > 1/2
and we assume local error bound condition - a much more general condition than strong convexity.

To prove Theorem 3, we first present a lemma regarding each stage of ASSG.

Lemma 2. Let D be the upper bound of ‖w1 − w†1,ε‖2. Apply t-iterations of wτ+1 =

ΠK∩B(w1,D)[wτ −η∂f(wτ ; ξτ )]. Given w1 ∈ K, for any δ ∈ (0, 1), with a probability at least 1−δ

F (ŵt)− F (w†1,ε) ≤
ηG2

2
+
‖w1 −w†1,ε‖22

2ηt
+

4GD
√

3 log(1/δ)√
t

where ŵt =
∑t
τ=1 wt/t.

The proof of the above lemma follows similarly as that of Lemma 10 in [7]. Next, we prove the main
theorem regarding the convergence of ASSG.

Proof of Theorem 3. Let w†k,ε denote the closest point to wk in Sε. Define εk = ε0
2k

. Note that
Dk = D1

2k−1 ≥ cεk−1

ε1−θ
and ηk = εk−1

3G2 . We will show by induction that F (wk) − F∗ ≤ εk + ε for
k = 0, 1, . . . with a high probability, which leads to our conclusion when k = K. The inequality
holds obviously for k = 0. Conditioned on F (wk−1) − F∗ ≤ εk−1 + ε, we will show that
F (wk)− F∗ ≤ εk + ε with a high probability. By Lemma 1, we have

‖w†k−1,ε −wk−1‖2 ≤
dist(w†k−1,ε,K∗)

ε
(F (wk−1)− F (w†k−1,ε))

=
dist(w†k−1,ε,K∗)

ε
[F (wk−1)− F∗ + (F∗ − F (w†k−1,ε))] ≤

dist(w†k−1,ε,K∗)
ε

[εk−1 + ε− ε]

=
dist(w†k−1,ε,K∗)εk−1

ε
≤
c(F (w†k−1,ε)− F∗)θεk−1

ε
≤ cεθεk−1

ε
=
cεk−1
ε1−θ

≤ Dk (6)

We apply Lemma 2 to the k-th stage of Algorithm 1 conditioned on randomness in previous stages.
With a probability 1− δ̃ we have

F (wk)− F (w†k−1,ε) ≤ ηkG
2/2 + ‖wk−1 −w†k−1,ε‖

2
2/(2ηkt) + 4GDk

√
3 log(1/δ̃)/

√
t (7)

We now consider two cases for wk−1. First, we assume F (wk−1)− F∗ ≤ ε, i.e. wk−1 ∈ Sε. Then

we have w†k−1,ε = wk−1 and F (wk) − F (w†k−1,ε) ≤ ηkG
2/2 + 4GDk

√
3 log(1/δ̃)/

√
t. As a

result,

F (wk)− F∗ ≤ F (w†k−1,ε)− F∗ +
2εk
3
≤ ε+ εk

Next, we consider F (wk−1) − F∗ > ε, i.e. wk−1 /∈ Sε. Then we have F (w†k−1,ε) − F∗ = ε.

Combining (7) and (6) and using ηk = 2εk
3G2 and t ≥ max{1728 log(1/δ̃), 9}G

2D2
1

ε20
, we have

F (wk)− F (w†k−1,ε) ≤ εk ⇒ F (wk)− F∗ ≤ εk + ε

with a probability 1− δ̃. Therefore by induction, with a probability at least (1− δ̃)K we have

F (wK)− F∗ ≤ εK + ε ≤ 2ε.

Since δ̃ = δ/K, then (1− δ̃)K ≥ 1− δ and we complete the proof.

4 Conclusion

In this paper, we have proposed an accelerated stochastic subgradient method for solving general
non-strongly convex stochastic optimization under the local error bound condition. The proposed
method enjoys a lower iteration complexity than vanilla stochastic subgradient method and also a
logarithmic dependence on the impact of the initial solution.
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