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Abstract
Training large language models (LLMs) for pretraining or adapting to new tasks and domains has
become increasingly critical as their applications expand. However, as model and data sizes grow,
the training process presents significant memory challenges, often requiring a prohibitive amount
of GPU memory that may not be readily available. Existing methods such as low-rank adaptation
(LoRA) add trainable low-rank matrix factorizations, altering the training dynamics and limiting
the model’s parameter search to a low-rank subspace. GaLore, a more recent method, employs Gra-
dient Low-Rank Projection to reduce the memory footprint, in the full parameter training setting.
However GaLore can only be applied to a subset of the LLM layers that satisfy the “reversibility”
property, thus limiting their applicability. In response to these challenges, we introduce Block-
LLM, an approach inspired by block coordinate descent. Our method carefully selects and updates
a very small subset of the trainable parameters without altering any part of its architecture and
training procedure. BlockLLM achieves state-of-the-art performance in both finetuning and pre-
training tasks, while reducing the memory footprint of the underlying optimization process. Our
experiments demonstrate that fine-tuning with less than 5% of the parameters, BlockLLM achieves
state-of-the-art perplexity scores on the GLUE benchmarks. On a Llama model pretrained on the
C4 dataset, BlockLLM is able to train with significantly less memory than the state-of-the-art, while
still maintaining competitive performance.

1. Introduction

Pretraining and finetuning LLMs are resource-intensive processes, requiring substantial memory
and computational power. For example, a 7B parameter Llama model requires approximately 14GB
of memory for storing the weights, with an additional 14GB for gradients during backpropagation
[27]. When using the Adam optimizer [9], which maintains first and second moment estimates,
the memory requirement doubles, totaling around 56GB of VRAM. As models grow larger, this
memory burden will continue to escalate, restricting large-scale LLM training to only researchers
and organizations with the most advanced GPUs such as A100s or higher. This is a significant
barrier to entry for researchers and practitioners who do not have access to such high-end hardware.

Existing strategies for memory-efficient training. To address these challenges, multiple strate-
gies are being explored to reduce the number of parameters, gradients, and the corresponding op-
timizer state size. One popular strategy is pruning, where a large set of parameters or even entire
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layers are removed from the model architecture [12, 22, 25]. However, pruning approaches often
require extensive retraining to recover lost accuracy [2]. Furthermore, identifying which parameters
are crucial before training is challenging [14, 20]. This challenge complicates implementation and
can lead to generalization issues, particularly on diverse or unseen data [12].

PEFT (Parameter-Efficient-Fine-Tuning) methods [6, 7, 10] achieve memory efficiency by in-
troducing low-rank matrices to the transformer architecture, significantly reducing the number of
trainable parameters needed during fine-tuning. Although integrating these low-rank matrices alle-
viates the extensive retraining demanded by pruning techniques, they can alter the training dynamics
and potentially lead to quality issues during the merging phase [5]. The low-rank assumption may
also constrain the model’s expressiveness, limiting its ability to fully capture complex patterns in the
data. Furthermore, the additional parameters introduced by PEFT methods can increase the model’s
parameter size, countering efforts to reduce overall model size.

A recent work, GaLore [27], which focuses on full parameter training, achieves memory effi-
ciency by performing low-rank factorization of the gradients in specific layers. However, GaLore
does not achieve high memory efficiency across all model types, as its gradient factorization method
can only be applied to layers that satisfy the reversibility property. This limitation restricts its appli-
cability and efficiency in models where not all layers exhibit this property.

Techniques such as gradient and activation checkpointing [1], quantization [4], and parameter
offloading [19] are also commonly used to achieve memory savings. However, these methods often
come with its own trade-offs. For instance, checkpointing [1] reduces memory usage but requires re-
computation, quantization lowers precision and can affect accuracy [4], and parameter offloading
increases data transfer latency [19]. While these methods have their own limitations, many of
these techniques are complementary to the approach presented in this work and provide additional
opportunities for memory reduction when used in combination.

Block coordinate descent (BCD). BCD is popular algorithm in the large-scale optimization liter-
ature. At any training iteration t, only a subset or block of parameters bt is updated, rather than the
entire parameter set W . The block bt can be chosen in several ways. In this work, we use greedy
BCD, where the block bt is selected greedily based on a function of the gradient. This selection
strategy has been theoretically demonstrated to yield superior performance compared to random
block selection [8, 15, 16, 18]. Building on these results, our approach leverages greedy block
selection to enhance parameter and memory efficiency in LLM training. Additionally, the conver-
gence of BCD has been theoretically proven on various problem architectures in the optimization
literature [16, 18, 26], further inspiring us to adapt it to large-scale LLM training.

While training with BCD, bt does not stay fixed across iterations. As a result, BCD does not
constrain model performance, which is often the case with low-rank approximation methods. More-
over, BCD doesn’t alter the model architecture in any way and preserves its structure throughout the
training process. By preserving the model’s architecture and reducing the active parameter set per
iteration, BCD aligns naturally with reduced parameter training regimes, forming the cornerstone
of our proposed BlockLLM framework.

Our Contributions. We propose a novel parameter and memory-efficient algorithm, BlockLLM
where we dynamically select and train a block of parameters. BlockLLM primarily achieves mem-
ory savings by storing optimizer states in the VRAM only for these selected parameters. We demon-
strate the superior performance of BlockLLM on finetuning and pretraining tasks. We also conduct
thorough ablations studies on several aspects of BlockLLM.
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2. BlockLLM methodology

In this section we introduce BlockLLM, a parameter and memory efficient training method designed
to reduce the number of trainable parameters in large language models (LLMs) without compro-
mising training performance. Akin to other parameter-efficient fine-tuning (PEFT) methods such as
LoRA [6] and ReLoRA [10], BlockLLM updates only k parameters at any iteration t. Here k ≪ z
where z is the total number of parameters. However, the main difference is that BlockLLM opti-
mizes parameter selection by focusing on the most impactful parameters at different stages of the
training process. The overall algorithm of BlockLLM is provided in Algorithm 1 in the Appendix.

Parameter Selection Criteria. In the context of LLMs, at iteration t the update to the parameter
is the processed gradient G̃t, calculated using an optimizer such as Adam [9]. Specifically, for any

layer l of the model, the update is given by G̃l
t = M l

t/
√
V l
t + ϵ, where all the operations are applied

element-wise. Here, M l
t = β1M

l
t−1 + (1− β1)G

l
t and V l

t = β2V
l
t−1 + (1− β2)G

l
t
2
. Here, β1 and

β2 are hyperparameters of the optimizer. Gl
t ∈ Rp×q is the gradient at layer l. Mt and Vt denote the

bias-corrected first moment estimate and bias-corrected second moment estimate respectively.
BlockLLM achieves memory savings by storing these optimizer states Mt and Vt only for the

currently selected layers, rather than for all parameters in the model. When the set of selected layers
changes, the optimizer is reinitialized with these new layers. This means it no longer maintains the
optimizer states for the previously selected layers, similar to methods such as ReLoRA [10]. As an
alternative, we also tried to offload Mt and Vt of the selected parameters to CPU and re-load them
as needed. But that did not improve the model performance. Thus we decided to adopt the former
strategy to avoid the offloading operation in the interest of faster training.

Now, the parameter selection in BlockLLM relies on ∥G̃l∥ for each layer l ∈ L, which requires
computing G̃l for all layers. This operation consumes significant memory required to store all the
gradients. To reduce this, we sample a small number of p additional layers per iteration besides
the current block. |G̃l|/fl is computed for these p layers and their norms stored in a dictionary H ,
which is then used for efficient parameter selection.

During the backward pass, BlockLLM selects the layers with large values in H and updates
only those layers. These selected layers are denoted as the set S. Note that by selecting full layers,
we may not achieve the desired sparsity level s. Therefore, for each selected layer we construct a
binary mask to retain only the top k parameters by gradient magnitude:

mask[i, j] =

{
1 if |G̃l

t[i, j]| ≥ τ

0 otherwise,

where τ is an estimated threshold, computed by looking at the gradient values of each layer. Specif-
ically, τ is obtained computing the (1 − ζ)th percentile in G̃l

t. The value of ζ is defined as
ζ = (Σp − ns)/ns (refer to Algorithm 2 for definitions of Σp and ns). Then, in every iteration
t, the selected parameters in layers l ∈ S are updated using the computed masks. The update rule
is given by W l

t+1 = W l
t − η

(
mask⊙ G̃l

t

)
, where η is the learning rate. An illustration of the

proposed parameter selection procedure is given in Figure 1.
However, there is one caveat with this approach. In the initial training iterations, the gradient

estimates are known to be noisy. Additionally, in cases such as pretraining and finetuning with
significant domain shifts, there is often very little useful inductive bias. Therefore, using gradients
to select important parameters may prove to be detrimental to our cause in the initial few iterations.

3



BLOCKLLM: MEMORY-EFFICIENT ADAPTATION OF LLMS

Layer 1

Layer 1

Adam

0

0

Layer 1

Layer 1

Adam + BlockLLM

0

0

Figure 1: Given a large language model consisting of many layers, BlockLLM first finds the layers
with the largest gradient ||G̃l|| (highlighted in orange) and selects a subset of the parameters. During
optimization, only the selected layers will be updated (θ) and the Adam optimizer will only keep
track of the bias corrected moments (Ml) and (Vl) for those selected parameters (shown in orange).

To address this challenge, our experiments incorporate layer visit frequency f into the selection
criteria. Specifically, for any layer l ∈ L = {1, 2, . . . , n}, then fl represents the sum normalized
number of times the layer has been selected. That is,

Sl
t =

{
1 if layer l is selected at time t

0 otherwise.

The layer visit frequency fl for layer l after T time steps is given by fl =
1
T

∑T
t=1 S

l
t. Consequently,

the layer selection criterion is modified to |G̃l|/fl. This modification favors layers with high gra-
dient norms while also giving priority to layers that have been selected less frequently in previous
iterations. Our experiments show that this refined selection criterion enhances performance.

Parameter Selection Frequency. The natural next question is how many iterations to perform
the update (1) with the same set S. BlockLLM addresses this by using the loss ϕ as a critical
signal for determining when to change the parameter selection. Specifically, BlockLLM introduces
a hyperparameter, patience m. At any iteration t, if ϕt equals to or exceeds the moving average of
losses over the last m iterations, the set S is revised. The detailed parameter selection frequency
algorithm is provided in Algorithm 2 and the ablation for the hyperparameter m is provided in the
section E.4 in the Appendix.

3. Experiments

We evaluated BlockLLM on both finetuning tasks and pretraining tasks.1 The finetuning experi-
ments were conducted in Tesla V100 gpu (32 GB) and the pretraining tasks were conducted on
NVIDIA A40 (48 GB) and A100 GPUs (80 GB) (one GPU per experiment).

1. All our experiments were based on the code released by [27]. We thank the authors for releasing their code and
clearly documenting their experiment setup in the paper.
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3.1. Finetuning on GLUE

We benchmarked the performance of BlockLLM against GaLore [27] and full finetuning (FFT)
using the pretrained RoBERTa model [11] on GLUE tasks [24]. For BlockLLM, we conducted
hyperparameter tuning for the learning rate, and our experimental setup is detailed in E.2. For
GaLore, we used the learning rate specified in their original work [27]. In our experiments, we used
s = 0.95. We evaluated both performance and memory consumption during the training process for
all methods. The results, presented in Tables 1 and 2, indicate that BlockLLM outperforms the other
models in all tasks while achieving approximately a 13.5% reduction in memory usage on average.

MRPC COLA STS-B RTE SST2 MNLI QNLI QQP
Block-LLM 3.97 2.8 3.48 9.1 3.6 13.7 12.8 8.36

GaLore (rank=8) 4.52 4.2 4.8 9.7 3.87 15.1 14.8 8.43
GaLore (rank=4) 4.52 4.2 4.8 9.7 3.86 15.2 14.8 8.03

FFT 4.24 3.67 4.4 10.28 3.82 15.53 15.02 9.22

Table 1: VRAM Memory Comparison Across Different Tasks (measured in GB). VRAM memory
usage was monitored as described in Section E.1.

MRPC COLA STS-B RTE SST2 MNLI QNLI QQP
Block-LLM 91.8 63.8 90.02 80.14 94.95 87.75 92.95 91.36
GaLore (rank=8) 89.96 62.5 91.1 79.78 94.38 87.17 92.97 91.11
GaLore (rank=4) 91.7 61.67 91.09 79.78 94.04 87 92.65 91.06
FFT 92.36 62.84 91.1 80.5 94.57 87.18 92.33 92.28

Table 2: Score Comparison Across Different GLUE Tasks

3.2. Pre-training on Llama model

We also compared BlockLLM with GaLore [27] in pretraining LLaMA-based large language mod-
els [23] on the C4 (Colossal Clean Crawled Corpus) dataset [17]. Our experiment setup is similar
to GaLore [27], following the setup from ReLoRA[10]. We ran BlockLLM with the experimental
setup described in E.3 and computed the perplexity scores from final evaluation loss and maximum
memory usage in GB(Gigabytes). The perplexity and memory are shown in Figure 4 and Table 3.

60M 130M 350M
Perplexity Memory Perplexity Memory Perplexity Memory

BlockLLM 34.31 28.27 25.36 40.68 19.02 42.6

GaLore 34.88 32.26 25.36 46.69 18.95 49.06

Table 3: Comparison of Accuracy and VRAM Memory (GB) of LLama Models with GaLore. Note
that for GaLore, we used AdamW as the underlying optimizer.

We note here that BlockLLM takes a little bit longer to converge for some experiments (130m
and 350m models) compared to full parameter learning methods such as GaLore in the pretraining
experiment. We suspect this is due to the fact that we are dealing with noisy gradients in the earlier
iterations of training. However, BlockLLM converges to the state-of-the-art perplexity score in a
few more iterations compared to GaLore. This is issue is not present in the finetuning experiments.
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Figure 3: Memory usage

Figure 4: Comparison of perplexity (left) and memory usage (right) of Llama 60M. Here s denotes
the specified model sparsity. As it can be seen, BlockLLM performs competitively with GaLore,
but at a much lower memory footprint.

Effect of sparsity s. Here, we compare BlockLLM with sparsity values s = {0.5, 0.7, 0.9} against
full parameter training (s = 0) and GaLore [27]. The results are in Figure 4. We observe that
with s = 0.5, BlockLLM consumes about 1.5 GB less memory than Galore and higher sparsity
values further reduce memory usage though this comes with the trade-off of requiring more training
iterations for similar performance. This means that in a memory-constrained training setup, Block-
LLM can be used with higher sparsity without compromising model performance. The trade-off is
longer training, but this flexibility can be a game-changer for optimizing resource usage. In order
to achieve speeds comparable or better than the baselines, we found that a sparsity value of 0.75 or
higher was better for finetuning and sparsity of 0.5− 0.7 was optimal for pre-training experiments.

4. Conclusion & Future work

In this paper we introduced BlockLLM, a novel method for efficiently training large language mod-
els. By dynamically estimating and updating the importance of parameters during training, Block-
LLM effectively achieves state-of-the-art performance while significantly reducing the memory
footprint. Our method achieves the highest validation accuracy on GLUE finetuning tasks, some-
times even surpassing full finetuning. One key aspect of BlockLLM is that it does not presuppose
the importance of layers but continuously evaluates and updates parameter importance through-
out training. This adaptive approach allows for more flexible and efficient optimization compared
to methods that assume certain parameters are critical from the outset. Additionally, BlockLLM
preserves the original architecture without altering the model structure or restricting the parameter
search space, making it suitable for various LLMs and tasks.
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APPENDIX

Appendix A. Analysis of parameter importance

The criteria for selecting the “right” subset of parameters during the training is not immediately
clear. In the section A, we look at magnitude pruning as a tool to identify parameter importance,
in the finetuning setting. Magnitude pruning is a widely recognized technique for reducing the
parameter count in neural network models [3]. In this analysis, we use parameter magnitude as
a measure of parameter importance and study the impact of training on the selected parameters.
First, we trained DistilBERT [21] on the IMDb dataset [13] for sequence classification, achieving
an accuracy of 92.02%. We then conducted inference on the GLUE-CoLA dataset [24] without fine-
tuning, resulting in a significant drop in accuracy to 47.74%. This drop in performance, possibly
due to domain shift, encouraged us to use this setup for our analysis.

Next, we performed magnitude pruning on the IMDb pre-trained model at various sparsity levels
and fine-tuned these pruned models on the GLUE-CoLA dataset. Let s denote the sparsity level,
W t represent the model parameters at iteration t, and n be the total number of parameters. For
each parameter wi where i = 1, . . . , n, we compute |wi|. During training, we update only S =
Topk|W 0|, where k = n × (1 − s). The results of these experiments, detailing the relationship
between sparsity and accuracy, are summarized in Table 4.

A.1. Sparsity Accuracy Trade-off

We performed magnitude pruning on the IMDb pre-trained model [13] weights at various sparsity
levels and fine-tuned these pruned models on the GLUE-CoLA dataset [24]. The results of these
experiments, detailing the relationship between sparsity and accuracy, are summarized in Table 4.

Sparsity Accuracy

0.0 79.57

0.5 78.52

0.6 74.2

0.7 67.68

0.8 69.12

0.9 69.12

Table 4: Performance of pruned models at various sparsity levels on GLUE-CoLA dataset.

The accuracy generally declines with increasing sparsity. At 0.5 sparsity, the performance re-
mains relatively high at 78.52%, close to the non-pruned model’s 79.57%. However, accuracy drops
more significantly to 67.68% at 0.7 sparsity. Interestingly, at sparsity levels of 0.8 and 0.9, accuracy
stabilizes around 69.12%.

Interesting results emerged from this analysis: at 0.5 sparsity, the model retains a high accuracy
of 78.52%, suggesting that up to 50% of parameters can be pruned with minimal performance loss.
However, accuracy drops significantly at 0.7 sparsity to 67.68%. This suggests that there is some
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Figure 7: Analysis of weight magnitudes of DistilBERT model pretrained on IMDb dataset and
finetuned on CoLA dataset.

inductive bias that the model can leverage when finetuning on a dataset with significant domain
shift, under a reduced parameter setting. However, estimating the sparsity s apriori is hard, and its
not clear what factors influence this.

Analysis of Weight Magnitudes. To further understand the effects of this parameter selection
strategy, we analyzed |W |, before and after training to understand which weights are updated more
frequently and their impact on model performance. Specifically, we compared the initial weights
|W 0| and final weights |W t| of the model after fine-tuning on the CoLA dataset [24]. Our findings
are presented in Figure 7. The histogram on the left of Figure 7 shows |wt

i | for all i where δi > η.
Here, δi = |w0

i − wt
i | and η is the threshold. The histogram on the right of Figure 7 plots the

frequency of δ in the updates, revealing that a large percentage of the updates were minor.
Several additional insights and questions emerge from these observations. The histogram of δ

indicates that most weight changes are minor, suggesting that significant updates are concentrated
in a small portion of the weights. These experiments raise some pertinent questions:

1. Is it reasonable to judge the impact of a parameter during training based on its initial weight
magnitude?

2. How should the appropriate sparsity level s be determined before commencing training?

3. Although we observed that only a few parameters undergo significant changes during training,
which specific parameters are updated during various phases of the training process?

A.2. Analysis of Reduced Parameter Training

To address the above questions, we further investigated the pruning process. First, we updated
the chosen parameter set S every m iterations, based on the weight magnitudes |W t|, at current
iteration t. This means that after every m, the parameter seletion criteria is revisited to obtain a
new set of parameters to update. The objective is to understand if S changes significantly over time
and if adaptively selecting S enhances the training performance. In this framework, we continue
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to update only the top k = n × (1 − s) parameters in each iteration. However, the percentage of
unique parameters q, updated throughout the entire training process can be greater than (1 − s) of
% parameters updated. (i.e q ≥ 1 − s). Analysing q can reveal how much parameters are truly
impactful for training, thereby addressing our second question.

We conducted this experiment using the same setup: fine-tuning the DistilBERT model on the
GLUE-CoLA dataset after pre-training on the IMDb dataset. The results of this experiment are
summarized in the Table 5. Additionally, we performed similar experiments on other GLUE [24]
datasets, with the results presented in Section B.2

1− s q m Accuracy Matthews Correlation

0.1 0.58 1000 82.55 0.5882

0.02 0.36 1000 82.45 0.5711

0.02 0.14 4000 82.45 0.5794

0.02 0.10 6000 82.07 0.5679

Table 5: Impact of Update Frequency and Sparsity on CoLA Dataset

Our observations indicate that s decreases, meaning more parameters are updated per iteration,
the number of unique parameters q also increases, which results in better model performance. The
increasing number of unique updates indicates that different parameters may become important at
different stages of training, necessitating a more dynamic approach to parameter updates.

We also evaluated the model with varying update frequencies m. Naturally, as m increases,
the model has fewer opportunities to update a larger number of parameters, leading to a decrease
in q. Interestingly, there is an optimal point up to which performance either improves or remains
stable, beyond which it begins to decline. This suggests that updating too many parameters or too
few parameters can be detrimental to the training process. These findings highlight the need for
adaptive methods to determine the choice of parameters and the update frequency.

The findings from the above analysis suggest that a parameter-efficient training method that
updates a small set of parameters each iteration is feasible. However, some key aspects require
clarification:

• Parameter Selection Criteria: Our analysis in Figure 7 indicates that the model frequently
updates parameters with lower weight magnitudes. This contradicts the very premise of mag-
nitude pruning. Therefore its not clear if adopting magnitude as a parameter importance
criteria will help, in general. In our work, we bank on evidence from prior work on greedy
parameter selection strategy [16, 18] and use gradient as the parameter importance criteria.

• Parameter Selection Frequency: As discussed earlier, determining when to change the set
of parameters to update for a given training phase is crucial. In BlockLLM, we developed
a strategy that uses the current loss objective value as a signal to decide if the parameter
selection needs to be updated.

12
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Appendix B. More analysis

B.1. Analysis of weight magnitudes

In this experiment, we pretrain DistilBERT on the IMDB dataset [13] and then finetune it on GLUE-
CoLA [24] with sparsity s = 0.7. We then plot the histogram of the weight magnitudes W t where
δ = |w0

i − wt
i | > η, with η as the threshold. We set η = 0.001 in this case.

Figure 8: Histogram of changed parameters for s = 0.7

B.2. Analysis of reduced parameter training

Here, we fine-tuned the GLUE datasets [24] on the DistilBERT model [21] pretrained on the IMDb
dataset [13]. We varied the sparsity s and update frequency m while monitoring the number of
unique parameters updated q. We ran the GLUE-SST2 experiments for 8400 iterations and GLUE-
STSB for 20000 iterations. Additionally, we tracked the VRAM usage for the GLUE-SST2 dataset
to compare it with the memory consumption of full-parameter fine-tuning, which is 7.9 GB. This
comparison aims to determine if reduced parameter training effectively decreases memory usage.

1− s q m Spearman Correlation

0.01 0.05 5000 88.82

0.01 0.037 10000 88.77

Table 6: Impact of Update Frequency and Sparsity on STSB Dataset

Table 6 shows the impact of update frequency m and sparsity s on the STSB dataset, where
the correlation remains stable despite changes in update frequency. As m increased too high, the
performance declined.
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1− s q m Accuracy VRAM

0.008 0.04 2400 91.97 4.4

0.01 0.11 3000 90.94 5.5

0.02 0.13 1000 90.59 5.5

0.02 0.16 2000 92.2 5.5

Table 7: VRAM Usage with Different Update Frequencies on SST2 Dataset

Appendix C. Algorithm

Algorithm 1 BlockLLM Training Algorithm
Input: Data X , initial model parameters W0,
sparsity s, set of layers L, learning rate η, patience
parameter m, β1, β2, ϵ.
Initialize: M0 = 0, V0 = 0, H = []
while each iteration t do

// Forward and backward pass
Loss ϕt, Gt = COMPUTE GRADIENT(Wt)
if length(H) ≥ m and
ϕt ≥ 1

m

∑t
i=t−m+1H[i] or (t = 0) then

mask, S = SELECTPARAM(Gt, s, L)
H = [] ; // Reset loss history

end
// Update selected parameters
foreach l ∈ S do

Gl
t = COMPUTE GRADIENT(W l

t )
M l

t , V
l
t , G̃

l
t = ADAM(M l

t−1, V
l
t−1, G

l
t)

G̃l
t = mask⊙ G̃l

t

W l
t+1 = W l

t − ηG̃l
t

end
end

Algorithm 2 Select Parameters Function
Function SelectParam(Gt, s, L):

Compute ∥G̃l
t∥ for each layer l ∈ L

n =
∑

l∈L count(l), ns = (1 − s) × n

D ← sort(L, desc, ∥G̃l
t∥/fl)

Initialize S = [], Σp = 0
foreach l ∈ D do

Σp += count(l), S ← S ∪ {l}
if Σp ≥ ns then

break
end

end
foreach l ∈ S do

Let maskl = 0|Gl
t|

foreach i, j in mask do
if ∥G̃l

t[i, j]∥ ≥ τ then
maskl[i, j] = 1

end
end

end
return mask, S

Figure 9: (Left) The main BlockLLM algorithm, (right) SELECTPARAM function that performs
parameter selection at iteration t.

Appendix D. Approximate BlockLLM

In the current implementation of BlockLLM, masks are binary matrices matching the dimensions of
the gradients in their respective layers. Consequently, the memory footprint scales with the number
of selected layers, as each layer requires a new mask. Therefore, for our experiments, we consider
an approximation where we skip the mask computation step and update all parameters in S. The
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update step is as follows:

Wt+1 =

{
W l

t − ηG̃l
t if l ∈ S,

Freeze W l otherwise.
(1)

Our experimental results demonstrate that this approximate block selection strategy is effective in
practice. Nonetheless, we believe that a more refined implementation, capable of achieving a more
granular parameter selection, is feasible. We reserve this as a potential area for future exploration.

Appendix E. Experiment details

E.1. VRAM memory

All memory values presented in our tables represent actual observed memory usage in gigabytes
(GB) rather than estimates. Memory consumption was monitored using the ”nvidia-smi” command,
and the maximum memory usage recorded during the training process was noted.

E.2. Finetuning on GLUE

The General Language Understanding Evaluation (GLUE) benchmark [24] is widely used to evalu-
ate the performance of NLP models across a range of tasks, including sentiment analysis, question
answering, and textual entailment. We fine-tuned the pre-trained RoBERTa model [11] , available
in the HuggingFace library, on the GLUE benchmark tasks [24]. The batch size was set to 32 for
the CoLA dataset, and 16 for all other datasets. For all tasks, we used s = 0.95 and m = 1

4× total
number of iterations. VRAM memory usage was monitored and recorded as described in Section
E.1. The learning rates for the different tasks are as follows.

Table 8: Hyperparameter details for the GLUE experiments

MRPC COLA STS-B RTE SST2 MNLI QNLI QQP

Learning rate 3E-05 5E-05 3E-05 3E-05 3E-05 3E-05 1E-05 3E-05

E.3. Pre-training on Llama

We present the hyperparameters utilized for training the LLama models with sizes 60M, 130M and
350M in 9. We fine-tuned the learning rate for BlockLLM while keeping all other hyperparameters
fixed across experiments. We ran GaLore for 10% of total iterations to observe memory consump-
tion, and used the results from [27] for comparison. For 60M and 130M experiments, the maximum
sequence length was set to 256 with a gradient accumulation of 2,and for 350M with a batch size of
128 with a gradient accumulation of 4. A cosine annealing schedule was employed for learning rate
adjustment, decaying to 10% of the initial learning rate. For BlockLLM, no learning rate warm-up
was applied. However, for GaLore, the learning rate was warmed up for the first 10% of training,
following the approach outlined in [27]. The parameter m was set to 50 for all the experiments.

E.4. Ablation on the hyperparameter m

We investigated the sensitivity of the model to the patience parameter m in both fine-tuning and pre-
training setups. These experiments were conducted using the GLUE benchmark and the LLaMA
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60M 130M 350M

Learning rate 1E-03 1E-03 1E-03

Total training steps 10K 20K 60K

s 0.5 0.5 0.5

Table 9: Hyperparameter Details for Pre-training LLaMA Models with BlockLLM on the C4
Dataset
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Figure 10: Ablation on the patience parameter m. We see that m affects the algorithm and model
performance significantly in our pre-training experiments.

2 model on the C4 dataset. Throughout the experiments, we fixed all parameters of the Adam op-
timizer and maintained a sparsity level of s = 0.5 while varying m. The results are presented in
Figure 10. Our observations indicate that in the fine-tuning setting, the model is relatively insen-
sitive to variations in m. Specifically, setting m = 50 or m = 1000 did not result in significant
performance differences. This finding aligns with the observations reported in [27], which suggest
that gradients change more slowly. The gradual nature of gradient changes implies a correspond-
ingly gradual variation in the optimal parameter set, thereby reducing sensitivity to changes in m.
In contrast, in the pretraining setting, smaller values of m lead to faster convergence. This behavior
can be attributed to the presence of noisy gradients in the earlier iterations of pretraining. Conse-
quently, a smaller m helps maintain impactful parameter selection particularly in the initial phase
of training, thereby facilitating faster convergence.

E.5. Ablation on Parameter Selection Strategy

We investigate whether selecting parameters with higher gradient norms, which are less frequently
chosen, benefits training. We observed the training performance of the LLaMA 60M model on
the C4 dataset while employing the strategy of randomly selecting block parameters for updates.
Specifically, let L = [l1, l2, . . . , ln] represent the list of all layers. At iteration t, we randomly select
k layers from L with equal probability until the required number of parameters is met according to
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the sparsity s. Let D ⊆ Lshuffled be the subset of selected layers, defined as

D = {li ∈ Lshuffled :
∑
li∈D

param count(li) ≤ s×
∑
li∈L

param count(li)},

1 3 6 9 12 15 18 21
Step (in thousands)

100

200

300

Pe
rp

le
xi

ty

BlockLLM
Gradient norm only
Random

Figure 11: Comparison of random vs greedy BlockLLM on Llama 60m model with 50% parameters
chosen.

where param count(li) denotes the number of parameters in layer li. In each iteration t, we
employ the Adam optimizer to update only the parameters in the layers belonging to the set D. We
conducted hyper parameter tuning for the patience parameter m, which controls the frequency of
updates. For a sparsity level of s = 0.5, we determined the optimal value of m = 75. To evaluate
the effectiveness of the random parameter selection method, we compared evaluation loss with that
of BlockLLM. Given that both methods involve updating a similar number of parameters, we expect
their memory usage to be comparable. The comparative results are presented in Figure 10.

Our observations indicate that BlockLLM converges faster than the random parameter selection
method. Intuitively, this suggests that parameters with higher gradient norms may facilitate more
rapid learning. One possible explanation is that parameters with higher gradient norms contribute
to larger updates, thereby playing a more significant role in the training process during each iter-
ation. Consequently, these parameters might accelerate the model’s convergence by making more
substantial contributions to the optimization trajectory.

Effect of Layer Visit Frequency f . To assess this, we conducted an experiment where parameters
were selected based solely on their gradient norms. Specifically, for each layer l ∈ L, we computed
the processed gradients G̃l. We then sorted the layers in descending order based on the their pro-
cessed gradient norms, ||G̃l||. From this ordered list, we selected the top k layers that satisfied the
sparsity requirement s. The results of this experiment are presented in Figure 10. We observed
that when parameters were selected solely based on ||G̃||, without considering the parameter visit
frequency fl for any layer l ∈ L, the loss converged more slowly and to a higher value compared to
BlockLLM.

Broader Impacts Our work aims to reduce the memory and computational requirements of train-
ing LLMs. First, our technology democratizes access to LLM training, making it more feasible for
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student researchers and institutions with limited computational resources to participate in cutting-
edge AI research. Furthermore, the low-memory requirements of our method means that one can
train with larger batch sizes and achieve faster convergence. This has a direct effect on the environ-
ment.

Future works. Future work on BlockLLM could explore several promising avenues. Currently,
our research has focused on parameter selection based on gradient norms, but BlockLLM can be
seen as a framework for parameter-efficient training rather than a single algorithm. This opens the
door to investigating alternative criteria for parameter selection, potentially tailored to specific prob-
lems or tasks. Moreover, while our ablation studies on BlockLLM’s hyperparameters have provided
insights into their impact on training, further research is needed to understand how different layers
might be affected by greedy parameter selection strategies. BlockLLM also complements exist-
ing memory-optimized training techniques, including those discussed in this paper. Exploring the
integration of BlockLLM with methods like quantization or GaLore could further reduce memory
consumption.
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