
A Decentralized Proximal Point-type Method for Non-convex Non-
concave Saddle Point Problems

Problem Formulation and Assumptions

Weijie Liu, Aryan Mokhtari, Asu Ozdaglar, Sarath Pattathil, Zebang Shen, Nenggan Zheng 

• We are interested in solving the following saddle point problem:

• Used to formulate GANs, Adversarial training, Robust Optimization
• Many papers study the setting where the objective is convex-concave. But 

most practical applications involve nonconvex functions.
• Many applications involve a formulation where the objective function can be 

written as a sum of other functions. Each of these functions are evaluated 
using data from a node and we would like to solve the optimization problem 
using minimal communication between the nodes.

• The objective in this paper is to find the saddle point of the function 𝑓(𝑥, 𝑦)
where 𝑓 = ∑!"#$ 𝑓!(𝑥, 𝑦) is the sum of functions 𝑓! where we assume that each 
of these functions are assigned to a node 𝑖

Numerical Results

Now, we state the assumptions on the objective function

Under these assumptions, we show convergence to a neighborhood around a 
first order stationary point. Under further assumptions (MVI), we show exact 
convergence

This assumption includes the class of convex-concave problems. It also includes 
some other classes of functions (operators) such as Pseudo Monotone operators 

• Saddle Point problems have applications in several Machine Learning and 
Robust control problems

• In this work we propose the first algorithm to solve the distributed version 
of the nonconvex-nonconcave minimax problem.

• General Problem is NP-Hard.
• We first show that our proposed algorithm converges to a neighborhood of 

the solution.
• Under the stronger MVI assumption, we show exact convergence to the 

solution
• Finally, we have numerical experiments to show the superior performance 

of our algorithm.

Motivation and Overview

We use SGD as baseline to validate the performance of the 
proposed DPPSP method. We show the performances of 
DPPSP with varying number of nodes and different graph 
connectivity on the MNIST dataset. Single-node DPPSP 
method outperforms SGD. The advantage of DPPSP is more 
significant when we have more processing nodes. Note that 
the number of samples used per iteration are identical for 
all the considered settings.

Images produced by these methods after 2340, 9360, and 
28080 iterations. We observe that after 9360 iterations, 
DPPSP-20 and DPPSP-30 already have generated reasonable 
images. Also, images of DPPSP-20 have better quality than 
the ones generated by DPPSP-10. Generators trained by SGD 
and DPPSP-1 output unsatisfactory samples even after 28080 
iterations. According to these results, increasing the number 
of processing units not only leads to a smaller loss for the 
generator but also produces images with higher quality.


