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Abstract

We consider the problem of designing efficient regularization algorithms allowing
to consider large classes of regularizers and data-fit terms. The algorithm we pro-
pose is based on a primal-dual diagonal descent method. Our analysis establishes
convergence as well as stability results. Theoretical findings are complemented
with numerical experiments showing state of the art performances.

1 Introduction

Many machine learning problems consist in the estimation of a quantity of interest based on noisy
data. Tackling these problems requires on the one hand to deal with their possible ill-posedness,
and on the other hand to devise efficient and stable numerical procedures to compute a solution.
Tikhonov regularization is a classical approach to restore well-posedness: a regularized solution
is computed by minimizing the sum of a suitable regularizer and an empirical data fidelity term.
From a computational perspective it reduces in principle to the solution of a single optimization
problem. In practice, however, a regularization parameter needs to be chosen, and hence the solution
of multiple optimization problems is typically required (one for each parameter to be tried). This
clearly increases the computational complexity of the optimization step. Moreover, computational
and estimation aspects are usually considered separately, leading to trade-offs between estimation
and computational aspects.

In this paper, we consider iterative regularization techniques as an alternative to the classical
Tikhonov approach. In this setting, the key idea is that the regularization is performed implicitly, by
early stopping an iterative method applied to an empirical problem. Such techniques are classical in
inverse problems [16], and have been already investigated in the machine learning field, showing the
same estimation performances of classical regularization methods, while being advantageous from
the computational perspective [7, 9]. The main question we discuss in this work is how to derive and
analyze iterative regularization schemes for large classes of data fit terms, and regularizers. Indeed,
flexibility in the choice of this terms is key for good estimation and has been the subject of much re-
cent work. While extensions to general classes of regularizers have been considered recently [5, 11],
we are not aware of any work considering general losses.

We consider a general problem of the form y = Xw†, for a given matrix X : Rp → Rn, an obser-
vation y ∈ Rn, and a vector w† ∈ Rp. Such formulation includes, for instance, regression, feature
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selection, as well as many image/signal processing problems. We assume that the solution of interest
w† is the unique solution of the optimization problem

min R(w) s.t. w ∈ argmin
w′∈Rp

L(Xw′, y), (P)

where L : Rn × Rn → [0,+∞[ is a loss function, convex in its first variable, and R : Rp → Rn is
a strongly convex regularizer encoding some prior information on the problem at hand. In practice,
one does not have access to the ideal measurement y, but only to a noisy version ŷ. Here, we assume
that the noise is deterministic and such that ‖y− ŷ‖ ≤ δ. The goal is to find a stable estimate of w†,
only based on ŷ.

In this paper, we consider an iterative regularization scheme, based on a diagonal process [6]. The
underlying idea is that the family of penalized problems

minR+ λ−1L(X·, ŷ) (P̂λ)
converge to

min R(w) s.t. w ∈ argmin
w′∈Rp

L(Xw′, ŷ), (P̂ )

for λ → 0, and that the algorithm used to solve (P̂λ) in a Tikhonov approach can be applied
in a diagonal fashion, where the parameter λ is decreased along the iterations. However, such
a procedure generates a sequence ŵt which is convergent to the solution of the noisy problem,
which is not our target. Convergence to w† is obtained by early stopping the iterations, namely by
considering a suitable iterate ŵtδ depending on the noise level δ. We show that, for δ going to zero,
‖ŵtδ − w†‖ goes to zero.

The paper is organized as follows: in Section 2 we introduce and discuss the iterative regularization
procedure. The main results are presented in Section 3, and finally, numerical experiments are
provided in Section 4.

2 Algorithm

The proposed iterative regularization procedure is based on a diagonal descent algorithm, applied to
the dual of problem (P). We first state the structural assumptions we make on the loss function and
the regularizer. We assume that the loss function can be decomposed as an infimal convolution [3]
of a distance based function and a strongly convex term

(∀(z, ŷ) ∈ (Rn)2) L(z, ŷ) = G(z − ŷ)#
(
Jŷ(z) +

σL
2
‖z‖2

)
, (1)

with G : Rn → [0,+∞] and Jŷ : Rn → [0,+∞] being convex, proper, and lower semicontinu-
ous functions and σL > 0. Let us remark that the previous assumption is satisfied whenever the
loss function is distance based. The fact that the loss can be written as an infimal convolution is
not restrictive, since this decomposition is trivially true for every convex function. The explicit
infimal convolution decomposition is useful since our algorithm works in the dual space, and the
inf-convolution is transformed in a sum by duality. The regularizer R : Rp → [0,+∞] is strongly
convex, i.e. there exists a convex, proper, and lower semicontinuous function F : Rp → [0,+∞]
and σR > 0 such that

R = F +
σR
2
‖ · ‖2. (2)

The algorithm we consider is a first order method. It consists in matrix vector multiplications and
three implicit steps corresponding to the computation of proximity operators, each one activating
independently a single component of the problem: R, Jŷ , and G respectively. We recall that, given
a convex, proper, and lower semicontinuous function f : Rn → R ∪ {+∞}, the proximity operator
is defined as, for every w ∈ Rp, proxf (w) = argminv∈Rp

{
f(v) + 1

2‖v − w‖
2
}

, and is available
in closed form for many functions, see [14] for a list. Each step of the forthcoming (3-D) algorithm
can be seen as a step of a proximal gradient algorithm applied to the dual of the regularized problem
R+ λ−1t L(X·, ŷ) (see [13]). This class of methods became very popular in the last decade to solve
sparsity based regularized problems [14], and have been applied in a diagonal fashion in the primal
setting to solve hierarchial problems as (P) [10, 19, 4, 1, 23, 2, 12, 20, 15]. However, we are not
aware of any convergence result, neither of any regularization theorem, for the algorithm applied to
the dual formulation, as we do in this paper.
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Diagonal Dual Descent (3-D)

Let (λt)t∈N be a sequence in ]0,+∞[ decreasing to 0, let L = ‖X‖2/σR + λ0/σL, and τ ∈ ]0, 1/L].
Let ẑ0 ∈ Rp, and for all t ∈ N, let

ŵt = proxσ−1
R F (−σ−1R X∗ẑt)

(3D) v̂t+1 = ẑt + τXŵt − τproxσ−1
L Jŷ

(σ−1L λtẑt)

ẑt+1 = v̂t+1 − τ
(
ŷ + prox(τλt)−1G

(
τ−1ŵt+1 − ŷ

))
Remark 1 (Warm-restart) Warm-restart, or continuation method, is a popular heuristic com-
monly used to speed up the computations of solutions of the regularized problem (P̂λ) for different
values of λ [17, 8]. It is easy to see that this strategy generates a sequence (ŵt)t∈N corresponding
to the application of the (3-D) algorithm, for a piecewise constant decreasing sequence (λt)t∈N.

Remark 2 (Diagonal Landweber iteration) For the case L(Xw, ŷ) = (1/2)‖Xw − ŷ‖2, G =
Jŷ = 0, and σR = 1, the (3-D) algorithm reduces to

ŵt+1 = ŵt − τXT (Xŵt − ŷ)− τλtŵt. (3)

This algorithm can be seen as the gradient descent method applied to the function (1/2)‖Xw −
ŷ‖2 + (λ/2)‖w‖2, and considering λ = λt, changing at each iteration. It has been mainly studied
for nonlinear inverse problems, and is also known as modified Landweber iteration [22, 18].

Regularization properties of an early stopped iteration of (3-D) algorithm are known only in the
setting of Remark 2. In the following section we show that (3-D) algorithm exhibits a regularizing
behavior also for general losses and general regularizers.

3 Main results

Before stating our main results, we make some assumptions on the regularizer R and the loss func-
tion L, which are tipically verified in practice:

(H): R is continuous at w†, and L(·, y) admits y as its unique minimizer, and it is locally p-
conditioned for some p ∈ [1,+∞[: ∃(γ, r) ∈ (]0,+∞[)2 s. t. ‖z−y‖ ≤ r ⇒ γ‖z−y‖p ≤ L(z, y).

Remark 3 Determining the conditioning of a loss function is usually very easy when it has the
expression L(z, y) =

∑n
i=1 `(z

(i), y(i)), with ` : R × R → R. Indeed, it reduces to the analysis of
the conditioning of the real valued functions {`(·, yi)}i=1,...,n.

Next we present the main results. First, we prove convergence of (3-D) algorithm, in the noiseless
case. In order to derive the convergence ofwt towardsw†, we will impose a suitable decay condition
on λt, which is in turn dictated by the geometry of the loss function via its conditioning order p.
Then, Theorem 2 establishes the iterative regularization property of the (3-D) method.

Theorem 1 Assume that (H) holds. Let (zt, wt)t∈N be generated by the (3-D) method with exact
data ŷ = y, and by taking1 (λt)t∈N ∈ `1/(p−1)(N). Then zt converges to a solution of the dual
problem of (P), and wt converges to w†, with ‖wt − w†‖ = o

(
t−1/2

)
.

Theorem 2 Assume that (H) holds. Let (ẑt, ŵt)t∈N be generated by the (3-D) method with noisy
data ‖ŷ − y‖ ≤ δ, and by taking λt = λ0/(t+ 1)β , for some β ∈]p− 1,+∞[. Then there exists an
early stopping rule t(δ) ∼ δ−2/3 such that ‖ŵt(δ) − w†‖ = O

(
δ1/3

)
when δ → 0.

Discussion and idea of the proof. The bound in Theorem 2 are derived by optimizing a stability
plus regularization bound:

‖ŵt − w†‖ ≤ ‖ŵt − wt‖+ ‖wt − w†‖, (4)
1 When p = 1, the notation 1/0 stands here for ∞, which means that no particular assumption is required

on the sequence, since it is assumed in (3-D) that λn ↓ 0.

3



where (wt)t∈N is an auxiliary sequence obtained by applying the same diagonal procedure to the
problem with the ideal data. The first term on the right hand side depends on the stability of the
algorithm, and is due to the noise in the data. The key is to show that it increases in a controlled
manner when the level of noise δ and the number of iterations increase. The second term is an
optimization error. Theorem 1 shows that this quantity goes to zero as the number of iterations
grows. The choice of the early stopping time tδ is then determined by balancing the stability and
the optimization error, and depends on the noise level.

This regularization result is the first to hold for such general pair of regularizer/loss function. Note
that our rates O(δ1/3), when specialized to the setting of Remark 2, are not optimal. Indeed it is
known that the diagonal Landweber algorithm is of the same order of the Tikhonov regularization,
which is O(δ1/2) [21, Theorem 6.5]. It is an open question to know whether our result can be
improved, or if it is not possible to achieve optimal rates in such a general setting.

4 Numerical experiments

We performed some numerical experiments using the (3-D) algorithm for image denoising and de-
blurring. We consider problems of the form (P), involving a data fidelity term selected according
to the nature of the noise, and a regularizer promoting a desired feature. The linear operator X is
a blurring operator defined through a Gaussian kernel of size 9 × 9 and variance 10. We compare
the results obtained using two approaches, corresponding to two different choices of the sequence
(λt)t∈N in the (3-D) algorithm: the first is an a priori choice, which defines a regularization method
that we call hereafter diagonal Tikhonov. In that case we chose λt = 10/(t+ 1)2/3. The second ap-
proach, called warm restart Tikhonov, corresponds to an online choice of (λt)t∈N, which is described
in Remark 1. In that case, (λt)t∈N is taken piecewise constant among {Λ1, . . . ,Λ20} ⊂ [0.1, 10],
and its decay is determined by a stopping rule. The latter can be considered as a benchmark, since it
is one of the most efficient ways to approximate the Tikhonov regularization path [8].

We solve two problems and compare the accuracy of these two methods by evaluating ‖wt − w†‖.
We call early stop the iterate minimizing this distance. Both problems concerns a grayscale image
(Kitten and Louvre), which is blurred with X and corrupted by a salt and pepper noise, that we
recover by solving (P) with a `1 loss function L(z, ŷ) = ‖z − ŷ‖1. For Kitten we use R(w) =
‖Ww‖1 + 1

2‖w‖
2 as a regularizer, where W is a Daubechies wavelet transform. The early stop

is detected at t = 510 and t = 1131 for the diagonal Tikhonov and the warm restart Tikhonov,
respectively. For Louvre we useR(w) = ‖w‖TV + 1

2‖w‖
2 as a regularizer, where ‖·‖TV is the total

variation norm. The early stop is detected at t = 178 and t = 2760 for the diagonal Tikhonov and
the warm restart Tikhonov, respectively. The reconstructed images are displayed in Table 1. As can
be seen by visual inspection, the results achieved by the diagonal Tikhonov method and the warm
restart Tikhonov are qualitatively comparable.

Table 1: From left to right: original image, blurred image without noise, blurred image with noise,
image reconstructed with diagonal Tikhonov, image reconstructed with warm restart Tikhonov.
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