Error Compensated Proximal SGD and RDA

Xun Qian ${ }^{1}$ Hanze Dong ${ }^{2}$ Peter Richtárik ${ }^{1}$ Tong Zhang ${ }^{2}$
${ }^{1}$ KAUST ${ }^{2}$ Hong Kong University of Science and Technology

The Problem

$$
\min _{x \in \mathbb{R}^{\mathbb{R}}} P(x):=\frac{1}{n} \sum_{\tau=1}^{n} f^{(\tau)}(x)+\psi(x),
$$

(1) where $f(x):=\frac{1}{n} \sum_{\tau} f^{(\tau)}(x)$ is an average of n smooth convex functions $f(\tau)$ distributed over n nodes, and ψ is a proper closed convex function. On each node, $f^{(\tau)}(x)$ is an average of m smooth convex functions

$$
f^{(\tau)}(x)=\frac{1}{m} \sum_{i=1}^{m} f_{i}^{(\tau)}(x) .
$$

Algorithm (ECSGD)

- $\operatorname{prox}_{\gamma \psi}(x):=\arg \min \left\{\frac{1}{2}\|x-y\|^{2}+\gamma \psi(y)\right\}$

Algorithm 1: Error compensated proximal SGD

 (ECSGD)$x^{0}=w^{0} \in \mathbb{R}^{d} ; e_{\tau}^{0}=0 \in \mathbb{R}^{d} ; u^{0}=1 \in \mathbb{R} ;$ params: stepsize $\gamma>0$; probability $p \in(0,1]$.
for $k=1,2, \ldots$ do
for $\tau=1, \ldots, n$ do
Sample i_{k}^{τ} uniformly and independently in $[\mathrm{m}]$ on each node
$g_{\tau}^{k}=\nabla f_{i_{k}^{(\tau)}}^{(\tau)}\left(x^{k}\right)-\nabla f^{(\tau)}\left(w^{k}\right), \quad y_{\tau}^{k}=Q\left(\gamma g_{\tau}^{k}+e_{\tau}^{k}\right)$, $e_{\tau}^{k+1}=e_{\tau}^{k}+\gamma g_{\tau}^{k}-y_{\tau}^{k}, \quad u_{\tau}^{k+1}=0$ for $\tau=2, \ldots, n$, $u_{1}^{k+1}=\left\{\begin{array}{l}1 \text { with probability } p \\ 0 \\ 0 \text { with probability } 1-p\end{array}\right.$
Send y_{τ}^{k} and u_{τ}^{k+1} to the other nodes. Send $\nabla f^{(\tau)}\left(w^{k}\right)$ to the other nodes if $u^{k}=1$
Receive y_{τ}^{k} and u_{τ}^{k+1} from the other nodes. Receive $\nabla f^{(\tau)}\left(w^{k}\right)$ from the other nodes if $u^{k}=1$ end
$y^{k}=\frac{1}{n} \sum_{r=1}^{n} y_{\tau}^{k}, u^{k+1}=\sum_{r=1}^{n} u_{\tau}^{k+1}$
$x^{k+0.5}=x^{k}-\left(y^{k}+\gamma \nabla f\left(w^{k}\right)\right)$.
$x^{k+1}=\operatorname{prox}_{\gamma \psi}\left(x^{k+0.5}\right), \quad w^{k+1}=\left\{\begin{array}{l}x^{k} \text { if } u^{k+1}=1 \\ w^{k} \text { otherwise }\end{array}\right.$
end

Gradient Compression Methods
$\bullet Q: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a contraction compressor if there is a $0<\delta \leq 1$ such that for all $x \in \mathbb{R}^{d}$,

$$
\mathbb{E}\|x-Q(x)\|^{2} \leq(1-\delta)\|x\|^{2} .
$$

$\bullet \tilde{Q}$ is an unbiased compressor if there is $\omega \geq 0$ such that $\mathbb{E}[\tilde{Q}(x)]=x \quad$ and $\quad \mathbb{E}\|\tilde{Q}(x)\|^{2} \leq(\omega+1)\|x\|^{2} \quad$ (3) for all $x \in \mathbb{R}^{d}$.

- $\frac{1}{\omega+1} \tilde{Q}$ is a contraction compressor with $\delta=\frac{1}{\omega+1}$.

> Algorithm (ECRDA)

Algorithm 2: Error compensated RDA (ECRDA) $x^{1}=w^{1}=\arg \min _{x} h(x) ; \bar{g}^{0}=0 \in \mathbb{R}^{d} ; e_{\tau}^{1}=0 \in \mathbb{R}^{d}$ $u^{1}=1 \in \mathbb{R}$; params: an auxiliary function $h(x)$ that is strongly onvex on dom ψ and also satisfies

$$
\arg \min _{x} h(x) \in \arg \min _{x} \psi(x) ;
$$

a nonegative and nondecreasing sequence $\left\{\beta_{k}\right\}_{k \geq 1}$. for $k=1,2, \ldots$ do
for $\tau=1, \ldots, n$ do
Sample i_{k}^{T} uniformly and independently in $[m]$ on each node
$g_{\tau}^{k}=\nabla f_{i_{k}^{(\tau)}}^{(\tau)}\left(x^{k}\right)-\nabla f^{(\tau)}\left(w^{k}\right), \quad y_{\tau}^{k}=Q\left(g_{\tau}^{k}+e_{\tau}^{k}\right)$, $e_{\tau}^{k+1}=e_{\tau}^{k}+g_{\tau}^{k}-y_{\tau}^{k}, \quad u_{\tau}^{k+1}=0$ for $\tau=2, \ldots, n$, $u_{1}^{k+1}=\left\{\begin{array}{l}1 \text { with propobility } p \\ 0\end{array}\right.$
Send y_{τ}^{k} and u_{τ}^{k+1} to the other nodes. Send
$\nabla f^{(\tau)}\left(w^{k}\right)$ to the other nodes if $u^{k}=1$
Receive y_{τ}^{k} and u_{τ}^{k+1} from the other nodes. Receive $\nabla f^{(\tau)}\left(w^{k}\right)$ from the other nodes if $u^{k}=1$
end
$y^{k}=\frac{1}{n} \sum_{\tau=1}^{n} y_{\tau}^{k}, \quad u^{k+1}=\sum_{\tau=1}^{n} u_{\tau}^{k+1}$
$\bar{g}^{k}=\frac{k-1}{k} \bar{g}^{k-1}+\frac{1}{k}\left(y^{k}+\nabla f\left(w^{k}\right)\right)$
$x^{k+1}=\arg \min _{x}\left\{\left\langle\bar{g}^{k}, x\right\rangle+\psi(x)+\frac{\beta_{k}}{k} h(x)\right\}$,
$w^{k+1}=\left\{\begin{array}{l}x^{k} \text { if } u^{k+1}=1 \\ w^{k}\end{array}\right.$
end

Assumptions

Assumption 1: $\mathbb{E}[Q(x)]=\delta x$.
Assumption 2: For $x_{\tau}=\frac{\eta}{L_{1}} g_{\tau}^{k}+e_{\tau}^{k} \in \mathbb{R}^{d}\left(x_{\tau}=g_{\tau}^{k}+e_{\tau}^{k}\right)$, $\tau=1, \ldots, n$ and $k \geq 0$ in Algorithm 1 (Algorithm 2), we have $\mathbb{E}\left[Q\left(x_{\tau}\right)\right]=Q\left(x_{\tau}\right)$, and

$$
\left\|\sum_{\tau=1}^{n}\left(Q\left(x_{\tau}\right)-x_{\tau}\right)\right\|^{2} \leq(1-\delta)\left\|\sum_{\tau=1}^{n} x_{\tau}\right\|^{2}
$$

Assumption 3: $f_{i}^{(\tau)}$ is L-smooth for $1 \leq i \leq m$ and $1 \leq \tau \leq n$.

ECRDA

Assumption 4: $f_{i}^{(\tau)}$ is L-smooth. h is 1-strongly convex and $h\left(x^{1}\right)=\psi\left(x^{1}\right)=0$.
Assumption 5: In Algorithm 2, $\left\|\nabla f_{t_{t}^{(\tau)}}^{(\tau)}\left(x^{k}\right)\right\|^{2} \leq G^{2}$, $\left\|\nabla f^{(\tau)}\left(w^{k}\right)\right\|^{2} \leq G^{2}$, and $\left\|\partial h\left(x^{k}\right)\right\|^{2} \leq H^{2}$ for $k \geq 1$. $h\left(x^{*}\right) \leq D^{2}$.

Convergence Result $\left(\mathbb{E}\left[P\left(\bar{x}^{k}\right)-P\left(x^{*}\right)\right]\right)$
Assume the compressor Q in Algorithm 1 is a contraction compressor and Assumption 3 holds. Let $\bar{x}^{k}:=\frac{1}{k} \sum_{j=1}^{k} x^{j}$.
$p=0$: there exists constant stepsize $\gamma \leq \frac{\delta^{2}}{48 L}$ s.t.,

$$
O\left(\frac{L\left\|x^{0}-x^{x}\right\|^{2}}{\delta^{2} k}+\frac{\left\|x^{0}-x^{*}\right\| \sqrt{\sigma^{2} / \delta+L\left(P\left(w^{0}\right)-P\left(x^{*}\right)\right) / \delta^{2}}}{\sqrt{k}}\right)
$$

$p>0$: there exists constant stepsize $\gamma \leq \frac{\delta^{2}}{80 L}$ s.t.,

$$
O\left(\frac{1}{k}\left(\frac{L\left\|x^{0}-x^{x}\right\|^{2}}{\delta^{2}}+\frac{P\left(w^{0}\right)-P\left(x^{*}\right)}{p}\right)+\frac{\sigma\left\|x^{0}-x^{x}\right\|}{\sqrt{\delta k}}\right) .
$$

Under Assumption 1 or Assumption 2. $p=0$: there exists constant stepsize $\gamma \leq \frac{\delta^{2}}{(6+304 / n) L}$ s.t.,

$$
O\left(\frac{L\left\|x^{0}-x^{*}\right\|^{2}}{\delta^{2} k}+\frac{\left.\left\|x^{0}-x^{*}\right\| \sqrt{\sigma^{2} /(n \delta)+L\left(P\left(w^{0}\right)-P\left(x^{*}\right)\right) / \delta^{2}}\right)}{\sqrt{k}}\right)
$$

$p>0$: there exists constant stepsize $\gamma \leq \frac{\delta^{2}}{(128+592 / n) L}$ s.t.,

$$
O\left(\frac{1}{k}\left(\frac{L\left\|x^{0}-x^{x}\right\|^{2}}{\delta^{2}}+\frac{P\left(w^{0}\right)-P\left(x^{x}\right)}{p}\right)+\frac{\sigma\left\|x^{0}-x^{*}\right\|}{\sqrt{n \delta k}}\right) .
$$

Convergence Result $\left(\mathbb{E}\left[P\left(\bar{x}^{k}\right)-P\left(x^{*}\right)\right]\right)$

Assume the compressor Q in Algorithm 2 is a contraction compressor and Assumptions 4,5 hold. Let $\bar{x}^{k}:=\frac{1}{k} \sum_{j=1}^{k} x^{j}$.
p $=0$: for fixed $k \geq O(1 / \delta)$, by choosing $\beta_{j}=$ $4 \sqrt{\frac{k}{\delta}} \frac{\sqrt{G^{2}+L\left(P\left(w^{1}\right)-P\left(x^{*}\right)\right)+\delta \sigma^{2} / 4}}{D}$ for $j \geq 1$,
$O\left(\frac{D \sqrt{G^{2}+L\left(P\left(w^{1}\right)-P\left(x^{*}\right)\right)+\delta \sigma^{2}}}{\sqrt{\delta k}}+\left(\frac{D G}{\delta \sqrt{\delta k}}+H^{2}+\frac{G^{2}}{\delta^{2}}\right) \frac{\ln k}{k}\right)$
$p>0$: for fixed $k \geq O\left(1 / \delta^{\frac{5}{2}}\right)$, by choosing $\beta_{j}=$ $\frac{4 \sqrt{k}}{\delta^{1 / 4}} \frac{\sqrt{\sigma^{2}+24 G^{2}}}{D}$ for $j \geq 1$,
$O\left(\frac{D \sqrt{\sigma^{2}+G^{2}}}{\delta^{1 / 4} \sqrt{k}}+\frac{L D\left(P\left(w^{1}\right)-P\left(x^{*}\right)\right)}{k \sqrt{k} \delta^{5 / 4} p \sqrt{\sigma^{2}+G^{2}}}+\left(\frac{D G}{\sqrt{k} \delta^{7 / 4}}+\frac{H^{2} \delta^{2}+G^{2}}{\delta^{2}}\right) \frac{\ln k}{k}\right)$ Under Assumption 1 or Assumption 2.
$p=0$: for fixed $k \geq O(1 / \delta)$, by choosing $\beta_{j}=$ $4 \sqrt{\frac{k}{\delta}} \frac{\sqrt{G^{2}+(2+9 / n) L\left(P\left(w^{1}\right)-P\left(x^{*}\right)\right)+3 \delta \sigma^{2} / n}}{D}$ for $j \geq 1$,
$O\left(\frac{D \sqrt{G^{2}+L\left(P\left(w^{1}\right)-P\left(x^{*}\right)\right)+\delta \sigma^{2} / n}}{\sqrt{\delta k}}+\left(\frac{D G}{\delta \sqrt{\delta k}}+H^{2}+\frac{G^{2}}{\delta^{2}}\right) \frac{\ln k}{k}\right)$.
$p>0$: for fixed $k \geq O\left(n^{\frac{3}{2}} / \delta^{\frac{5}{2}}\right)$, by choosing $\beta_{j}=$ $\frac{4 \sqrt{k}}{(n \delta)^{1 / 4}} \frac{\sqrt{6 \sigma^{2}+12 G^{2}}}{D}$ for $j \geq 1,\left(A=\frac{D \sqrt{\sigma^{2}+G^{2}}}{(n \delta)^{1 / 4} \sqrt{k}}\right)$
$O\left(A+\frac{n^{3 / 4} L D\left(P\left(w^{1}\right)-P\left(x^{*}\right)\right)}{k \sqrt{k} \delta^{5 / 4} p \sqrt{\sigma^{2}+G^{2}}}+\left(\frac{n^{1 / 4} D G}{\sqrt{k} \delta^{\gamma / 4}}+\frac{H^{2} \delta^{2}+G^{2}}{\delta^{2}}\right) \frac{\ln k}{k}\right)$.

Communication Cost

Denote Δ_{1} as the communication cost of the uncompressed vector $x \in \mathbb{R}^{d}$. Let
$r(Q):=\sup _{x \in \mathbb{R}^{d}}\left\{\mathbb{E}\left[\frac{\text { communication cost of } Q(x)}{\Delta_{1}}\right]\right\}$
For effieiently small ϵ,

- $\mathbb{E}\left[P\left(\bar{x}^{k}\right)-P\left(x^{*}\right)\right] \leq \epsilon$ for ECSGD:

$$
O\left(\left(\Delta_{1} r(Q)+1\right) \frac{1}{\delta \epsilon^{2}}\right) ;
$$

- $\mathbb{E}\left[P\left(\bar{x}^{k}\right)-P\left(x^{*}\right)\right] \leq \epsilon$ for ECRDA:

$$
O\left(\left(\Delta_{1} r(Q)+1\right) \frac{1}{\sqrt{\delta} \epsilon^{2}}\right),
$$

Numerical Results

1. Error Compensated and Full SGD/RDA

2. Comparison to Quantization and RandK-DIANA

References
[1] S. U. Stich and S. P. Karimireddy.
The error-feedback framework: Better rates for sgd with delayed gradients and compressed communication.
arXiv: 1909.05350, 2019.
[2] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik Distributed learning with compressed gradient differences. arXiv: 1901.09269, 2019.

