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Abstract

We formulate multi-target tracking in video as a maximum weight set packing
problem where tracks correspond to sets. We then attack it with column and row
generation where pricing is done efficiently using dynamic programming.

1 Introduction

Multi-target tracking in video is often formulated from the perspective of grouping disjoint sets of
candidate detections into “tracks” whose underlying trajectories can be estimated using traditional
single-target tracking methods such as Kalman filtering. There is a well developed literature on
methods for exploring this combinatorial space of possible data associations in order to find collec-
tions of low-cost, disjoint tracks.

Our method is most closely related to the Lagrangian relaxation method of [2]. In [2] a large number
of short sequences of detections (subtracks) are generated, each of which is associated with a cost.
The set of subtracks form the basis from which tracks are constructed. The corresponding objective
is attacked via subgradient optimization. In contrast we attack the same problem with column/row
generation providing faster inference. We also tighten the bounds by optimizing over additional
triplet constraints, which is inspired by [5].

2 Constraint Relaxation for Multi-target Tracking

We now consider our approach. Given a set of candidate detections D, each with a specified space-
time location, our goal is to identify a collection of tracks that describe the trajectories of objects
through a scene and the subset of detections associated with each such track.

We denote the set of all possible tracks by P and use X to denote the detection-track incidence
matrix X ∈ {0, 1}|D|×|P| where Xdp = 1 if and only if track p visits detection d. A solution to
the multi-target tracking problem is denoted by the indicator vector γγγ ∈ {0, 1}|P| where γγγp = 1
indicates that track p is included in the solution and γγγp = 0 otherwise. A collection of tracks
specified by γγγ is a valid solution if and only if each detection is associated with at most one active
track. Using Θ ∈ R|P| to denote the costs associated with tracks where Θp describes the cost of
track p, we express our tracking problem as an integer linear program:

min
γγγ∈Γ̄ΓΓ

Θtγγγ with Γ̄ΓΓ = {γγγ ∈ {0, 1}|P| : Xγγγ ≤ 1} (1)

We note that this is equivalent to finding a maximum-weight set packing which is NP-hard [3].
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2.1 Decomposing Track Scores over Subtracks

We consider a general scoring function corresponding to a model in which a track is defined by an
ordered sequence of subtracks whose scores in turn depend on detections across several frames. Let
S denote a set of subtracks, each of which containsK detections whereK is a user defined modeling
parameter that trades off inference complexity and modeling power. For a given subtrack s ∈ S,
let sk indicate the k’th detection in the sequence s = {s1, . . . , sK} ordered by time from earliest
to latest. We describe the mapping of subtracks to tracks using T ∈ {0, 1}|S|×|P| where Tsp = 1
indicates that track p contains subtrack s as a subsequence.

We decompose track costs Θ in terms of the subtrack costs θ ∈ R|S| where each subtrack s is
associated with cost θs and use θ0 to denote a constant cost associated with instancing a track. We
define the cost of a track p denoted Θp as Θp = θ0 +

∑
s∈S Tspθs.

2.2 LP Relaxation and Column Generation

We now attack optimization in Eq 1 using the well studied tools of LP relaxations. We use ΓΓΓ =
{γγγ ∈ [0, 1]|P| : Xγγγ ≤ 1} to denote a convex relaxation of the constraint set Γ̄ΓΓ.

min
γγγ∈Γ̄ΓΓ

Θtγγγ ≥ min
γγγ∈ΓΓΓ

Θtγγγ (2)

This LP relaxation only contains constraints for collections of tracks that share a common detection.
From the view point of maximum-weight set packing, this includes some cliques of conflicting sets
but misses many others.

As a concrete example, consider four tracks P = {p1, p2, p3, p4} over three detections
D = {d1, d2, d3} where the first three tracks each contain two of the three detections
{d1, d2}, {d1, d3}, {d2, d3}, and the fourth track contains all three {d1, d2, d3}. Suppose the track
costs are given by Θp1 = Θp2 = Θp3 = −4 and Θp4 = −5. The optimal integer solution sets
γγγp4 = 1, and has a cost of−5. However the optimal fractional solution sets γγγp1 = γγγp2 = γγγp3 = 0.5;
γγγp4 = 0 which has cost −6. Hence the LP relaxation is loose in this case.

A tighter bound can be motivated by the following observation. For any set of three unique detec-
tions the number of tracks that pass through two or more members can be no larger than one. We
now apply our tighter bound to tracking. We denote the set of groups of three unique detections
(which we refer to as triplets) as C and index it with c. Using C ∈ {0, 1}|C|×|P| we define a tighter
space for γγγ than ΓΓΓ.

ΓΓΓC : {γγγ ∈ R|P| : γγγ ≥ 0, Xγγγ ≤ 1, Cγγγ ≤ 1} (3)

Ccp = [
∑
d∈c

Xdp ≥ 2] ∀c ∈ C, p ∈ P

3 Optimization over ΓΓΓC

We write tracking as optimization in the primal and dual form below.

min
γγγ∈ΓΓΓC

Θtγγγ = max
λλλ≥0

λλλC≥0

Θ+Xtλλλ+CtλλλC≥0

−1tλλλ− 1tλλλC (4)

Given that P and C are of enormous size we use column and row generation jointly. The nascent
subsets of P, C are denoted P̂, Ĉ respectively. We write column/row generation optimization given
subroutines COLUMN(λλλ,λλλC), ROW(γγγ) that identify a group of violated constraints in primal and
dual including the most violated in each. We write the column/row generation optimization in Alg
1.

Finding the most violated row consists of the following optimization: maxc∈C
∑
p∈P Ccpγγγp. We

generate its rows as needed by considering only triplets over detections associated with fractional
valued tracks.
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Algorithm 1 Column/Row Generation

P̂ ← {}, Ĉ ← {}
repeat

max λλλ≥0

λλλC≥0

ΘP̂+Xt
(:,P̂)

λλλ+Ct
(Ĉ,P̂)

λλλC≥0

−1tλλλ− 1tλλλC

Recover γγγ from λλλ (provided by LP solver)
Ṗ ← COLUMN(λλλ,λλλC) Ċ ← ROW(γγγ)

P̂ ← [P̂, Ṗ] Ĉ ← [Ĉ, Ċ]
until Ṗ = [] and Ċ = []

Algorithm 2 Upper Bound Rounding

while ∃p ∈ P s.t. γγγp /∈ {0, 1} do
p∗ ← arg min p∈P

γγγp>0
Θpγγγp −

∑
p̂∈P⊥p

γγγp̂Θp̂

γγγp̂ ← 0 ∀p̂ ∈ P⊥p∗
γγγp∗ ← 1

end while
RETURN γγγ

Figure 1: (Left): Algorithm for dual-optimization of a lower bound on the optimal tracking by col-
umn generation where the notationX(:,P̂) denotes selection of a subset of columns ofX . (Right) We
compute upper-bounds on the optimal tracking using a rounding procedure which greedily selects
primal variables γγγ while removing intersecting tracks.

3.1 Computing COLUMN(λλλ,λλλc) using Dynamic Programming Without Triplets

We now discuss how COLUMN(λλλ,λλλc) is computed efficiently for our track cost model using dy-
namic programming when λλλc is zero valued. We later show how to use this when λλλc is not zero
valued. We specify that a subtrack s may be preceded by a subtrack ŝ if and only if the least recent
K − 1 detections in s correspond to the most recent K − 1 detections in ŝ. We denote the set of
valid subtracks that may precede a subtrack s as {⇒ s}. We use `s to denote the cost of the cheapest
track that terminates at subtrack s.

`s ← θs + λλλsK + min{ min
ŝ∈{⇒s}

`ŝ, θ0 +

K−1∑
k=0

λλλsk} (5)

Empirically we observe large speed ups by adding the most violated track terminating at each sub-
track (if one exists) which is easy to extract from the dynamic program. Thus we add many columns
per solution to dynamic programming.

3.2 Generating Columns under Triplet Constraints

We denote the value of the slack corresponding to an arbitrary column p as V (Θ,λλλ,λλλC , p) and the
most violated as V ∗(Θ,λλλ,λλλC) which we define below.

V (Θ,λλλ,λλλC , p) = Θp +
∑
d∈D

λλλdXdp +
∑
c∈Ĉ

λλλCcCcp V ∗(Θ,λλλ,λλλC) = min
p∈P

V (Θ,λλλ,λλλC , p)

(6)

Solving for V ∗(Θ,λλλ,λλλC) can not be directly attacked using dynamic programming as in Section 3.1.
However dynamic programming can be applied if we ignore the triplet term

∑
c∈Ĉ λλλ

C
cCcp, providing

a lower bound.

This invites a branch and bound (B&B) approach. The set of branches in our B&B tree is denoted B.
Each branch b ∈ B is defined by two sets Db+ and Db−. These correspond to detections that must
be included on the track and those that must not be included on the track respectively. We write the
set of all tracks that are consistent with a given Db−, Db+ or consistent with both Db− and Db+ as
Pb−,Pb+ and Pb± respectively.The initial branch b is defined by Db+ = Db− = {}.

Bounding Operation: Let V b(Θ,λλλ,λλλC) denote the value of the most violating slack over columns
in Pb±. We can compute a lower-bound for this value, denoted V blb by independently optimizing the
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Figure 2: When training on a subset of motion features on MOT dataset we get instances with loose
bound. For the two examples we plot the gap (absolute value of the difference) between the bounds
and the final lower bound as a function of time. We indicate each time that a triplet is added with a
black dot on the lower bound plot. In all examples the bound of [2] is loose and at least one triplet
is needed to produce a tight bound which results in visually compelling trackings.

dynamic program and the triplet penalty.

V b(Θ,λλλ,λλλC) = min
p∈Pb±

V (Θ,λλλ,λλλC , p) ≥ min
p∈Pb−

Θp +
∑
d∈D

λλλdXdp + min
p∈Pb+

∑
c∈Ĉ

λλλCcCcp

≥ min
p∈Pb−

Θp +
∑
d∈D

λλλdXdp +
∑
c∈Ĉ

λλλCc [
∑
d∈c

[d ∈ Db+] ≥ 2] = V blb(Θ,λλλ,λλλ
C)

Observe that dynamic programming can be used to efficiently search over Pb− to minimize the first
term.

Branch Operation: We now consider the branch operation. We describe an upper bound on
V b(Θ,λλλ,λλλC) as V bub(Θ,λλλ,λλλ

C). This is constructed by adding in the active λλλC terms ignored when
constructing V blb(Θ,λλλ,λλλ

C). Let pb = arg minp∈Pb− Θp +
∑
d∈D λλλdXdp.

V bub(Θ,λλλ,λλλ
C) = V blb(Θ,λλλ,λλλ

C) +
∑
c∈Ĉ

λλλCcCcpb [
∑
d∈c

[d ∈ Db+] < 2] (7)

= Θpb +
∑
d∈D

λλλdXdpb +
∑
c∈Ĉ

λλλCc [
∑
d∈c

[d ∈ Db+] ≥ 2] +
∑
c∈Ĉ

λλλCcCcpb [
∑
d∈c

[d ∈ Db+] < 2]

≥ V (Θ,λλλ,λλλC , pb) ≥ V b(Θ,λλλ,λλλC) (8)

Now consider the largest triplet constraint term λλλCc that is included in V bub(Θ,λλλ,λλλ
C , pb) but not

V blb(Θ,λλλ,λλλ
C). c∗ ← arg maxc∈Ĉ λλλ

C
cCcpb [

∑
d∈c[d ∈ Db+] < 2]

We create eight child branches of bwhere there is one for each of the eight different ways of splitting
the detections in the triplet corresponding to c∗ between the include (+) and exclude (−) sets.

We compute upper bounds using a fast principled method that avoids resolving the LP. We round
fractional γγγ via a greedy iterative approach described in Alg 2. We rely on the technique of
[6] (supplement Section 4) to produce the following lower bound: minγγγ∈Γ̄̄Γ̄Γ Θtγγγ ≥ −1tλλλ +∑
d∈Dmin{0,min s∈S

sK=d
`s}.

4 Experiments

We use a part of MOT 2015 training set [4] to train and evaluate real-world tracking models. For
K = 2 we observe 48.5% Multiple Object Tracking Accuracy [1], 11 identity switches and 9
track fragments or for short hand (48.5,11,9). However when setting K = 3, 4 the performance is
(49,10,7), and (49.9,9,7) which constitutes noticeable improvements over all three metrics. In Fig 2
we compared the timing/cost performance of our algorithm with the baseline algorithm of [2].
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