

Dualize, Split, Randomize: Fast Nonsmooth Optimization Algorithms

Adil Salim Laurent Condat Konstantin Mishchenko Peter Richtárik

KAUST, Thuwal, Saudi Arabia.

Goal

$$\min_{x \in \mathbb{R}^d} F(x) + R(x) + H(Lx), \tag{1}$$

where F, R, H convex functions, F smooth and R, H nonsmooth proximable.

We propose a new algorithm, the **Primal–Dual Davis–Yin (PDDY)**, to solve (1). PDDY is obtained as a carefully designed instance of the Davis–Yin Splitting between monotone operators.

We establish **convergence rates** for PDDY, when the algorithm is implemented with a **Variance Reduced (VR) stochastic gradient** of F.

In particular: Linear rate for strongly convex minimization under linear constraints (without projecting on the constraints space).

Primal–Dual optimality

Let x^* be a solution to Problem (1). Under a standard qualification condition,

$$0 \in \nabla F(x^*) + \partial R(x^*) + L^* \partial H(Lx^*),$$

i.e., there exists $y^* \in \partial H(Lx^*)$ such that

$$0 = \nabla F(x^*) + \partial R(x^*) + L^* y^*.$$

Since $Lx^* \in \partial H^*(y^*)$,

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \begin{bmatrix} \nabla F(x^*) + \partial R(x^*) + L^* y^* \\ -L x^* + \partial H^* (y^*) \end{bmatrix}.$$

Monotone operator

$$M(x,y) \coloneqq \begin{bmatrix} \nabla F(x) + \partial R(x) + Ly \\ -Lx + \partial H^*(y) \end{bmatrix}.$$

Then, $0 \in M(x^*, y^*)$. Moreover, M is a monotone operator: $\langle M(x, y) - M(x', y'), (x, y) - (x', y') \rangle \geq 0$. Indeed, M is the sum of a skew symmetric operator and the subdifferential of $F(x) + R(x) + H^*(y)$.

Davis-Yin Splitting

Solving Problem (1) is equivalent to solving the inclusion $0 \in M(x^*, y^*)$. One idea could be to decompose

$$M(x,y) = \underbrace{\begin{bmatrix} \partial R(x) \\ 0 \end{bmatrix}}_{:=A(x,y)} + \underbrace{\begin{bmatrix} L^*y \\ -Lx + \partial H^*(y) \end{bmatrix}}_{:=B(x,y)} + \underbrace{\begin{bmatrix} \nabla F(x) \\ 0 \end{bmatrix}}_{:=C(x,y)}, \tag{2}$$

and apply the **Davis–Yin Splitting (DYS)** algorithm [2] which can solve monotone inclusions of the form $0 \in (A + B + C)(x^*, y^*)$, see below. DYS generalizes the standard proximal gradient algorithm and relies on the computation of the resolvent of B, denoted $J_B(x, y) = (I + B)^{-1}(x, y)$.

In other words, $(x', y') = J_B(x, y)$ is equivalent to $(x', y') \in (x, y) - B(x', y')$, which is intractable in general. Hence one cannot apply DYS directly.

Primal–Dual Davis–Yin

The idea is preconditioning: let P a positive definite symmetric matrix. Then $0 \in M(x^*, y^*)$ is equivalent to $0 \in P^{-1}M(x^*, y^*)$. Besides, $P^{-1}M = P^{-1}A + P^{-1}B + P^{-1}C$. Finally $P^{-1}A, P^{-1}B, P^{-1}C$ are monotone operators under the inner product induced by P. DYS applied to the inclusion $0 \in (P^{-1}A + P^{-1}B + P^{-1}C)(x^*, y^*)$ relies on the computation of the resolvent of $P^{-1}B$.

In other words, $(x', y') = J_{P^{-1}B}(x, y)$ is equivalent to $P(x', y') \in P(x, y) - B(x', y')$, which only relies on the proximity operator of H denoted

$$prox_{H}(x) = \arg\min_{y \in \mathbb{R}^{d}} H(y) + \frac{1}{2} ||x - y||^{2},$$

if [1]

$$P \coloneqq egin{bmatrix} I & 0 & 0 \ 0 & rac{\gamma}{ au}I - \gamma^2LL^* \end{bmatrix}$$
 .

The resulting algorithm is the \mathbf{PDDY} algorithm. It inherits the convergence properties of DYS.

Davis-Yin Algorithm $\mathsf{DYS}(A,B,C)$ [2]

- 1: Input: $v^0 \in \mathcal{Z}$, $\gamma > 0$
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- 3: $z^k = J_{\gamma B}(v^k)$
- 4: $u^{k+1} = J_{\gamma A}(2z^k v^k \gamma C(z^k))$
- 5: $v^{k+1} = v^k + u^{k+1} z^k$
- 6: end for

Stochastic PDDY algorithm (proposed)

(deterministic version: $g^{k+1} = \nabla F(x^k)$)

- 1: **Input:** $p^0 \in \mathcal{X}, y^0 \in \mathcal{Y}, \gamma > 0, \tau > 0$
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- 3: $y^{k+1} = \operatorname{prox}_{\tau H^*} \left(y^k + \tau L(p^k \gamma L^* y^k) \right)$
- 4: $x^k = p^k \gamma L^* y^{k+1}$
- 5: $s^{k+1} = \text{prox}_{\gamma R} \left(2x^k p^k \gamma g^{k+1} \right)$ 6: $p^{k+1} = p^k + s^{k+1} - x^k$
- 6: $p^{n+1} = p^n + s^{n+1} 1$ 7: **end for**

Other primal-dual algorithms like Condat-Vũ I, Condat-Vũ II and PD3O can be derived from DYS as well.

Contact

adil.salim,laurent.condat,konstantin.mishchenko,peter.richtarik@kaust.edu.sa

VR stochastic gradient

Several VR stochastic gradient estimators used in the literature satisfy the following [3]. There exist $\alpha, \beta, \delta \geq 0, \rho \in (0, 1]$ and a stochastic

process denoted by $(\sigma_k)_k$, s.t., $\mathbb{F}_{\ell}(\sigma^{k+1}) - \nabla F(r^k)$

$$\mathbb{E}_{k}(g^{k+1}) = \nabla F(x^{k})$$

$$\mathbb{E}_{k}(\|g^{k+1} - \nabla F(x^{*})\|^{2}) \leq 2\alpha D_{F}(x^{k}, x^{*}) + \beta \sigma_{k}^{2}$$

$$\mathbb{E}_{k}(\sigma_{k+1}^{2}) \leq (1 - \rho)\sigma_{k}^{2} + 2\delta D_{F}(x^{k}, x^{*}),$$

where D_F Bergman divergence of F.

Convergence rates

Assume γ small enough and $\gamma \tau ||L||^2 < 1$.

Then,
$$\mathbb{E}D_F(\bar{x}^k, x^*) + \mathbb{E}D_{H^*}(\bar{y}^{k+1}, y^*) + \mathbb{E}D_R(\bar{s}^{k+1}, s^*) = \mathcal{O}(1/k).$$

If R strongly convex and H smooth, then $\mathbb{E}||x^k - x^*||^2 + \mathbb{E}||y^k - y^*||^2$ converges linearly. If F strongly convex, $R \equiv 0$ and $H(x) = \infty$ except at H(b) = 0, $\mathbb{E}||x^k - x^*||^2 + \mathbb{E}||y^k - y^*||^2$ converges linearly to zero $(x^*$ is the solution to min F s.t. Lx = b). Complexity: $\mathcal{O}(\kappa + \chi \log(1/\varepsilon))$, where κ (resp. χ) condition number of F (resp. L^*L).

References

- [1] L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi. Proximal splitting algorithms: A tour of recent advances, with new twists. preprint arXiv:1912.00137, 2019.
- [2] D. Davis and W. Yin. A three-operator splitting scheme and its optimization applications.

 Set-Valued and Variational Analysis,
 25(4):829–858, 2017.
- [3] E. Gorbunov, F. Hanzely, and P. Richtárik. A unified theory of SGD: Variance reduction, sampling, quantization and coordinate descent. In *International Conference on Artificial Intelligence and Statistics*, pages 680–690, 2020.