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Stochastic mirror descent 
for fast distributed optimization and 

federated learning 

In distributed optimization the 
objective function is given by,  

with                 a closed convex constraint set and      a convex 
function and N is the total number of nodes in the system. 
Each node i has access to its local objective function    . The 
communication structure is defined through the underlying 
communication graph G:=(V,E), where V and E are the vertices 
and edges, resp. The matrix A represents the communication 
graph and is assumed to be doubly stochastic. 

A standard interacting stochastic mirror descent (ISMD) 
algorithm for estimating the minimizer is,

where

Will this algorithm converge to consensus and 
optimality?

We propose an exact algorithm: 

and note that                                     which when 
discretized yields the update
So what is special here?
• This algorithm incorporates a form of history 

information. 
• Before, the algorithm would be unstable if 1 

and 2. was satisfied. Now it is stable. 

A. Variance reduction B.   Generalization
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Optimizing the objective amounts to finding 
a solution such that:

1. Consensus holds:

2. Optimality holds:

Can we find an algorithm such that both of 
these objectives are achieved?
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• We work in the mirror descent [6] setting with D the Bregman 
divergence. This setup can achieve faster convergence than 
projected gradient descent due to the ability to adapt to the 
geometry of the problem. 

• Noise is assumed to be additive Brownian and comes from a 
noisy gradient estimate or noisy communication. 

• Each node only has access to its local objective function     and 
communicates with the other nodes through matrix A.

Under the assumptions of smoothness and convexity of       it holds,

so that:
1. Imposing a small learning rate slows down convergence but 

allows to converge closer to the optimum if the noise is small 
or number of particles is big. 

2. Imposing a high interaction strength allows to converge closer 
to the optimum. 

Exact convergence is this not achieved due to:
• An additional term arising from the noise,
• An additional term arising from the gradients. This 

term can only be mitigated by imposing a small 
learning rate, but this slows down convergence!

How can we mitigate this?
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Example 1. A linear system
The exact algorithm converges a lot closer and faster to the 
optimum. Using a small learning rate or high interaction can 
help converge closer too. 

Example 1. A federated learning model.
Theoretically all should work in convex case. But what about 
the non-convex case where the model is a neural network? We 
see the exact algorithm performs good too.


