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1 Introduction

In structured prediction, a predictor optimizes an objective function over a combinatorial search
space, such as the set of all image segmentations, or the set of all part-of-speech taggings. Unfor-
tunately, finding the optimal structured labeling—sometimes referred to as maximum a posteriori
(MAP) inference—is, in general, NP-hard [12], due to the combinatorial structure of the problem.
Many inference approximations have been proposed, some of which are based on linear program-
ming (LP) relaxations [e.g., 5, 1, 15, 16, 4, 13], which “relax” the combinatorial search space to a
convex polytope with a polynomial number of constraints. These LP relaxations can be solved effi-
ciently, but may result in fractional solutions, i.e., non-integral labelings. The approximation quality
of an LP relaxation is traditionally measured by a quantity known as the integrality gap, defined as
the difference in the objective values obtained at the optima of the relaxed and exact problems. When
the integrality gap is zero, the solution is said to be tight.

While studying the integrality gap is useful from an optimization perspective, it is arguably less
important in structured prediction, wherein the solution to the optimization, the inferred labeling, is
more important than its objective value. We do not really care whether the optimum of the relaxed
problem equals that of the integral one; we just want relaxed inference to yield the optimal integral
assignment—or, lacking that, an assignment that is “close to” the optimal integral one. If we assume
that the relaxed problem has a unique solution, then tightness implies that the assignments are the
same. However, lacking this assumption, there may be multiple, disparate solutions, so the assign-
ments may differ. Further, when the integrality gap is nonzero, we know nothing about the distance
between the relaxed and exact assignments.

We therefore propose an alternate measure of approximation quality based on the Manhattan dis-
tance between the maximizers of the relaxed and exact optimizations, which we refer to as the
integrality distance. The integrality distance is conceptually similar to persistence (see [14] for def-
inition) in that a persistent fractional solution will have a subset of variables with zero integrality
distance. The integrality distance is also related to the integrality gap, although the distance is ar-
guably more intuitive and informative: when the integrality distance is small, the relaxed solution is
close to the exact solution, which is what we ultimately care about; moreover, when the integrality
distance is zero, the integrality gap must also be zero, regardless of whether we assume uniqueness.

In this paper, we examine the integrality distance in the context of learning, asking the question: if
a predictor is trained to use relaxed inference, what is its expected integrality distance? We begin by
relating the integrality distance to several structured loss functions that are commonly analyzed in
the literature on structured prediction. We then show that the integrality distance generalizes from
an empirical sample to the population average. This result builds on recent work by Meshi et al. [9],
who showed that the probability of tightness generalizes. We take our analysis one step further than
Meshi et al.1 and show that the integrality distance is upper-bounded by a constant multiple of the
structured hinge loss—a convex loss function that is commonly used in practice. Combining these
results, we obtain a high-probability bound on the expected integrality distance that can be evaluated

1Though Meshi et al. related the integrality gap to the hinge loss, they did not directly relate tightness to a
tractable metric.
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from the training data, and whose additive error decreases with the number of examples. Further,
a simple argument shows how this bound applies to an integral rounding of a fractional solution.
Thus, our novel theory proves that max-margin training not only minimizes prediction error, but
also the approximation error of relaxed inference.

2 Preliminaries

Suppose we wish to learn the weights, w ∈ Rd, of a structured predictor,

arg max
y∈Y

w · f(x,y), (1)

where x ∈ X is a vector of observations, y ∈ Y , is a vector of discrete labels, for some Y ,∏n
i=1 Yi, and f : X × Y → Rd is a vector-valued feature mapping that decomposes over a set

of factors, F , such that f(x,y) = (f(x,y))f∈F . We assume that F contains a unary factor for
each i = 1, . . . , n. The optimization in Equation 1 is equivalent to MAP inference in a Markov
network. Using the marginal polytope,M (see Wainwright and Jordan [14] for a definition), we can
reformulate Equation 1 as a linear program,

arg max
µ∈M

θ(x;w) · µ, (2)

where θ(x;w) is a vector of potential functions. Note thatM contains non-integral vectors, but a
solution to Equation 2, denoted µI(x;w), is always a vertex ofM, and is therefore always integral.
Thus, a straightforward decoding of µI(x;w) produces a discrete labeling. With a slight abuse of
notation, we assume that f(x,µ) exists and θ(x;w) · µ = w · f(x,µ). When x and w are clear
from context, we will omit them from our notation.

If describingM is intractable, we can replaceM with the local marginal polytope,ML, which is
described by a polynomial number of local constraints. For example, the local marginal polytope
of a pairwise model, containing unary (node) and pairwise (edge) factors, indexed by V and E
respectively, is given by:

Mpairwise
L ,

 µ :

∀v ∈ V,
∑|Yv|
j=1 µ

j
v = 1 ;

∀e = {u, v} ∈ E ,
∑|Yu|
i=1 µ

ij
e = µjv ,∑|Yv|

j=1 µ
ij
e = µiu .

 (3)

Maximizing overML is an LP relaxation of the original combinatorial optimization. SinceML is
an outer bound onM, with no new integer vertices, the relaxed solution, denoted µL(x;w), may
be fractional. The integrality gap is θ · (µL(x;w) − µI(x;w)). We will not assume that either the
integral or relaxed optimizations have unique solutions, but we will assume that there exists some
deterministic tie-breaking mechanism to select a single optimum. Thus, µI(x;w) and µL(x;w)
always output a single solution (not a set), and we define the integrality distance as

‖µL(x;w)− µI(x;w)‖1 . (4)

3 Structured Loss Functions

We will focus on the integrality distance of the unary factors, denoted µu , (µi)
n
i=1, since they are

sufficient for decoding a labeling, y. Let

D1(µ,µ′) ,
1

2n
‖µu − µ′u‖1 (5)

denote the normalized Manhattan distance between unary factors. Note that when one of the
inputs—say, µ—is integral, D1(µ,µ′) can be expressed as δ(µ) · µ′, where

δ(µ) ,
1

n

[
1− µu

0

]
. (6)

(Padding this vector with zeros makes its dot product with µ discard higher-order factors.) Further,
when both inputs are integral, D1 is equivalent to the normalized Hamming distance.
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Given a model, w, an input, x, and an assignment, µ, let

L1(w,x,µ) , D1 (µ,µL(x;w)) (7)

denote the L1 loss. This loss function is a relaxation of the the Hamming loss, which is commonly
used to measure the prediction error of exact inference. If the third argument is a reference (i.e.,
“ground truth”) labeling, µT, then L1(w,x,µT) measures the prediction error of approximate infer-
ence. However, if the third argument is the exact, integral MAP state, µI, then L1(w,x,µI) is the
normalized integrality distance. This latter quantity is what we will focus on upper-bounding.

Let
Lh(w,x,µ) , max

µ′∈ML

D1(µ,µ′) + θ(x;w) · (µ′ − µ) . (8)

denote a loss function commonly referred to as the (relaxed) structured hinge loss. The structured
hinge loss is minimized when µ scores higher than all alternate assignments, µ′, by a margin that
is at least D1(µ,µ′). Note that when µ is the exact MAP state, the hinge loss computes a loss-
augmented integrality gap, using Manhattan distance for loss augmentation.

A related loss function is the (relaxed) structured ramp loss,

Lr(w,x,µ) , max
µ′∈ML

D1(µ,µ′) + θ(x;w) · (µ′ − µL(x;w)) , (9)

which can be considered a normalized version of the hinge loss. Lr is bounded by [0, 1], whereas Lh
might be unbounded (depending on the features and weights).

The hinge loss is often used in max-margin training, since it is convex in w. The ramp loss is not
convex in w, but it is bounded, Lipschitz, and has a convenient relationship to the L1 (or Hamming)
and hinge losses:

L1(w,x,µ) ≤ Lr(w,x,µ) ≤ Lh(w,x,µ). (10)

Thus, the ramp loss is often used as an analytical tool to derive generalization bounds, such as those
that follow.

4 Generalization Bound

Generalization analysis bounds the maximum discrepancy between the expected loss on a random
example and an empirical estimate of the loss from a random set of (training) examples. Typically,
one is interested in upper-bounding the expected prediction error, but the loss function can in fact
measure any quantity—such as the integrality distance. The following theorem states that the aver-
age integrality distance on a training sample generalizes to the population average. The interested
reader will note that the proof (deferred to Appendix A.1) uses a PAC-Bayesian analysis, similar to
London et al. [8], though the main result is stated for a deterministic predictor.

Theorem 1. Let D denote a distribution over X . Let f : X × Y → Rd denote a feature mapping
such that supx,y ‖f(x,y)‖2 ≤ B, for some finite constant, B < ∞. Then, for any δ ∈ (0, 1) and
m ≥ 1, with probability at least 1 − δ over draws of (x(1), . . . ,x(m)) ∈ Xm, according to Dm,
every weight vector, w, with ‖w‖2 ≤ R <∞, satisfies

E
x∼D

[L1(w,x,µI)] ≤
1

m

m∑
i=1

Lr(w,x
(i),µ

(i)
I ) +

8

m
+ 2

√
d ln(mBR) + ln 2

δ

2m
. (11)

Further, Equation 11 holds when Lr is replaced with Lh.

Theorem 1 says that the expected integrality distance on a random instance is upper-bounded by the
average integrality ramp (or hinge) loss on the training set, plus two terms that vanish as the number
of training examples grows. Thus, the more training data we have, the better we can estimate the
expected integrality distance at test time.
Remark 1. There is nothing special about µI to Theorem 1. Indeed, we could use any integral
assignment as a reference labeling for the loss functions and the proof would be the same. For
example, we could replace µI with µT (a reference labeling) and obtain a risk bound for learning
with approximate inference, which is a well-studied topic [e.g., 7, 8].
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5 Relationship to Max-margin Training

In practice, computing the integrality loss is infeasible, since it requires exact inference. Therefore,
the upper bound in Equation 11 cannot be evaluated. However, the empirical hinge loss with re-
spect to the true labels can be evaluated efficiently. In this section, we show how minimizing this
quantity actually minimizes the integrality distance. That is, max-margin training with approximate
inference—which is something people do anyway to learn graphical models—reduces not only the
prediction error, but also the inference approximation error.

The key insight that enables this result comes from the following technical lemma.
Lemma 1. For any w and x, if µT is the reference (ground truth) labeling of x and µI is the exact
MAP state under w, then

Lh(w,x,µI) ≤ 2Lh(w,x,µT), (12)
meaning the integrality hinge loss is at most twice the hinge loss with respect to the true labeling.

The proof (given in Appendix A.2) relies on the optimality of the fractional solution and the triangle
inequality. Note that Lemma 1 also yields an upper bound on the integrality ramp loss, since it is
upper-bounded by the integrality hinge loss.

We can now prove the following corollary of Theorem 1.
Corollary 1. Let D denote a distribution over a labeled example space, X × Y . For a reference
labeling, y, denote its corresponding marginal vector by µT. Let f : X × Y → Rd denote a
feature mapping such that supx,y ‖f(x,y)‖2 ≤ B, for some finite constant, B <∞. Then, for any

δ ∈ (0, 1) and m ≥ 1, with probability at least 1− δ over draws of ((x(1),µ
(1)
T ), . . . , (x(m),µ

(m)
T ))

according to Dm, every weight vector, w, with ‖w‖2 ≤ R <∞, satisfies

E
x∼D

[L1(w,x,µI)] ≤
2

m

m∑
i=1

Lh(w,x(i),µ
(i)
T ) +

8

m
+ 2

√
d ln(mBR) + ln 2

δ

2m
. (13)

Corollary 1 says that max-margin training with relaxed inference directly minimizes the integrality
distance on future examples. If the constants B and R are known, then this bound can be efficiently
evaluated from training data.

6 Rounding a Fractional Solution

When the solution to an LP relaxation is fractional, we often round the solution to an integral assign-
ment. Rounding schemes have been studied extensively [e.g., 10, 6, 2, 11]. Arguably, the simplest
method is to select the local assignments with the highest values, which is equivalent to decoding the
approximate max-marginals. One question that arises is how far the rounding, denoted µR(x;w), is
from the exact solution; once this relationship is determined, one can apply our prior generalization
analysis to the rounding. It turns out that the distance from µR to µI can be upper-bounded by a
multiple of the integrality distance.
Lemma 2. Suppose that every output variable has the same domain—i.e., Y1 = Y2 = . . . = Yn—
and that each domain has size k. If µR(x;w) is the rounding of the fractional solution, µL(x;w),
then

D1(µR,µI) ≤ kD1(µL,µI). (14)

The proof is given in Appendix A.3. Lemma 2 can be combined with Corollary 1 to generate bounds
on the expected integrality distance of rounding; the bound simply scales by k.

7 Discussion

We have introduced a new measure of approximation quality for LP-relaxed inference, which we
call the integrality distance. We have shown that the average integrality distance generalizes from
an empirical sample to the population, and that it is minimized by performing max-margin training.
Interestingly, our results hold for any outer bound on the marginal polytope, and any LP solver.
Thus, as the number of training examples grows, all LP relaxations that minimize the empirical
hinge loss are, in terms of expected integrality distance, equally accurate.
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A Supplemental Material

The following appendices are provided to supplement the paper.

A.1 Proof of Theorem 1

To prove Theorem 1, we will use the following PAC-Bayes bound. (There are other PAC-Bayes
bounds in the literature on structured prediction, but we prefer the following for its simplicity.)
Lemma 3. Let D denote a distribution over an instance space, Z . LetH denote a hypothesis class.
Let L : H × Z → [0, 1] denote a bounded loss function. Let P denote a fixed prior distribution
over H. Then, for any δ ∈ (0, 1) and m ≥ 1, with probability at least 1 − δ over draws of
(Z(1), . . . , Z(m)) ∈ Zm, according to Dm, every posterior distribution, Q, overH, satisfies

E
Z∼D

E
h∼Q

[L(h, Z)] ≤ 1

m

m∑
i=1

E
h∼Q

[L(h, Z(i))] + 2

√
DKL(Q‖P) + ln 2

δ

2m
(15)

Proof. To simplify notation, let

ϕ(h, Z(i)) ,
1

m

(
E
Z∼D

[L(h, Z)]− L(h, Z(i))
)
.

For any free parameter, ε ∈ R, observe that

E
Z∼D

E
h∼Q

[L(h, Z)]− 1

m

m∑
i=1

E
h∼Q

[L(h, Z(i))] =
1

ε
E
h∼Q

[
m∑
i=1

ε ϕ(h, Z(i))

]
. (16)

The next step uses Donsker and Varadhan’s [1975] change of measure inequality, which states that,
if X is a random variable taking values in Ω, then for any two distributions, P and Q, on Ω,

E
X∼Q

[X] ≤ DKL(Q‖P) + ln E
X∼P

[
eX
]
.

Applying change of measure to the righthand side of Equation 16, we have

1

ε
E
h∼Q

[
m∑
i=1

ε ϕ(h, Z(i))

]
≤ 1

ε

(
DKL(Q‖P) + ln E

h∼Q

[
exp

(
m∑
i=1

ε ϕ(h, Z(i))

)])
. (17)

By Markov’s inequality, with probability 1− δ over draws of a training set, Z , (Z(1), . . . , Z(m)),
according to Dm,

E
h∼Q

[
exp

(
m∑
i=1

ε ϕ(h, Z(i))

)]
≤ 1

δ
E

Z∼Dm
E
h∼Q

[
exp

(
m∑
i=1

ε ϕ(h, Z(i))

)]

=
1

δ
E
h∼Q

E
Z∼Dm

[
m∏
i=1

exp
(
ε ϕ(h, Z(i))

)]

=
1

δ
E
h∼Q

m∏
i=1

E
Z(i)∼D

[
exp

(
ε ϕ(h, Z(i))

)]
. (18)

In the last line, we leveraged the fact that the expectation of a product of i.i.d. random variables (in
this case, ϕ(h, Z(i))) is the product of their expectations. To upper-bound each expectation, we use
Hoeffding’s inequality, which states that if X is a zero-mean random variable, such that a ≤ X ≤ b
almost surely, then, for all ε ∈ R,

E
[
eεX
]
≤ exp

(
ε2(b− a)2

8

)
.

Note that ϕ(h, Z(i)) has mean zero, and

E
Z∼D

[L(h, Z)]− 1

m
≤ ϕ(h, Z(i)) ≤ E

Z∼D
[L(h, Z)]− 0.

6



Therefore,

E
Z(i)∼D

[
exp

(
ε ϕ(h, Z(i))

)]
≤ exp

(
ε2

8m2

)
. (19)

Combining Equations 16 to 19, we have for any ε ∈ R, with probability at least 1− δ,

E
Z∼D

E
h∼Q

[L(h, Z)]− 1

m

m∑
i=1

E
h∼Q

[L(h, Z(i))] ≤ 1

ε

(
DKL(Q‖P) + ln

1

δ

)
+

ε

8m
. (20)

What remains is to optimize ε for all posteriors simultaneously. To do so, we define an infinite
sequence of values,

∀j = 0, 1, 2, . . . , εj , 2j
√

8m ln
2

δ
. (21)

For each εj , we assign δj , δ2−(j+1) probability to the probability that Equation 20 does not hold,
substituting (εj , δj) for (ε, δ). Thus, with probability at least 1−

∑∞
j=0 δj = 1− δ

∑∞
j=0 2−(j+1) =

1− δ, all j = 0, 1, 2, . . . satisfy

E
Z∼D

E
h∼Q

[L(h, Z)]− 1

m

m∑
i=1

E
h∼Q

[L(h, Z(i))] ≤ 1

εj

(
DKL(Q‖P) + ln

1

δj

)
+

εj
8m

For any given posterior, Q, we choose an index, j?, by taking

j? ,

⌊
1

2 ln 2
ln

(
DKL(Q‖P)

ln(2/δ)
+ 1

)⌋
,

which implies √
2m

(
DKL(Q‖P) + ln

2

δ

)
≤ εj? ≤

√
8m

(
DKL(Q‖P) + ln

2

δ

)
.

We further have (from London et al. [8]) that

DKL(Q‖P) + ln
1

δj?
≤ 3

2

(
DKL(Q‖P) + ln

2

δ

)
.

Thus, with probability at least 1− δ, all posteriors satisfy

E
Z∼D

E
h∼Q

[L(h, Z)]− 1

m

m∑
i=1

E
h∼Q

[L(h, Z(i))]

≤ 1

εj?

(
DKL(Q‖P) + ln

1

δj?

)
+
εj?

8m

≤ DKL(Q‖P) + ln(1/δj?)√
2m(DKL(Q‖P) + ln(2/δ))

+

√
8m(DKL(Q‖P) + ln(2/δ))

8m

≤ 3 (DKL(Q‖P) + ln ln(2/δ))

2
√

2m(DKL(Q‖P) + ln(2/δ))
+

√
8m(DKL(Q‖P) + ln(2/δ))

8m

= 2

√
DKL(Q‖P) + ln(2/δ)

2m
,

which completes the proof.

We are now ready to prove Theorem 1. Let P denote a uniform prior over {w ∈ Rd : ‖w‖2 ≤ R}.
Given a learned weight vector, w, we construct a posterior, Q, as a uniform distribution over {w′ ∈
Rd : ‖w′‖2 ≤ R, ‖w′ −w‖2 ≤ 2/(mB)}. It can easily be shown that DKL(Q‖P) ≤ d ln(mBR).

The next part of the proof “derandomizes” the loss functions in Equation 15, replacing the random-
ized hypothesis, with weights w′ ∼ Q, with the deterministic predictor based on w. To do so,
we will bound the difference |Lr(w,x,µI)− Lr(w

′,x,µI)|. Note that w′ is being evaluated with

7



respect to the MAP assignment under w, i.e., µI ∈ arg maxµ∈M θ(x;w) ·µ. To simplify notation,
we will use the following shorthand:

θ , θ(x;w) and θ′ , θ(x;w′) ;

µL ∈ arg max
µ∈ML

θ · µ and µ′L ∈ arg max
µ∈ML

θ′ · µ ;

µ̃L ∈ arg max
µ∈ML

(δ(µI) + θ) · µ and µ̃′L ∈ arg max
µ∈ML

(δ(µI) + θ′) · µ.

We then have that the difference of ramp losses decomposes as

|Lr(w,x,µI)− Lr(w
′,x,µI)|

=
∣∣((δ(µI) + θ) · µ̃L − θ · µL) −

(
(δ(µI) + θ′) · µ̃′L − θ′ · µ′L

)∣∣
≤

∣∣(δ(µI) + θ) · µ̃L − (δ(µI) + θ′) · µ̃′L
∣∣ (22)

+
∣∣θ′ · µ′L − θ · µL

∣∣ . (23)

We will upper-bound Equations 22 and 23 separately.

Starting with Equation 23, assume that θ′ ·µ′L ≥ θ ·µL. (If the inequality goes in the other direction,
we simply swap the left and right terms, which is equivalent inside the absolute value.) We then
have that ∣∣θ′ · µ′L − θ · µL

∣∣ = θ′ · µ′L − θ · µL ≤ θ′ · µ′L − θ · µ′L = (w′ −w) · f(x,µ′L),

due to the optimality of µL for θ. Then, using Cauchy-Schwarz,

(w′ −w) · f(x,µ′L) ≤ ‖w′ −w‖2 ‖f(x,µ
′
L)‖2 ≤ ‖w

′ −w‖2B.

By construction, every w′ ∼ Q has distance at most 2/(mB) from w. Therefore, combining the
previous inequalities, ∣∣θ′ · µ′L − θ · µL

∣∣ ≤ ‖w′ −w‖2B ≤
2

mB
·B =

2

m
. (24)

Using the same approach to upper-bound Equation 22, we assume, without loss of generality, that
(δ(µI) + θ) · µ̃L ≥ (δ(µI) + θ′) · µ̃′L. Then,∣∣(δ(µI) + θ) · µ̃L − (δ(µI) + θ′) · µ̃′L

∣∣ = (δ(µI) + θ) · µ̃L − (δ(µI) + θ′) · µ̃′L
≤ (δ(µI) + θ) · µ̃L − (δ(µI) + θ′) · µ̃L

= (θ − θ′) · µ̃L

= (w −w′) · f(x, µ̃L)

≤ ‖w −w′‖2B ≤
2

m
. (25)

Using Equation 25 to upper-bound 22, and Equation 24 to upper-bound 23, we have that

|Lr(w,x,µI)− Lr(w
′,x,µI)| ≤

4

m
.

Thus, the loss of any random weight vector, w′, is at most 4/m above or below that of the learned
weights, w. We can therefore derandomize the randomized loss by bounding its distance to the
deterministic loss:∣∣∣∣Lr(w,x,µI)− E

w′∼Q
[Lr(w

′,x,µI)]

∣∣∣∣ ≤ E
w′∼Q

[|Lr(w,x,µI)− Lr(w
′,x,µI)|] ≤

4

m
.

Combining this bound with the inequalities in Equation 10, we then have that

E
x∼D

[L1(w,x,µI)] ≤ E
x∼D

[Lr(w,x,µI)] ≤ E
x∼D

E
w′∼Q

[Lr(w
′,x,µI)] +

4

m
, (26)

and
1

m

m∑
i=1

E
w′∼Q

[Lr(w
′,x(i),µ

(i)
I )] ≤ 1

m

m∑
i=1

Lr(w,x
(i),µ

(i)
I ) +

4

m
. (27)
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All that remains now is to apply Lemma 3, using Equations 26 and 27 to lower- and upper-bound
the randomized losses. With probability at least 1− δ over draws of the training set, we have that

E
x∼D

[L1(w,x,µI)] ≤ E
x∼D

E
w′∼Q

[Lr(w
′,x,µI)] +

4

m

≤ 1

m

m∑
i=1

E
w′∼Q

[Lr(w
′,x(i),µ

(i)
I )] +

4

m
+ 2

√
d ln(mBR) + ln 2

δ

2m

≤ 1

m

m∑
i=1

Lr(w,x
(i),µ

(i)
I ) +

8

m
+ 2

√
d ln(mBR) + ln 2

δ

2m
.

Noting that the hinge loss uniformly upper-bounds the ramp loss completes the proof.

A.2 Proof of Lemma 1

First, we decompose the integrality hinge loss as follows:

Lh(w,x,µI) = max
µ∈ML

D1(µI,µ) + θ · (µ− µI)

≤ max
µ∈ML

D1(µI,µ) + θ · (µ− µT)

≤ D1(µI,µT) + max
µ∈ML

D1(µT,µ) + θ · (µ− µT)

= D1(µI,µT) + Lh(w,x,µT). (28)

The second term on the right-hand side is the hinge loss of the approximate predictor with respect
to the true labeling, which can be evaluated efficiently. The first term on the right-hand side is
the Hamming loss of exact inference, which cannot be evaluated efficiently. However, this latter
quantity can be upper-bounded as follows:

D1(µI,µT) ≤ max
µ∈M

D1(µ,µT) + θ · (µ− µT)

≤ max
µ∈ML

D1(µ,µT) + θ · (µ− µT)

= Lh(w,x,µT). (29)

Combining Equations 28 and 29 completes the proof.

A.3 Proof of Lemma 2

Consider any output variable. If the fractional solution assigns the majority of the local belief to
the “correct” label (i.e., the label chosen by exact inference), then the rounding of that variable will
be exact. However, if the fractional solution puts most of the local belief on an “incorrect” label,
then the rounding of that variable will have D1 distance 1 from the correct label. Since the incorrect
label must have had a fractional value of at least 1/k, it follows that the fractional solution has D1

distance at least 1/k, which is no less than (1/k)th that of the rounding. Applying this logic to every
variable completes the proof.
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