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In distributed optimization the N Optimizing the objective amounts to finding * We work in the mirror descent [6] setting with D the Bregman
objective function is given by, vy Z fi(z), a solution such that: divergence. This setup can achieve faster convergence than
. B | oy | | projected gradient descent due to the ability to adapt to the
. . _ ) S 4T
with .X C R a closed convex constraint se.t and fi a convex . Consensus holds: ' =z ecometry of the problem.
function and N is the total number of nodes in the system. 5 Ontimalitv holds N , Noise ; 410 be additive B , q ;
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Each node i has access to its local objective function fi . The P Y 2i=1 VIi(#) = 0. o1se 1s assumed to be additive brownian and comes from a
e : : , noisy gradient estimate or noisy communication.
communpat}on structure 1s defined through the underlying | Can we find an algorithm such that both of y&8 | y Hi |
communication graph G:=(V,E), where V and E are the vertices L , » Each node only has access to its local objective function fi and
ded Th A h .. these objectives are achieved? , , .
and edges, resp. 1he matrix A represents the communication communicates with the other nodes through matrix A.
graph and 1s assumed to be doubly stochastic.
A standard interacting stochastic mirror descent (ISMD) Under the assumptions of smoothness and convexity of fi it holds,  Exact convergence is this not achieved due to:
algorithm for estimating the minimizer s, i e An additional term arising from the noise,
2
1 Mg f(zb) — f(z*)] dt < 2 + C20 - Cs + %, e An additional term arising from the gradients. This
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term can only be mitigated by imposing a small
where so that: learning rate, but this slows down convergence!

VVi(2) == Vf; 0 VO*(z)) B (BYT, ..., (BN)T)T 1. Imposing a small learning rate slows down convergence but
i\%t) +— i O Zt) t «— " g seey ¢

(2) = (VW1 ()T (NYTYT allows to converge closer to the optimum if the noise 1s small How can we mitigate this?
VV(zi) = (VVi(z:)", ..., VN (2 |

or number of particles is big.
Will this algorithm converge to consensus and 2. Imposing a high interaction strength allows to converge closer
optimality? to the optimum.

We propose an exact algorithm:

Example 1. A linear system Example 1. A federated learning model.
dv, = —Lvydt + V2F(x;)dx; + odBy, Th§ exact algorlthm converges a lot closer. anc} faster .to the Theoretically all should work in convex case. But what about
; Py p optimum. Using a small learning rate or high interaction can the non-convex case where the model is a neural network? We
z; = —LzZiat — viadl -
t t et help converge closer too. see the exact algorithm performs good too.
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* This algorithm incorporates a form of history Lo N EISMD, =0, ISMD. =01 =1
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, , Figure 1: An unconstrained linear system. Comparison of ISMD for different learning rates (Ir) and  Figure . 2: A one-layer neural network with 30 hidden nodes. Comparison of stochastic ISMD for differ-
¢ BGfOI’C, the algorlthm would be unstable if 1 interactions strengths (eps) and EISMD. (L) train loss for ¢ = 0, (C) train loss for o = 0.1 :nt learning rates (Ir) and interactions strengths (eps) and EISMD, both with o = 0.01. (L) the
and (R) the consensus error for o = 0.1. average loss on a linear scale, (C) a logarithmic scale and (R) the consensus error.

and 2. was satisfied. Now 1t is stable.



