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Abstract

• Stochastic Gradient Descent (SGD) has been widely studied with classifica-
tion accuracy as a performance measure.

• These algorithms are not applicable when non-decomposable pairwise per-
formance measures are used, such as Area under the ROC curve (AUC).

• We propose a Variance Reduced Stochastic Proximal algorithm for AUC
Maximization (VRSPAM) which converges faster than existing methods.

Introduction

• Class imbalance poses a challenge in several domains for instance, medical
diagnosis of rare diseases. [1]

• AUC is commonly used to evaluate the performance of a binary classifier in
this setting. AUC measures the ability of a family of classifiers to correctly
rank an example from the positive class with respect to a randomly selected
example from the negative class.

• In the online setting, AUC metric does not decomposes over individual in-
stances, unlike classification accuracy.

• [2] reformulated the pairwise squared loss surrogate of AUC and gave an
algorithm with a convergence rate of O

(
log t
t

)
, under strong convexity.

• This rate is sub-optimal to the linear rate SGD achieves with classification
accuracy as a performance measure. The slow convergence is caused by
the high variance of the gradient in each iteration.

• We present VRSPAM which extends previous work [2, 4] for surrogate-AUC
maximization by using the Proximal SVRG [3] algorithm and achieves linear
convergence rate.

AUC Formulation

• AUC(w) = E[IwT (x−x′)≥0|y = 1, y′ = −1]

• We consider the below objectve function

min
w∈Rd

f (w) + Ω(w)

where f (w) = p(1 − p)E[(1 −wT (x − x′))2|y = 1, y′ = −1] and Ω a convex
regularizer (where p = Pr(y = +1))

• The above minimization problem can be reformulated such that stochastic
gradient descent can be performed to find the optimum value. Below is an
equivalent formulation from Theorem 1 in [2]-

min
w,a,b

max
ζ∈R

E[F (w, a, b, ζ ; z)] + Ω(w)

where the expectation is with respect to z = (x, y) and

F (w,a, b, ζ ; z) = (1− p)(wTx− a)2
I[y=1]

+ p(wTx− b)2
I[y=−1] + 2(1 + ζ)wTx(pI[y=−1] − (1− p)I[y=1])− p(1− p)ζ2

[2] shows that the optimal choices for a, b, ζ satisfy

a(w) = wT E[x|y = 1]

b(w) = wT E[x|y = −1]

ζ(w) = wT (E[x′|y′ = −1]− E[x|y = 1])

Algorithm

Let-

• G(w; z) = ∂wF (w, a(w), b(w), ζ(w); z)

• µ̃ = 1
n

∑n
i=1G(w̃, zi)

• vt = G(wt, zit−1
)−G(w̃, zit−1

) + µ̃

Algorithm 1 Proximal SVRG for AUC maximization
INPUT Constant step size η and update frequency m
INITIALIZE W̃0

for s = 1, 2, ... do
w̃ = w̃s−1

µ̃ = 1
n

∑n
i=1G(w̃, zi)

w0 = w̃
for t = 1, 2, ...,m do

Randomly pick it ∈ {1, .., n} and update weight
ŵt = wt−1 − η(G(wt−1, zit)−G(w̃, zit) + µ̃)
wt = proxηΩ(ŵt)

end for
w̃s = wm

end for

Bounded Variance

Lemma 1. Consider VRSPAM (Algorithm 1), then the variance of the vt is upper bounded
as:

E[‖vt−∂f (wt)]‖2]
)
≤ 4(8M2)2‖wt −w∗‖2 + 2(8M2)2‖w̃ −w∗‖2

• At the convergence, w̃ = w∗ and wt = w∗

• Variance of the updates are bounded and go to zero as the algorithm converges

• Variance of the gradient in SPAM [2] does not go to zero as it is a stochastic gradient
descent based algorithm

Convergence Analysis

Theorem 1. Consider VRSPAM (Algorithm 1) and let w∗ = arg minw f (w) + Ω(w); if η <
β

128M4, then there exists α < 1 and we have the geometric convergence in expectation:

E[‖ws −w∗‖2] ≤ αsE[‖w0 −w∗‖2]

• We get a geometric convergence rate of αs which is much stronger than the O(1
t)

convergence rate obtained in [2].

Complexity Analysis:

• For any 0 < θ < 1 and E = 1

(1+ θβ2

128M4)
, if we choose m ≈ 2 log θ

logE then α ≈ 2θE2

• Thus the time complexity of the algorithm is O(n + 2 log θ
logE)(log(1

ε)) when m = Θ( log θ
logE)

• As the order has inverse dependency on logE = log 128M4

128M4+θβ2, increase in M will
result in increase in number of iterations i.e. as the maximum norm of training samples
is increased, larger m is required to reach ε accuracy.

• SPAM algorithm takes O(t0Fε ) iterations to achieve ε accuracy. Thus, SPAM has lower
per iteration complexity but slower convergence rate as compared to VRSPAM. There-
fore, VRSPAM will take less time to get a good approximation of the solution.

Results

• German: n = 1000, p = 24; USPS: n = 9298, p = 256; a9a: n = 32, 561,
p = 123

Fig. 1: The top row shows that VRSPAM (SPAM-L2-SVRG) has lower variance than SPAM-L2
across different datasets. The bottom row shows VRSPAM (SPAM-L2-SVRG) converges faster

and performs better than existing algorithms on AUC maximization.

Conclusion

• Proposed variance reduced stochastic proximal algorithm for AUC maxi-
mization (VRSPAM).

• Obtained convergence rate of O(αt) where α < 1, improving upon state-of-
the-art methods [2] which have a convergence rate of O(1

t).

• Showed theoretically and empirically VRSPAM converges faster than exist-
ing methods for AUC maximization.
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