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Convex optimization 

fundamental problem of optimization:   
minimize a convex (linear) function over a convex set 

 
 

 
 
 
 

min
x2K

f(x)

min
x2K\{f(x)t}

t



Convex optimization 

A few examples 
1.  ERM/stochastic minimization for machine  

learning 
 

2.  Semi-definite programming for block model,  
3D-reconstruction 

3.  Bayesian inference relaxations. 

4.  Matrix completion problems, sparse reconstruction, nuclear 
norm minimization, metric learning…. 

 
 
 
 
 



Convex optimization 

fundamental problem of optimization:   
minimize a convex (linear) function over a convex set 

 
 
 
 

Convex set given by:    
1.  linear constraints (LP) 
2.  Semi-definite constraints 
3.  Separation oracle 
4.  Membership oracle  
 
 
 
 

min
x2K

c

>
x



Polynomial time convex opt 

Ellipsoid  
[Shor, Khachiyan, 
Nemirovski-Yudin] 
 

 O(n12 ) queries/
time 

Interior point 
[Karmarkar, Nesterov-
Nemirovski] 
 

 require barrier 

Random-walk  
[Lovasz-
Vempala,Bertsimas-
Vempala,Kalai-Vempala] 
 

 O(n1/2 * n4  ) 

This result + faster algorithm 
O(ν1/2  * n4 ) , O(ν5/2  * n3 ) 
 



Agenda 

1.  Mini tutorial on IPM 
 

2.  Mini tutorial on SA 
 

3.  The equivalence of SA and IPM 

4.  How to get faster convex opt 
 



Interior point methods:  mini-tutorial 



Gradient descent 

move in the direction of the 
steepest decrease (-gradient) 

c 
yt+1 

xt+1 xt 

min kx� yk2

x 2 K

yt+1 = xt � ⌘rf(xt)

xy+1 = projectK[yt+1]

Projection –  
Can be as hard as the original problem! 



steepest decrease direction  
– no information on curvature! 
 
Newton’s method (“smart gradient”): 
 
 
 
 
For quadratic functions: solution in 1 step 

yt+1 = xt � ⌘[r2
f(xt)]

�1rf(xt)

xy+1 = projectK[yt+1]



Interior point methods 

Avoid projections à remain in the interior always 
Add curvature à add a “super-smooth” barrier function 

min cTx 
A1  x  - b1  ≤ 0 
… 
Am x  - bm ≤ 0 
x~ Rn 

min  cTx -   ∑i log(bi - Ai x)  
x~Rn 

R(x) Barrier 
function 



Self-concordant barrier 

Allow polynomial-time convex optimization [Nesterov, Nemirovski 
1994]. Properties:  
 
1.  as x-> ϑK,  R(x) à ∞ 

2. 
 
 
 
 
 
Property 1:   remain in the interior 
Properties 2:  ensure that Newton’s method can exploit curvature  

Linear programming:  

Ax  b ) R(x) =

X

i

log(Aix� bi)

r3
R(x)[h, h, h]  2(r2

R(x)[h, h])3/2

rR(x)[h] 
p
⌫r2

R(x)[h, h]

Self-concordance 
parameter 
 



Interior point methods 

But now: 
Objective is skewed – barrier distorts 

min
x2K

c

>
x

min
x2Rd

�
c

>
x+R(x)

 



Interior point methods 

à 
Add & change barrier scale 

min
x2K

c

>
x

min
x2Rd

�
t · c>x+R(x)

 

t :⇠ 0 ) 1

tk+1 = tk(1 +
1p
⌫
)
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min
x2Rd

�
t · c>x+R(x)
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min
x2Rd

�
t · c>x+R(x)
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min
x2Rd

�
t · c>x+R(x)
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min
x2Rd

�
t · c>x+R(x)
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min
x2Rd

�
t · c>x+R(x)
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min
x2Rd

�
t · c>x+R(x)
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min
x2Rd

�
t · c>x+R(x)
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min
x2Rd

�
t · c>x+R(x)

 



Path following method 

Changing the parameter t from 0 to  ∞ 
 
 
 
 
Iteratively: 
1.  Update t  
2.  Optimize new objective 

(inside the yellow ellipse) 

�(t) = arg min
x2Rn

�
t · c>x+R(x)

 

min
x2Rd

�
t · c>x+R(x)

 



Inside the yellow ellipse:  
self concordant functions 

R - self concordant for convex set K, at each x, hessian of R at x defines local norm: 
 
The Dikin ellipsoid 

 
 
 
Inside Dikin ellipsoid: function is  

strongly convex and smooth 
with respect to the local norm 

One newton step suffices!  



Path following method – complexity 

 
 
 
 
1.  Geometric update of t à # of iterations <=  ν1/2 
2.  Each iteration: mirror descent (Newton), matrix inversion  

 

REQUIRE EFFICIENT BARRIER!!  
 
Long standing question:  
efficient universal barrier?  

Self-concordance 
parameter ~ 
isoperimetric 
constant of K min

x2Rd

�
t · c>x+R(x)

 



Interior point: summary 

 
 
 
 

Problems with gradient descent:  projections, cannot exploit curvature 
 
Moved to Newton’s method + barrier  + changed scaling à  interior algorithm, 

provably converging in poly time 
 
BUT: REQUIRE EFFICIENT BARRIER!!  
Long standing open question:   efficient universal barrier?  

min
x2Rd

�
t · c>x+R(x)

 



Agenda 

1.  Mini tutorial on IPM 
 

2.  Mini tutorial on SA 
 

3.  The equivalence of SA and IPM 

4.  How to get faster convex opt 
 



Simulated annealing:  mini-tutorial 



Simulated annealing 

Common heuristic for non-convex optimization: 
Boltzman distribution over a set K: (w.r.t. function f or direction c) 

t = ∞: uniform over K 
t à 0: approach min f(x)  over K  

Pt,f (x) ⌘
e

� f(x)
t

R
y2K e

� f(y)
t

dy



Simulated annealing 

Common heuristic for non-convex optimization: 
Boltzman distribution over a set K: (w.r.t. function f or direction c) 

t = ∞: uniform over K 
t à 0: approach min cTx  over K  

c 
Pt,c(x) ⌘

e

� c

>
x

t

R
y2K e

� c

>
y

t

dy



Simulated annealing - intuition 

Initially: sampling uniformly at random  
 
When temperature is very low  à  sample from minimum = goal 
 
If successive distributions are “close” – can use “warm start” to sample efficiently from 

Pt+1 given an efficient method for sampling from Pt  
 
 
1.  What is a warm start?  
2.  How to sample from Pt ?    (there are many methods…) 
 
 

 

Pt,c(x) ⌘
e

� c

>
x

t

R
y2K e

� c

>
y

t

dy



Hit-and-Run 

Iteratively: 
 
1.  Sample line from distribution 

2.  Consider interval = restriction to K 
3.  Sample from induced distribution Pt on  

interval – this is Xt+1 

Theorem: HNR has stationary dist. Pt 
 
How does K enter the random walk?  
 
Notice– only membership oracle needed for K! 

c 

 xt+1 

Pt,c(x) ⌘
e

� c

>
x

t

R
y2K e

� c

>
y

t

dy

u ⇠ N(Xt, Ct)

 xt 



hit & run 



Simulated annealing w. Hit-and-Run 

First polynomial-time algorithm [Kalai, Vempala ’06]:  
 
1.  Sample from 

 
using Hit-and-Run 
 

2.  Successive distributions are close enough if  

3.   SA with HNR, temperature schedule of 
 
Their main theorem:  algorithm returns approximate solution in 
iterations, and overall time    

tk+1 = tk(1�
1p
n
)

Pt,c(x) ⌘
e

� c

>
x

t

R
y2K e

� c

>
y

t

dy

KL(Ptk , Ptk+1) 
1

2

O(

p
n log

1

✏
)

O(

p
n log

1

✏
⇥ n⇥ n3

) =

˜O(n4.5
)

kcov(Ptk)� cov(Ptk+1)k  1

2

,
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New: 

Curve of mean of Boltzman distribution, parameterized by 
temperature 

µ(t) = E

x⇠Pt,c(x)[x] , P

t,c

(x) =
e

�c

>
x/t

R
y2K

e

�c

>
y/t

dy



Two different convex optimization 
methods 

Simulated 
Annealing  

via  
Hit-and-

Run 

Interior 
Point 

Methods 
via Path 

Following 



Our key result:  there exists a barrier R(x) for any convex set such 
that CentralPath is identically the HeatPath 

µ(t) =
E

K3x⇠e

� c

>
x

t

[x] �(t) = arg min
x2Rn

�
t · c>x+R(x)

 



What is this special function?  
the entropic barrier: 

         =      log partition function  
     for the exponential family 

 
 
 
 
 
 
 
entropic barrier for K: 
 
 
 
 

1.  Guller  ‘96 + Nesterov/
Nemirovski  ‘94 
 
ν = O(n)  
PSD cone - ν = O(n1/2)  

2.  Bubeck-Eldan ‘15:  
ν = n + o(n)  

A(c) = log

Z

x2K

e

�c

>
x

dx

rA(c) = �E

x⇠Pc [x] , r2
A(c) = E

x⇠Pc [(x� E[x])(x� E[x])>]

A

⇤(x) = sup
c
{c>x�A(c)}



Convergence/running time analysis 
Method Interior point 

methods 
Simulated 
annealing 

Inside each 
temperature 

Fast convergence of 
Newton’s method 

Fast convergence of 
Hit-and-Run to 
stationary 
distribution 

Change 
temperature 

After Newton 
converged 

stationary 
distribution, 
estimate covariance 

Condition  Newton decrement 
<< 1 

Distance between 
consecutive dist. 



Why is this interesting?  

•  Unifies two distinct literatures 

•  One less algorithm to teach/learn in your class!  

•  Using IPM ideas we get a faster algorithm for convex optimization 
 

•  For semi-definite programming:  

•  Randomized efficient interior-point path-following algorithm for 
any convex set!  (long-standing open problem in optimization) 

 

Õ(
p
n) ) Õ(

p
⌫)

⌫ = O(
p
n)



•  Time for a Demo? 
 

•  Time for a proof sketch? 
 

•  Fin… 

 



When can we increase the temperature? 
Theorem [Kalai-Vempala ’06]:  
Temperature schedule suffices to satisfy: (ck = tk*c) 
 
 
 
 
For hit-N-run-based simulated annealing to work.  
 
 
Our main lemma:   for the above, we can have : 
 

tk+1

tk
= 1 +

O(1)p
⌫

kPck � Pck+1kTV 2 = max

⇢����
Pck

Pck+1

����
2

,

����
Pck+1

Pck

����
2

�
 O(1)



Proof:  

Part 1:  
duality of Bregman divergence, equivalence to Kullback-Leibler for 
exponential families: 
 
 
 
 
 
 
(reminder, Bregman divergence w.r.t. A ~ local norm) 

tk+1

tk
= 1 +

O(1)p
⌫

D

A

(x, y) ⌘ A(x)�A(y)�rA(y)>(x� y) ⇡ kx� yk2
A(x)

KL(Pck , Pck+1) = DA(ck, ck+1) = DA⇤(x(ck), x(ck+1))

A(✓) = log

Z

x2K

e

�✓

>
x

dx

x(c) = E

x⇠Pc [x] = �rA(c)



Proof:  

Part 2:  
by definition and calculation: 
 
 
 
 
 
 

tk+1

tk
= 1 +

O(1)p
⌫

log

����
Pck+1

Pck

���� = DA(ck+1, ck) +DA(ck, ck+1)



Part 3 – using IPM:  
Bregman divergence between local means bounded inside the Dikin 
ellipsoid by O(1).  
 
 
 

tk+1

tk
= 1 +

O(1)p
⌫

DA(ck+1, ck) ⇠ kck � ck+1k2A(ck)

⇠ kx(ck)� x(ck+1)k⇤ 2
A(ck)

= kx
k

� x

k+1k2
A

⇤(xk)

= O(1)

Proof:  



Putting it together 

 
1.  Nemirovski: # of Dikin ellipsoids on the path <=  ν1/2 
2.  This bounds the total # of temperature updates  

Complexity: 
1.  Each iteration requires Hit-And-Run * N times 

(for mean & covariance) 
 
 
 
 



Conclusion 

 
1.  Faster convex optimization è    ν1/2   iterations vs. n1/2 , faster SDP 

   each iteration n3ν2  vs n4 
2.  Efficient randomized IPM for any convex body (open Q in optimization) 
3.  Defined the Heat path, showed equivalence to Central Path  
 
 
 



Where do we go from here? 

 
1.  Heat path for non-convex optimization 
2.  Regret minimization – geometric connection 
3.  Gradient descent analogue?  
 
 
 


