
Optimized sampling for Monte Carlo simulations via
dimension reduction

Nabil Kahale∗
ESCP Europe

Labex Réfi and Big Data Research Center
75011 Paris, France

nkahale@escpeurope.eu

Abstract

We describe an unbiased optimized algorithm to calculate E(f(U)) via Monte
Carlo simulation, where U is a vector of d independent random variables, and f is
a function whose dependence on the i-th component of U decreases with i. The
algorithm samples more often the first components of U . We show that, in certain
cases, our algorithm improves upon the standard sampling algorithm by a factor
proportional or nearly proportional to d.

1 Introduction

Monte Carlo simulation is often used in machine learning (Andrieu, De Freitas, Doucet and
Jordan 2003, Russo and Van Roy 2014, Xiao and Zhang 2014, Allen-Zhu and Yuan 2015, Harikandeh,
Ahmed, Virani, Schmidt, Konečnỳ and Sallinen 2015). This paper considers the problem of efficient
estimation of E(f(U)) via Monte Carlo simulation, where f is a real-valued Borel-measurable
function on Rd, U = (U1, . . . , Ud), and U1, . . . , Ud are independent random variables. In a standard
Monte Carlo scheme, this is done by simulating n independent vectors in Rd having the same distri-
bution as U , and taking the average fMC,n of f over the n vectors. In the related quasi-Monte Carlo
method (see (Niederreiter 1992) for an overview), f is evaluated at a predetermined deterministic
sequence of points, derived for instance from the Sobol’s sequence. In several applications, the
efficiency of quasi-Monte Carlo algorithms can be improved by reordering the Ui’s and/or making a
change of variables, so that the value of f(U) depends mainly by the first few Ui’s. For instance, the
Brownian bridge construction and principal components analysis have been used (Caflisch, Morokoff
and Owen 1997, Acworth, Broadie and Glasserman 1998, Åkesson and Lehoczky 2000) to reduce
the error in the valuation of financial derivatives via quasi-Monte-Carlo methods (see (Caflisch 1998)
for related results). The relative importance of the first variables can formally be measured by calcu-
lating the effective dimension in the truncation sense, a concept defined in (Caflisch, Morokoff and
Owen 1997): when the first variables are important, the effective dimension in the truncation sense is
low in comparison to the nominal dimension. Concepts related to the effective dimension are studied
in (Sobol 2001, Owen 2003, Liu and Owen 2006). It is shown in (Wang and Fang 2003, Wang and
Sloan 2005, Wang 2006) that the Brownian bridge and/or principal components analysis algorithms
substantially reduce the effective dimension of certain financial instruments in the truncation sense.

As
nVariance(fMC,n) = Variance(f(U)),

the previously mentioned change of variables techniques do not modify Variance(fMC,n), because
they do not change the distribution of f(U), even though they decrease the error in QMC schemes.
This paper aims to produce unbiased algorithms to estimate E(f(U)) by optimizing the tradeoff

∗http://nkahale.free.fr

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



between the statistical error and the total running time. We assume that the variance of f(U) is finite.
Let τ be the expected time needed to simulate U and to calculate f(U). Thus TMC = nτ is the
expected total running time of the standard MC scheme in n iterations, and

TMCVariance(fMC,n) = τVariance(f(U)). (1)

This paper describes a Markov chain Monte Carlo scheme that calculates in n iterations an unbiased
estimator fn of E(f(U)) in total expected time T (we ignore the fixed preprocessing cost of the first
iteration). We show that TVariance(fn) is upper-bounded by the RHS of (1), and can be substantially
lower than the RHS of (1) if f depends mainly on its first components. The basic idea behind our
algorithm is that, if f depends mainly on its first components, only an initial segment of arguments of
f needs to be simulated at each iteration.

2 The algorithm description

Our algorithm simulates in iteration k + 1 the first Nk arguments of f and keeps the remaining
arguments unchanged, where Nk is a suitably chosen random integer in [1, d]. More formally, let
qi, 0 ≤ i ≤ d − 1, be a decreasing sequence of d positive numbers, with q0 = 1. By convention,
qd = 0. Let Nk, k ≥ 1, be a sequence of random integers in [1, d] such that Pr(Nk > i) = qi for
0 ≤ i ≤ d− 1 and k ≥ 1. Consider a family Ui,k of random variables, 1 ≤ i ≤ d and k ≥ 1, such
that Ui,k and Ui have the same distribution. Assume the random variables Nk, k ≥ 1, and Ui,k,
1 ≤ i ≤ d, k ≥ 1, are independent. Define the random d-dimensional sequence (Vk), k ≥ 1, where
Vk = (Vi,k), 1 ≤ i ≤ d, as follows: Vi,1 = Ui,1 and

Vi,k+1 =

{
Ui,k+1 if i ≤ Nk

Vi,k otherwise.

In other words, Vk+1 is obtained from Vk by re-simulating the first Nk components of Vk, and
keeping the remaining components unchanged. For 0 ≤ i ≤ d, let

C(i) , Variance(E(f(U1, . . . , Ud)|Ui+1, . . . , Ud)). (2)

Thus, C(0) = Variance(f(U)), C(d) = 0, and we can interpret C(i) as the variance captured by
the last d− i components of U . Hence, we expect C(i) to be small if f depends mainly on its first i
arguments. As explained in the full version of the paper, the C(i)’s can be estimated via Monte Carlo
simulation. Set

fn =
f(V1) + · · ·+ f(Vn)

n
.

The following theorem, which will be shown in the full version of the paper, gives a bound on the
variance of fn in terms of the C(i)’s.

Theorem 2.1

nVariance(fn) ≤ C(0)− 2C(1) + 2

d−1∑
i=1

C(i)− C(i+ 1)

qi
. (3)

Furthermore, the LHS of (3) converges to its RHS as n goes to infinity.

For 0 ≤ i ≤ d, let Ti be the expected time needed to simulate Vk+1 and to calculate f(Vk+1) when
Nk = i. By convention, T0 = 0. We will assume for simplicity of presentation that Ti is a strictly
increasing function of i, and that Td = τ . Note that Ti may depend on the way f(Vk+1) is calculated.
For instance, assume that f(x1, . . . , xd) = g(

∑d
j=1 xj) for (x1, . . . , xd) ∈ Rd, where g is a real-

valued function on R that can be calculated in constant time, and that each Ui can be simulated in
constant time. Then f(Vk+1) can be calculated in a naive manner when Nk = i by simulating Uj,k+1,
1 ≤ j ≤ i, and calculating the sum of all components of Vk+1, which takes Θ(d) time. But f(Vk+1)

can be calculated more efficiently in Θ(Nk) time as follows. Let Sk =
∑d

j=1 Vj,k be the sum of the

components of Vk. Since Sk+1 = Sk +
∑Nk

j=1(Vj,k+1 − Vj,k), Sk+1 can be calculated recursively in
Θ(Nk) time. Thus f(Vk+1) = g(Sk+1) can be calculated in Θ(Nk) time, and so Ti = Θ(i).

2



Since Pr(Nk = i) = qi−1− qi for 1 ≤ i ≤ d and 1 ≤ k ≤ n− 1, and since we are ignoring the time
needed for the first iteration,

T = (n− 1)

d∑
i=1

(qi−1 − qi)Ti

= (n− 1)

d−1∑
i=0

qi(Ti+1 − Ti).

Hence

Variance(fn)T ≤ (C(0)− 2C(1) + 2

d−1∑
i=1

C(i)− C(i+ 1)

qi
)(

d−1∑
i=0

qi(Ti+1 − Ti)). (4)

The right-hand side of (4) coincides with that of (1) if q0 = · · · = qd−1 = 1, i.e. when Nk = d
almost surely for k ≥ 1. But minimizing the right-hand side of (4) subject to the constraints
1 = q0 ≥ · · · ≥ qd−1 > 0 often leads to bounds better than (1). Note that a similar optimization
problem was considered in (Rhee and Glynn 2015) in a different context. It follows from (4) that

Variance(fn)T ≤ 2(

d−1∑
i=0

C(i)− C(i+ 1)

qi
)(

d−1∑
i=0

qi(Ti+1 − Ti)). (5)

Remark 2.1 A simple calculation shows that (4) and (5) still hold if the sequence (C(i)), 0 ≤ i ≤ d,
is replaced by any sequence (C ′(i)) such that C ′(i) ≥ C(i) for 0 ≤ i ≤ d, with C ′(d) = 0.
Similarly, (4) and (5) still hold if the sequence (Ti), 0 ≤ i ≤ d, is replaced by any sequence (T ′i )
such that T ′i ≥ Ti for 0 ≤ i ≤ d, with T ′0 = 0.

3 Examples

3.1 A Lipschitz function

Assume that f(x1, . . . , xd) = g(
∑d

j=1 xj) for (x1, . . . , xd) ∈ Rd, where g is a real-valued 1-
Lipschitz function on R that can be calculated in constant time. For instance, f(x1, . . . , xd) =

max(
∑d

j=1 xj −K, 0), where K is a constant, satisfies this condition. Assume further that σ1 ≥
σ2 ≥ · · · ≥ σd > 0, where σi is the standard deviation of Ui, and that each Ui can be simulated in
constant time. We will show in the full version of the paper that C(i) ≤ C ′(i) for 0 ≤ i ≤ d, with

C ′(i) =

d∑
j=i+1

σ2
j .

On the other hand, it was shown in Section 2 that Ti ≤ ci, where c is an absolute constant independent
of d. We now set qi = σi+1/σ1 for 0 ≤ i < d. By Remark 2.1, we can replace C(i) and Ti in (5) by
C ′(i) and ci, respectively, which implies that

Variance(fn)T ≤ 2c(

d∑
i=1

σi)
2. (6)

On the other hand, Variance(f(U)) ≤
∑d

i=1 σ
2
i since Variance(f(U)) = C(0), with equality when

g is the identity function. Thus the RHS of (1) is upper bounded by cd
∑d

i=1 σ
2
i , with equality (up to

a constant) when g is the identity function. By the Cauchy-Schwarz inequality, for this choice of qi’s,
the bound (6) on the performance of our algorithm is, up to a multiplicative constant, always better
than that of the standard MC algorithm when g is the identity function. Furthermore, our algorithm
outperforms the standard MC algorithm by a factor of Θ(d) in certain cases (e.g. if g is the identity
function, and σi = i−2).

3



3.2 Linearly decreasing probabilities

Proposition 3.1 If qi = (i + 1)−1 for 0 ≤ i ≤ d − 1, and for 0 ≤ i ≤ d and some constant c,
Ti ≤ ci, then

Variance(fn)T ≤ 2c(ln(d) + 1)

d−1∑
i=0

C(i). (7)

Proof: A simple calculation shows that
d−1∑
i=0

C(i)− C(i+ 1)

qi
=

d−1∑
i=0

C(i).

Thus, by replacing Ti in (5) with ci, it follows that

Variance(fn)T ≤ 2c(

d−1∑
i=0

C(i))(

d−1∑
i=0

qi).

We conclude the proof by noting that
d−1∑
i=0

qi ≤ ln(d) + 1.

�

Thus, if C(i) ≤ γiC(0), where γ ∈ (0, 1) is an absolute constant, (this is the case in the previous
example if the σi’s are exponentially decreasing and g is the identity function), our algorithm improves
upon the standard Monte Carlo algorithm by a factor of Θ(d/ ln(d)).

References
Acworth, P. A., Broadie, M. and Glasserman, P. (1998). A comparison of some Monte carlo and

quasi Monte carlo techniques for option pricing, in H. Niederreiter, P. Hellekalek, G. Larcher
and P. Zinterhof (eds), Monte Carlo and Quasi-Monte Carlo Methods 1996, Vol. 127 of Lecture
Notes in Statistics, Springer New York, pp. 1–18.

Åkesson, F. and Lehoczky, J. P. (2000). Path generation for quasi-Monte carlo simulation of mortgage-
backed securities, Management Science 46(9): 1171–1187.

Allen-Zhu, Z. and Yuan, Y. (2015). Even faster accelerated coordinate descent using non-uniform
sampling, arXiv preprint arXiv:1512.09103 .

Andrieu, C., De Freitas, N., Doucet, A. and Jordan, M. I. (2003). An introduction to MCMC for
machine learning, Machine learning 50(1-2): 5–43.

Caflisch, R. E. (1998). Monte carlo and quasi-Monte carlo methods, Acta Numerica 7: 1–49.
Caflisch, R. E., Morokoff, W. J. and Owen, A. B. (1997). Valuation of mortgage backed securities

using Brownian bridges to reduce effective dimension, Journal of Computational Finance
1: 27–46.

Harikandeh, R., Ahmed, M. O., Virani, A., Schmidt, M., Konečnỳ, J. and Sallinen, S. (2015).
Stopwasting my gradients: Practical SVRG, Advances in Neural Information Processing
Systems, pp. 2251–2259.

Liu, R. and Owen, A. B. (2006). Estimating mean dimensionality of analysis of variance decomposi-
tions, Journal of the American Statistical Association 101(474): 712–721.

Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo methods, Vol. 63, SIAM.
Owen, A. B. (2003). The dimension distribution and quadrature test functions, Statistica Sinica

13(1): 1–18.
Rhee, C.-h. and Glynn, P. W. (2015). Unbiased estimation with square root convergence for sde

models, Operations Research 63(5): 1026–1043.

4



Russo, D. and Van Roy, B. (2014). An information-theoretic analysis of thompson sampling, Journal
of Machine Learning Research .

Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte
carlo estimates, Mathematics and computers in simulation 55(1-3): 271–280.

Wang, X. (2006). On the effects of dimension reduction techniques on some high-dimensional
problems in finance, Operations Research 54(6): 1063–1078.

Wang, X. and Fang, K.-T. (2003). The effective dimension and quasi-Monte carlo integration, Journal
of Complexity 19(2): 101 – 124.

Wang, X. and Sloan, I. H. (2005). Why are high-dimensional finance problems often of low effective
dimension?, SIAM Journal on Scientific Computing 27(1): 159–183.

Xiao, L. and Zhang, T. (2014). A proximal stochastic gradient method with progressive variance
reduction, SIAM Journal on Optimization 24(4): 2057–2075.

5


	Introduction
	The algorithm description
	Examples
	A Lipschitz function 
	Linearly decreasing probabilities


