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Abstract

Parallel implementations of stochastic gradient descent (SGD) have received signif-1

icant research attention, thanks to excellent scalability properties of this algorithm,2

and to its efficiency in the context of training deep neural networks. A fundamental3

barrier for parallelizing large-scale SGD is the fact that the cost of communicat-4

ing the gradient updates between nodes can be very large. Consequently, lossy5

compression heuristics have been proposed, by which nodes only communicate6

quantized gradients. Although effective in practice, these heuristics do not always7

provably converge, and it is not clear whether they are optimal. In this paper, we8

propose Quantized SGD (QSGD), a family of compression schemes which allow9

the compression of gradient updates at each node, while guaranteeing convergence10

under standard assumptions. QSGD allows the user to trade off compression and11

convergence time: it can communicate a sublinear number of bits per iteration12

in the model dimension, and can achieve asymptotically optimal communication13

cost. We complement our theoretical results with empirical data, showing that14

QSGD can significantly reduce communication cost, while being competitive with15

standard uncompressed techniques on a variety of real tasks.16

1 Introduction17

Let X ⊆ Rn be a known convex set, and consider stochastic gradient descent for a smooth function18

f : X → R, in which we only have access to independent stochastic gradients of f . We assume that19

stochastic gradient g̃(x) is unbiased E[g̃(x)] = ∇f(x) and satisfies the second moment condition20

E[‖g̃(x)‖22] ≤ B for all x ∈ X .21

Now consider a synchronous parallel stochastic gradient descent setting in which we have K workers,22

each of which have access to independent stochastic gradients of f . Each worker computes the23

stochastic gradient synchronously and communicates the gradients with each other. After the24

communication, each worker updates the parameter using the aggregated gradient as25

xt+1 = ΠX

(
xt −

ηt
K

K∑
`=1

g̃`(xt)

)
,

where g̃`(xt) is the stochastic gradient computed on the `th worker.26

One can easily imagine that when the number of parameters n is large, the cost of communication27

can be significant. 1-Bit SGD [5] addresses this issue by introducing a quantization function that28

roughly speaking encodes a gradient vector into one bit for each coordinate corresponding to its sign29

and two float numbers corresponding to the mean of the positive coordinates and the mean of the30
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negative coordinates. On the receiver’s side the gradient vector can be approximately recovered by31

setting all the positive coordinates to the positive mean and the negative coordinates as the negative32

mean. This heuristic requires roughly n bits per gradient, but does not guarantee convergence.33

2 A Randomized Quantization Scheme34

We propose the random quantization function Q(v) defined as follows:35

Qi(v) = ‖v‖2 · sgn (vi) ξi(v) , (1)

where ξi(v)’s are independent random variables such that ξi(v) = 1 with probability |vi|/‖v‖2, and36

ξi(v) = 0, otherwise. If v = 0, we define Q(v) = 0.37

The key properties of Q[g̃(x)] are sparsity, unbiasedness, and bounded second moment as shown in38

the following lemma:39

Lemma 2.1. For any v ∈ Rn, we have E[‖Q(v)‖0] ≤
√
n (sparsity), E[Q(v)] = v (unbiasedness),40

and E[‖Q(v)‖2] ≤
√
n‖v‖22 (second moment bound).41

The sparsity allows us to succinctly encode Q(x), for any x, in expectation. The information42

contained in Q(v) can be expressed by (1) a float variable that encodes the value of ‖v‖2, (2)43

identities of the vector coordinates i for which ξi(v) = 1, and (3) the values of signs sgn (vi) for44

these coordinates. Let Code(Q(v)) denote a binary representation of such a tuple representation of45

Q(v). Then, one can show the following bound, whose proof is deferred to the full version of our46

paper.47

Lemma 2.2. For every vector v ∈ Rn, we have E[|Code(Q(v))|] ≤
√
n(log(n) + log(2e)) + F ,48

where F is the number of bits for representing one floating point number.49

These two lemmas together imply the following theorem.50

Theorem 2.3. Let f : Rn → R be fixed, and let x ∈ Rn be arbitrary. If g̃(x) is a stochastic51

gradient for f at x with second moment bound B, then Q(g̃(x)) is a stochastic gradient for f at x52

with second moment bound
√
nB. Moreover, in expectation Q(g̃(x)) can be communicated using53 √

n(log n+ log 2e) + F bits.54

Note that the above communication cost is sublinear in the dimension n compared to the linear cost55

when the gradients are communicated without compression or using 1-bit SGD. Using standard con-56

vergence results (e.g., [1]), we obtain an stochastic gradient algorithm that requires only O(
√
n log n)57

communication per round and converges to the same precision in O(
√
n) times more iterations.58

We can control the trade-off between communication and convergence by introducing bucketing.59

More precisely, we partition the gradient vector into n/d buckets, each of which containing d60

consecutive coordinates, and apply the quantization and encoding to each bucket. Then a simple61

extension of Theorem 2.3 predicts that the second moment bound then becomes
√
dB. Setting d = 1,62

we recover no quantization (vanilla SGD), and d = n corresponds to full quantization. However,63

since quantization increases the second moment bound, there is no improvement in terms of the total64

communication cost.65

3 A Generalized Randomized Quantization Scheme66

In order to explore the trade-off between communication and convergence more carefully, we propose67

a more general lossy-compression scheme defined as follows:68

Qi(v, s) = ‖v‖2 · sgn (vi) ξi(v, s) , (2)

where s ≥ 1 is a tuning parameter, ξi(v, s)’s are independent random variables with distributions69

defined as follows. Let 0 ≤ ` < s be an integer such that |vi|/‖v‖2 ∈ [`/s, (`+ 1)/s]. Then70

ξi(v, s) =

{
`/s with probability 1− p

(
|vi|
‖v‖2

, s
)

;

(`+ 1)/s otherwise.
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Here, p(a, s) = as− ` for any a ∈ [0, 1]. If v = 0, then we define Q(v, s) = 0.71

The random quantization function (1) corresponds to the special case s = 1. We obtain the three key72

properties as we show in the following lemma.73

Lemma 3.1. For any v ∈ Rn, we have that E[‖Q(v, s)‖0] ≤ s2 +
√
n (sparsity), E[Q(v, s)] = v74

(unbiasedness), and E[‖Q(v, s)‖22] ≤ (1 + min(n/s2,
√
n/s))‖v‖22 (second moment bound).75

Note that the factor cn,s := 1 + min(n/s2,
√
n/s) in the second-moment bound is parameterized76

with the dimension n and the tuning parameter s. For the special case s = 1, we have cn,s = Θ(
√
n),77

which is consistent with the result in Lemma 2.1. By varying the value of the parameter s between 178

and
√
n, we can smoothly vary cn,s between Θ(

√
n) and Θ(1). We can also see that as we increase79

s, the quantized gradient becomes less sparse. The sparsity bound is O(
√
n) at s = 1 and O(n)80

at s =
√
n. We also note that the distribution of ξi(v, s) is a unique distribution that has minimal81

variance over distributions that have support {0, 1/s, . . . , 1} and unbiased.82

In the sparse regime where we expect the quantized gradient to contain at most n/2 non-zero83

coordinates, we have the following theorem.84

Theorem 3.2. Let f : Rn → R be fixed, and let x ∈ Rn be arbitrary. If g̃(x) is a stochastic gradient85

for f at x with second moment bound B, then Qs(g̃(x)) is a stochastic gradient for f at x with86

second moment bound
(
1 + min

(
n/s2,

√
n/s
))
B. Moreover, there is an encoding scheme so that87

in expectation, the number of bits needed to communicate Qs(g̃(x)) is upper bounded by88

F +

(
3 +

3

2
· (1 + o(1)) log

(
2(s2 + n)

s2 +
√
n

))
(s2 +

√
n) .

The communication cost can be, roughly speaking, broken down into one float number representing89

the norm and s2 +
√
n (in expectation) bits and integers representing the signs, magnitudes, and90

positions of the non-zero coordinates. We use the recursive Elias coding, which is favorable for small91

integers, to achieve the above bound.92

For large s, the quantized gradient becomes dense, and we no longer need to communicate the93

positions of the non-zero coordinates.94

Theorem 3.3. Let f,x, and g̃(x) be as in Theorem 3.2. There is an encoding scheme for Qs(g̃(x))95

which in expectation has length96

F +

(
1 + o(1)

2

(
log

(
1 +

s2 + min(n, s
√
n)

n

)
+ 1

)
+ 2

)
n .

In particular, if s =
√
n, then this encoding requires ≤ F + 2.8n bits in expectation.97

In fact, for s =
√
n, the second moment bound is only 2 times worse than no quantization and the98

communication cost is only 2.8 bits per coordinate. We defer the description of the quantization99

schemes in Theorems 3.2 and 3.3, and their use in the context of SVRG [2], to the full version.100

4 Experiments101

We now empirically validate our approach, using experiments aimed at data-parallel and model-102

parallel settings. We have implemented QSGD on GPUs using deep learning framework Chainer [7].103

Quantization vs. Accuracy. In the first set of experiments, we explore the relation between104

performance and the granularity at which quantization is applied to the gradient vector.105

Here, our experiments deviate from the theory, as we use a deep network, with non-convex objective.106

MNIST dataset. The first dataset is the MNIST dataset of handwritten digits. The training set consists107

of 60,000 28 x 28 single digit images. The test set consists of 10,000 images. We train a two-layer108

perceptron with 4096 hidden units and ReLU activation with a minibatch size of 256 and step size109

of 0.1. Results are shown in Figure 1(a). Rather surprisingly, in terms of both training negative110

log-likelihood loss and the test accuracy, QSGD improves performance. This is consistent with111

recent work [4] suggesting benefits of added noise in training deep networks. We observed no such112

improvement for a linear model on the same dataset.113
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(a) MNIST
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(b) CIFAR-10

Figure 1: Training on a single machine on MNIST and CIFAR-10. SGD corresponds to bucket size of
d = 1. QSGD performs better in terms of both training loss and test accuracy on the MNIST dataset.
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Figure 2: Multi GPU experiment.

The total number of parameters of this model is 3.3 million, most of them lying in the first layer.114

Using Theorem 2.2, we can approximate the effective number of floats communicated by QSGD.115

Assuming F = 32, we get roughly 88k, 49k, and 29k effective floats for bucket sizes d = 256, 1024,116

and 4096, respectively. There is a massive reduction in communication since for each bucket we only117

need to communicate one float and the positions and signs of Õ(
√
d) entries, each of which only118

requires O(log d) bits, which is typically much smaller than 32 (e.g., 11 bits for d = 256).119

CIFAR-10 dataset. Next, we consider the CIFAR-10 object classification dataset [3]. The original120

training set consists of 50,000 32× 32 color images, augmented by translating, cropping with window121

size 28 × 28, and horizontal flipping. The augmented training set contains 1.8 million images.122

We use a small VGG model [6] consisting of nine 2D convolution layers and three fully connected123

layers. The total number of parameters is roughly 22 million. All methods used momentum of 0.9.124

See the full paper for the details. When we only quantized the fully connected layers, we have found125

that the bucket size can be increased without much loss in accuracy (see Fig. 1(b)). The effective126

number of floats to be communicated are 1.5 million, 1.3 million, and 1.2 million for bucket sizes127

d = 256, 1024, and 4096, respectively. On the other hand, when we also applied the quantization128

to the convolutional layers, we observed a noticeable increase in the training objective as well as129

reduction in the test accuracy. The effective number of floats to be communicated are 580k, 312k,130

176k, respectively.131

Parallelization. In Figure 2 (a) and (b), we show preliminary scalability experiments on MNIST,132

using up to 4 GPUs, compared with vanilla SGD and 1-Bit SGD [5]. The setup is the same as in133

the previous section, and we use double buffering [5] to perform communication and quantization134

concurrently with the computation. Experiments are preliminary in the sense that we did not fully135

optimize either 1-Bit SGD or QSGD to their full potential; in particular, quantized gradients are136

communicated in raw floats instead of using more efficient encoding.137
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