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Abstract

In this work [1], we consider the binary classification problem where stochastic
gradient descent is used to minimize logistic or hinge loss. We propose a simple
and computationally inexpensive termination criterion which exhibits a good de-
gree of predictability on yet unseen data. We provide theoretical and numerical
evidence for the effectiveness of our test.

Motivation

Early stopping rules and termination criteria play a central role in machine learn-
ing. Models trained via first order methods without early stopping may not predict
well on future data since they over-fit the given samples. In the versatile case
of deep neural networks, although it is known that even interpolating the training
data will result in low generalization errors, early stopping can still be used to cor-
rect the adversarially corrupted sample points [2]. Despite all these advantages,
our fundamental understanding of explicit stopping rules has lagged far behind.

Model

We suppose that data comes from a mixture model with two means µ0 and µ1.
Without loss of generality, we can assume that µ0 + µ1 = 0.

Fig. 1: Re-centring: Estimate v := µ0+µ1
2 using a preliminary sampling phase and then translate the data by −v.

We aim to minimize the following expected loss function:

min f (θ) := E(ζ,y)∼P`
(
ζTθ, y

)
,

where ` is either the logistic or hinge loss. Logistic loss function is as follows.

`(x, y) =

{
log (1 + exp(x)) y = 0

log (1 + exp(−x)) y = 1

And hinge loss function is as follows.

`(x, y) =

{
max{1 + x, 0} y = 0

max {1− x, 0} y = 1

For brevity, we present our results only for the logistic loss. Results for hinge
loss are similar. Via a folding argument, it suffices to minimize the following loss
function.

min f̂ (θ) := E
ξ∼P̂

ˆ̀
(
ξTθ

)
(1)

Assumption 1. In our analysis, we assume that the data is isotropically Gaussian
distributed i.e.

P̂ ≡ N(µ, σ2Id).

Results

Lemma 1. Under the Gaussian data assumption, any optimal classifier will be aligned with
θ∗ where θ∗ denotes the unique solution to (1). In other words,

argmax
θ

P
ξ∼P̂

(
ξTθ > 0

)
= R++ · θ∗.

Furthermore, the following is true.
θ∗ =

µ

2σ2
.

Any classifier aligned with µ is therefore an optimal classifier. We present our termination
criterion below.

Algorithm 1: Stochastic gradient descent with termination test
1: initialize: θ0 = 0, α > 0, k = 0
2: while True
3: Pick data point ξk+1 ∼ P̂
4: If ξTk+1θk ≥ 1

break
5: Update θ by setting

θk+1← θk +
αξk+1

1 + exp
(
ξTk+1θk

)
6: k ← k + 1
7: end

We therefore formally define our stopping time as follows.

T0 := inf
{
k : ξTk+1θk ≥ 1

}
. (2)

In order to analyse the stopping time T0, we borrow techniques from probability theory.
To do so, however, we crucially need to assume that two σ-algebras F(ξ1, ξ2, · · · ) and
F(θ1,θ2, · · · ) are independent. This assumption obviously fails to hold and as such we
carry our analysis for the following substitute stopping time.

T := inf
{
k : ξ̂Tk+1θk ≥ 1

}
,

where ξ̂1, ξ̂2, · · · are sampled i.i.d. from P̂ . Notably, our numerical results did not show any
significant difference between the two tests T0 and T . We present our main results next.
The first theorem provides a bound for the expected value of the stopping time T .

Theorem 1. (Bounds for expected value of T )

• Suppose that σ ≤ 0.33‖µ‖ and α > 0 is arbitrary. The following is then true.

E[T ] ≤ 2 +
2(c1 + c2α‖µ‖2)2

α‖µ‖2
·

(
Φc
(
‖µ‖
σ

)
+
ασ3

‖µ‖
· 1√

2π
exp

(
−‖µ‖

2

2σ2

)
+ 1

)
.

• Suppose that σ > 0.33‖µ‖ and the step-size α satisfies

α ≤ c3 ·
‖µ‖2

σ2(‖µ‖2 + dσ2)
.

It then holds that E[T ] < +∞.

The next theorem provides a bound on the expected value of the misalignment with respect
to the direction of the optimal classifier.

Theorem 2. (Angle bound) Let v ∈ Sd−1 such that v ⊥ θ∗. The following bound holds.

E
[
|vTθT |

]
≤ σα

√
2

π
· E[T ].

Numerical Experiments

We investigate the performance of our termination test on two popular data sets,
MNIST and CIFAR-10, as well as synthetic data generated from Gaussian dis-
tributions. All tests were performed using our zero overhead stopping criteria
outlined in (2); experiments using our theoretical test which required an extra
sample are not presented since the behaviors of the two criteria were indistin-
guishable on all data sets.

Fig. 2: Performance of stopping criterion (2) on a mixture of Gaussians as σ is varied. The black curve on the right

is the ratio of the average accuracy (over 10 trials) of the classifier when (2) holds to the accuracy of the optimal

classifier.

Fig. 3: Results for MNIST and CIFAR-10 image classification data. Each plot shows 10 random runs of SGD

applied to the indicated data set, and for each of the ten runs, five termination tests corresponding to five colors

were applied. SVS (small validation set) was tried with p = 8, 32, 128, depicted as red, magenta and cyan circles

respectively. Test (2) is indicated with a blue asterisk. A green ′+′ corresponds to termination after 1.5k iterations,

where k is the iteration index that (2) first holds.
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