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Outline 

 
1.  How to improve upon the stochastic gradient method for 

risk minimization 

2.  Noise reduction methods 
       Dynamic Sampling (batching) 
        Aggregated Gradient methods (SAG, SVRG, etc) 

3.  Second order methods 

4.  Propose a noise reduction method that re-uses old gradients 
and also employs dynamic sampling 
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Organization of optimization methods 

 
Stochastic Gradient                                 Batch Gradient 
         Method                                                 Method 
    

 
Stochastic Newton 
         Method 
    

 condition number 

 noise reduction 
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Second-order methods 

 
Stochastic Gradient                                                 Batch Gradient 
         Method                                                          Method 
    

 
Stochastic Newton   
          
    

•  Averaging (Polyak-Ruppert)  
•  Momentum 
•  Natural gradient, Fischer  
•  quasi-Newton 
•  inexact Newton (Hessian-free) 
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    Noise reducing methods 

 
Stochastic Gradient                                             Batch Gradient 
         Method                                                        Method 
    

 
Stochastic Newton 
         Method 
    

•  Dynamic sampling methods 

•  aggregated gradient methods  
•   

This Talk: combine both ideas 
                    Why? 
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Objective Function  

Fs (w) =
1
| S |

f
i∈S
∑ (w;ξi )

Sample gradient approximation  -  batch (or mini-batch)

 
minw F(w) = E[ f (w;ξ )]

 

ξ = (x, y)  random variable with distribution P
f (⋅;ξ )  composition of loss ℓ and prediction h

wk+1 = wk −α k∇f (wk;ξk )          stochastic gradient method (SG)

wk+1 = wk −α k∇FS (wk )  batch (mini) method
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Transient behavior of SG 

To ensure convergence α k → 0 in SG method to control variance. 
Steplength selected to achieve fast initial progress, but this will
slow progress in later stages   
                                                   

  

Expected function decrease
E[F(wk+1)− F(wk )] ≤ −α k‖∇F(wk )‖2

2 +α k
2E‖∇f (wk ,ξk )‖2   

                                                   
Initially, gradient decrease dominates; then variance in gradient hinters 
progress (area of confusion) 

Dynamic sampling methods reduce gradient variance by increasing batch. 
                               What is the right rate? 



Proposal: Gradient accuracy conditions 

Consider stochastic gradient method with fixed steplength
           wk+1 = wk −αg(wk ,ξk )      

      

Geometric noise reduction 

If the variance of stochastic gradient decreases geometrically, the method  
yields linear convergence 
 

  

Lemma If ∃M > 0, ζ ∈(0,1) s.t.
   E[‖g(wk ,ξk )‖2

2 ]−‖∇F(wk )‖2
2 ≤ M ζ k−1

Then
    E[F(wk )− F*] ≤νρ k−1

    

Extension of classical convergence result for gradient method where error in 
gradient estimates decreases sufficiently rapidly to preserve linear convergence 
 

Schmidt et al 
Pasupathy et al 



Proposal: Gradient accuracy conditions 
      

Optimal work complexity 

Moreover, we obtain optimal complexity bounds 
 

  

We can ensure variance condition       
E[‖g(wk ,ξk )‖2

2 ]−‖∇F(wk )‖2
2 ≤ M ζ k−1

by letting      | Sk | = ak−1 a >1
    

  

The total number of stochastic gradient evaluations to achieve
       E[F(wk )− F*] ≤ ε  is    O(1 / ε)

with favorable constants                                  a∈[1,1− βcµ
2

]−1

    

Pasupathy, Glynn et al 2014                              Friedlander, Schmidt 2012 
Homem-de-Mello, Shapiro  2012                        Byrd, Chin, N., Wu 2013 

∇Fs (w) =
1
| S |

∇f
i∈S
∑ (w;ξi )



  

Theorem: Suppose F  is strongly convex. Consider 
                       wk+1 = wk − (1 / L)gk  
where Sk  is chosen so that variance condition holds and
               | Sk | ≥ γ k      for  γ >1.
Then  
! E[F(wk )− F(w*)]≤Cρ k                  ρ <1
! the number of gradient samples to achieve ε  accuracy is 

                               O  κ
ε
ωd
λ

⎛
⎝⎜

⎞
⎠⎟ d = no. of variables

κ =  condition number,  λ = smallest eigenv of Hessian

            ‖Var∇ℓ(wk;i)‖1≤ω               (population)      
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Dynamic sampling  (batching) 

At every iteration, choose a subset S of {1,…,n} and apply one step of 
an optimization algorithm to the function 

 
FS (wk ) =

1
| S | i∈S
∑ f (w;ξi ),    

At the start, a small sample size | S | is chosen 
•  If optimization step is likely to reduce F(w), sample size is kept 

unchanged; new sample S is chosen; next optimization step taken 
•  Else, a larger sample size is chosen, a new random sample S is 

selected, a new iterate computed 

Many optimization methods can be used. This approach creates the 
opportunity of employing second order methods 
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How to implement this in practice? 

1.  Predetermine a geometric increase, tuning parameter 

2.  Use angle (i.e. variance test) 

Popular: combination of these two strategies. 

| Sk | = ak−1 a >1
    

 

Ensure bound is satisfied in expectation
               ‖g(wk )−∇F(wk )‖≤θ‖gk‖｠｠｠θ <1
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Newton-CG method with dynamic sampling, Armijo line  
search 
 
 
Test Problem 
 
•  From Google VoiceSearch  
•  191,607 training points 
•  129 classes;  235 features 
•  30,315 parameters (variables) 
•  Small version of production problem 
•  Multi-class logistic regression 
•  Initial batch size: 1%;  Hessian sample 10% 

 

 

Numerical Tests:   

 wk+1 = wk −α k∇
2FHk

(wk )
−1gk      α k ≈1 

 

      

Numerical test 
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                      Classical Newton-CG 

New method 

L-BFGS (m=2,20) 

Function 

Time 
Dynamic change of sample sizes 
… based on variance estimate 

Batch L-BFGS 

Stochastic gradient descent 

Dynamic 
Newton-CG 
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However, not completely satisfactory 

More investigation is needed …. 
Particularly: 
•  Transition between stochastic and batch regimes 
•  Coordination between step size and batch size 
•  Use of second order information (one stochastic gradient is not too 

noisy) 
•  Can the idea of re-using gradients in a gradient aggregation approach 

help? 
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Stochastic process                        gradient methods 

1 − − −[ ]
Sk m

twilight 
zone 

SGD 

α k = 1 / k       

      α k = 1

      

Transition from stochastic to batch regimes 

Gradient aggregation could smooth transition 
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Randomized Aggregated Gradient Methods     (for empirical risk min) 

SAG, SAGA, SVRG, etc focus on  minimizing empirical risk 
Iteration: 
 
 

 

Expected Risk:       F (w) = E [ f (w;ξ )]

Empirical Risk:      Fm (w) = 1
m i=1

n

∑ f (w;ξi ) =
1
m i=1

n

∑ fi (w)

wk+1 = wk −α yk

yk    combination of gradients  ∇fi  evaluated at previous
       iterates   φ j

SAG 

yk =
1
m
[∇f j (wk )−∇f j (φk−1

j )+ 1
m

∇
i=1

m

∑ fi (φk−1
i )] Choose j 

at random 
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Example of Gradient Aggregation Methods  

yk =
1
m
[∇f j (wk )−∇f j (φk−1

j )+ 1
m

∇
i=1

m

∑ fi (φk−1
i )]

Achieve  linear  rate of convergence in expectation (after a full 
 initialization pass) 

m

j

SAG, SAGA, SVRG 

SAG 

    Fm (w) = 1
m i=1
∑ f (w;ξi ) =

1
m i=1
∑ fi (w)
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EGR Method 
 
       
                           
 
 
 

 
 

The Evolving Gradient Resampling Method  
           for Expected Risk Minimization 
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Proposed algorithm 

 
1.  Minimizes expected risk (not training error) 
2.  Stores previous gradients and updates several (sk) at each 
3.  iteration 
4.  Additional (uk) gradients are computed at current iterate 
5.  Total amount of stored gradients increases monotonically 
6.  Shares properties with dynamic sampling and gradient aggregation 

methods 

 
Goal: analyze an algorithm of this generality (interesting in its own right) 
Finding right balance between re-using old information and batching can 
result in efficient method. 
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The EGR  method 

yk =
1

tk + uk
( ∑ j∈Sk

[∇f j (wk )−∇f j (φk−1
j )]+

i=1

tk

∑∇fi (φk−1
i )+ ∇

j∈Uk

∑ f j (wk ) )

Related work: Frostig et al 2014,     Babanezhad et al 2015 

tk

jj

sk uk

tk number of gradients in storage at start of iteration k
Uk indices of new gradients sampled at wk uk = |Uk |
Sk indices of previously computed gradients that are updated
      sk = | Sk |

How should sk   and uk  be controled?

Evaluated at wk
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Algorithms included in framework 

tk

jj

sk uk

stochastic gradient method:   sk = 0, uk = 1
dynamic sampling method:   sk = 0, uk =  function(k)
aggregated gradient: sk =  constant, uk = 0

EGR lin:   sk = 0, uk = r
EGR quad:  sk = rk, uk = r
EGR exp:  sk = uk ≈ a

k



 

Assumptions:
1) sk = uk = a

k    a∈!+                       geometric growth
2) F  strongly convex,  fi   Lipschitz continuous gradients
3)           tr (var [∇fi (w)])≤ v2 ∀w

 

Lemma:

       
E[Ek[ek ]]
E[‖wk −w*‖]
σ k

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ≤ M

E[Ek[ek−1]]
E[‖wk−1 −w*‖]
σ k−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 
ek =

1
tk+1

‖∇fi (
i=1

tk+1

∑ φk
i )−∇fi (wk )‖ σ k = v2 / tk+1

Lyapunov function 



M =

1−η
1+η

(1+αL) 1−η
1+η

αL 1−η
1+η

α

αL 1−αµ α

0 0 1
1+η

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

η :   probability that an old gradient is recomputed
α :   steplength
L:    Lipschitz constant
µ :   strong convexity parameter

Lemma. For sufficiently small α  the spectral radius of M satisfies
ρM <1



  

Theorem:     If α k  is chosen small enough
                    E‖wk −w*‖  ≤ ckβ    R-linear convergence

SAG special case: tk = m, uk = 0, sk =  constant

Simple proof of R-linear convergence of SAG but with 
a larger constant 
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Related Methods 

yk =
1
m
[∇f j (wk )−∇f j (φk−1

j )+ 1
m

∇
i=1

m

∑ fi (φk−1
i )]

•  Streaming SVRG   (Frostig et al 2014) 
•  Stop wasting gradients (Babanezhad et al 2015) 

m

j SVRG 
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SAG(A) initialization phase 

yk =
1
m
[∇f j (wk )−∇f j (φk−1

j )+ 1
m

∇
i=1

m

∑ fi (φk−1
i )]

m

j SAG 

1. Sample j ∈{1,...,m} at random
2. Compute ∇f j (wk )
3. If j  has been sampled earlier, replace old gradient
4. Else add new ∇f j (wk ) to aggregated gradient 
           (memory grows)
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Numerical Result 

 
1.  Comparison of EGR with various growth rates 
2.  Comparison with SGD 
3.  Comparison with SAG-init and SAGA-init 

 
Goal: analyze an algorithm of this generality (interesting in its own right) 
Finding right balance between re-using old information and batching can 
result in efficient method. 
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Susy       EGR vs SG vs Dynamic Sampling 
 

����

� �������

����	
��
�������	
���
��

���

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

��
	�





31 

      

Random                        Comparing with SAG initialization 
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              Random   Larger initial batch for EGR 
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                               Alpha 
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          EGR with various growth rates        (Alpha) 
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Random 
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                                    The End 
 


