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Abstract
To date, the multi-objective optimization literature has mainly focused on conflicting objectives,
studying the Pareto front or requiring users to balance tradeoffs. Yet, in machine learning practice,
there are many scenarios where such conflict does not take place. Recent findings from multi-task
learning, reinforcement learning, and LLMs show that diverse related tasks can enhance perfor-
mance across objectives simultaneously. Despitechcuh this evidence, such phenomenon has not
been examined from an optimization perspective. This leads to a lack of generic gradient-based
methods that can scale to scenarios with a large number of related objectives. To address this gap,
we introduce the Aligned Multi-Objective Optimization framework, propose the AMOOO algorithm,
and provide theoretical guarantees of its superior performance compared to naive approaches.

1. Introduction

In many real-world optimization problems, we have access to multi-dimensional feedback rather
than a single scalar objective. The multi-objective optimization (MOO) literature has largely fo-
cused on the setting where these objectives conflict with each other, which necessitates the Pareto
dominance notion of optimality. A closely related area of study is multi-task learning [31], where
multiple tasks are learned jointly, typically with both shared and task-specific parameters. The hope
is that the model can perform better on individual task by sharing common information across tasks.
Indeed, the phenomenon of improved performance across all tasks has been observed in several set-
tings [17, 20], suggesting that perhaps there may not be significant trade-offs between objectives.

In this paper, we explicitly consider a setting where objectives are aligned, i.e., objectives that
share a common solution. For example, in reinforcement learning, practitioners can sometimes
speed up learning by exploit several alternative reward specifications that all lead to the same opti-
mal policy [8]. In statistics and machine learning, labeled data is sometimes sparse, leading practi-
tioners to rely on closely-related proxy tasks to improve prediction accuracy [2].

To our knowledge, there is no work that studies this setting from a purely optimization perspec-
tive. We ask the question: how can an optimization algorithm benefit from multi-objective feedback
when the objectives are aligned? We introduce the aligned multi-objective optimization (AMOO)
framework to study this question. Subsequently, we design a new algorithm with provable guaran-
tees for the AMOO setting and show empirical evidence of improved convergence properties.
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2. Aligned Multi Objective Optimization

Consider an unconstrained multi-objective optimization where F : Rn → Rm is a vector val-
ued function, F (x) = (f1(x), f2(x), . . . , fm(x)) , and all functions {fi}i∈[m] are convex where
[m] := {1, . . . ,m}. Without additional assumptions the components of F (x) cannot be minimized
simultaneously. To define a meaningful approach to optimize F (x) one can study the Pareto front,
or to properly define how to trade-off the objectives. We denote by ∆m the m-dimensional simplex,
and by ∆m,α := {w ∈ Rm : w ∈ ∆m, ∀i ∈ [m] wi ≥ α}. In the AMOO setting we make the
assumption the functions are aligned in a specific sense: we assume that the functions {fi}i∈[m]

share an optimal solution. Namely, there exists a point x∗ that minimizes all functions in F (·)
simultaneously,

x∗ ∈ arg min
x∈Rn

fi(x) ∀i ∈ [m]. (1)

With this additional assumption one may hope to get quantitative benefits from the multi objective
feedback. How can Gradient Descent (GD) be improved when the functions are aligned?

A common algorithmic approach in the multi-objective setting is using a weight vector w ∈ Rm

that maps the vector F (x) into a single objective fw(x) := wTF (x), amenable to GD optimiza-
tion [22, 25, 31, 37]. Existing algorithms suggest alternatives for choosing w. We follow this
paradigm and design an algorithm that chooses the weights adaptively for the AMOO setting.

Towards developing intuition for our algorithmic approach we consider few examples of the
AMOO setting. These showcase the need to choose weights in an adaptive way to the problem.

The Specification Example. Consider the case F (x) = (f1(x), f2(x)), x ∈ R2 where

f1(x) = (1−∆)x21 +∆x22, and f2(x) = ∆x21 + (1−∆)x22,

for some small ∆ ∈ [0, 0.5]. It is clear that F (x) can be simultaneously minimized in x⋆ = (0, 0),
hence, this is an AMOO setting. This example, as we demonstrate, illustrates an instance in which
each individual function does not specify the solution well, but with proper weighting the optimal
solution is well specified.

First, observe both f1 and f2 are ∆-strongly convex and O(1)-smooth functions. Hence, GD
with properly tuned learning rate, applied to either f1 or f2 will converge with linear rate of Ω(∆).
It is simple to observe this rate can be dramatically improved by proper weighting of the functions.
Indeed, let fwU be a function with equal weighting of both f1 and f2, namely, choosing wU =
(0.5, 0.5), we get fwU (x) = 0.5x21 + 0.5x22 which is Ω(1)-strongly convex and O(1)-Lipchitz
smooth. Hence, GD applied to fwU converges with linear rate of Ω(1)—much faster than O(∆)
when ∆ is taken to be arbitrarily small.

The Selection Example. Consider the case F (x) = (f1(x), . . . , fm(x)), x ∈ Rm, where

∀i ∈ [m− 1] : fi(x) = (1−∆)x21 +∆

d∑
j=2

xj , and fm(x) =

d∑
j=1

x2j ,

and ∆ ∈ [0, 0.5]. The common minimizer of all functions is x⋆ = 0 ∈ Rd, and, hence, the
objectives are aligned. Unlike the specification example, in the selection example, there is a single
objective function among the m objectives we should select to improve the convergence rate of GD.
Further, in the selection example, choosing the uniform weight degrades the convergence rate.
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Indeed, setting the weight vector to be uniform wU = (1/m, . . . , 1/m) ∈ Rm leads to the
function fwU (x) = (2 −∆)/m · x21 +

∑d
j=2(∆ + 1)/m · x2j , which is O(1/m)-strongly convex.

Hence, GD applied to fwU converges in a linear rate of O(1/m). On the other hand, GD applied to
fm converges with linear rate of Ω(1). Namely, setting the weight vector to be (0, . . . , 0, 1) ∈ Rm

improves upon taking the average when the number of objectives is large.

Algorithm 1: AMOOO-GD
while t = 1, 2, . . . do

wt ← AMOOO ({fi(xt)}mi=1)
gt ← ∇fwt(xt)
xt+1 = xt − ηtgt

end

Algorithm 2: AMOOO
inputs: {fi(xt)}mi=1

initialize: wmin = µ⋆/ (8mβ)
Get Hessian matrices {∇2fi(xt)}mi=1

wt ∈ argmaxw∈∆m,wmin
λmin

(∑
iwi∇2fi(xt)

)
Return wt

3. Optimal Adaptive Strong Convexity & The AMOOO Algorithm

The aforementioned instances highlighted that in the AMOO setting the weights should be chosen in
an adaptive way to the problem instance, and, specifically, based on the curvature. We formalize this
intuition and design the AMOO-Optimizer (AMOOO). Towards developing it, we define the optimal
adaptive strong convexity parameter, µ⋆. Later we show that when the weighted loss is determined
by AMOOO GD converges in a rate that depends on µ⋆.

We start by defining the optimal adaptive strong convexity over the class of weights:

Definition 1 (Optimal Adaptive Strong Convexity µ⋆) The optimal adaptive strong convexity pa-
rameter, µ⋆ ∈ R+, is the largest value such that ∀x ∈ X exists a weight vector w ∈ ∆m such that

λmin

(
m∑
i=1

wi∇2fi(x)

)
≥ µ⋆. (2)

For each x ∈ X , there may be a different weight vector in class w⋆(x) ∈ ∆m that solves
w⋆(x) ∈ argmaxλmin

(
∇2fw(x)

)
and maximizes the curvature. The optimal adaptive strong

convexity parameter µ⋆ is the largest lower bound on this quantity on the entire space X . The
specification and selection examples (Section 2) demonstrate µ⋆ can be much larger than both the
strong convexity parameter of the average function or of each individual function; for both µ⋆ =
O(1) whereas the alternatives may have arbitrarily small strongly convex parameter value.

Definition 1 not only quantifies an optimal notion of curvature, but also directly results with the
AMOOO algorithm. AMOOO sets the weights according to equation 2, namely, at the kth iteration, it
finds the weight for which fw(xk) has the largest local curvature. Then, a gradient step is applied
in the direction of ∇fwk

(xk) (see Algorithm 1). Indeed, AMOOO seems as a natural candidate
for AMOO. One may additionally hope that standard GD analysis techniques for strongly-convex
and smooth functions can be applied. It is well known that if a function f(x) is β smooth and
∀x ∈ X , λmin

(
∇2f(x)

)
≥ µ then GD converges with µ/β linear rate.

A careful examination of this argument shows it fails. Even though λmin

(
∇2fwk

(xk)
)
≥ µ⋆

at each iteration it does not imply that fwk
is µ⋆ strongly convex for a fixed wk. Namely, it does

not necessarily hold that for all x ∈ X , λmin

(
∇2fwk

(x)
)
≥ µ⋆, but only pointwise at xk. This

property emerges naturally in AMOO, yet such nuance is inherently impossible in single-objective
optimization and, to the best of our knowledge, was not explored in online optimization as well.
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Next, we provide a positive result. When restricting the class of functions to the set of self-
concordant and smooth functions (see Appendix B) we provide a convergence guarantee for AMOOO-GD
that depends on µ⋆. The result shows that close to the optimal solution AMOOO-GD converges lin-
early with rate of O(µ⋆/β).

Theorem 2 (µ⋆ Convergence of AMOOO-GD) Suppose {fi}i∈[m] are β smooth, Mf self-concordant,

share an optimal solution x⋆ and that µ⋆ > 0. Let k0 := ⌈
(
∥x0 − x⋆∥ 3Mf

√
mβ2 − β

)
/µ

3/2
⋆ ⌉,

where ∥·∥ is the 2-norm. If ηt = 1/β then AMOOO-GD converges with rate:

∥xt − x⋆∥ ≤

{
(1− µ⋆/8β)

(k−k0)/2√µ⋆/3Mf
√
mβ k ≥ k0

∥x0 − x⋆∥ − kµ
3/2
⋆ /24Mf

√
mβ o.w.

Interestingly, Theorem 2 holds without making strong convexity assumption on the individ-
ual functions, but only requires that the adaptive strong convexity parameter µ⋆ to be positive, as,
otherwise, the result is vacuous.

3.1. Practical Implementation

Towards large scale application of AMOOO with modern deep learning architectures we simplify its
implementation. First, we optimize over the simplex as oppose to over ∆m,min. We conjecture this is
a by product of our analysis. In addition, we approximate the Hessian matrices with their diagonal.
Prior works used the diagonal Hessian approximation as pre-conditioner [1, 5, 23, 30, 35]. Notably,
with this approximation the computational cost of AMOOO scales linearly with number of parameters
in the Hessian calculation, instead of quadratically. The following result establishes that the value
of optimal curvature, and, hence the convergence rate of AMOOO-GD, degrades continuously with
the quality of approximation.

Proposition 3 Assume that for all i ∈ [m] and x ∈ X ||∇2fi(x)−Diag
(
∇2fi(x)

)
||2 ≤ ∆ where

∥A∥2 is the spectral norm of A ∈ Rd×d. Let ŵ ∈ argmaxw∈∆m λmin

(∑
iwi∇2Diag (fi(x))

)
.

Then, λmin

(∑
i ŵi∇2fi(x)

)
≥ µ⋆ − 2∆.

Next we provide high-level details of our implementation (also see Appendix C).

Diagonal Hessian estimation via Hutchinson’s Method. We use the Hutchinson method [5, 13,
35] which provides an estimate to the diagonal Hessian by averaging products of the Hessian with
random vectors. Importantly, the computational cost of the Hutchinson method scales linearly with
number of parameters.

Maximizing the minimal eigenvalue. Maximizing the minimal eigenvalue of symmetric matrices
is known to be a convex problem (Boyd and Vandenberghe [3], Example 3.10) and can be solved
via semidefinite programming. For diagonal matrices the problem can be cast as a simpler max-min
bilinear problem, and, specifically, as argmaxw∈∆m minq∈∆d wTAq, where d is the dimension
of parameters, A ∈ Rm×d and its ith row is the diagonal Hessian of the ith objective, namely,
∀i ∈ [m], A[i, :] = diag(∇2fi(x)).

This bilinear optimization problem has been well studied in the past [9, 24, 29]. We imple-
mented the PU method of Cen et al. [4] which, loosely speaking, performs iterative updates via
exponential gradient descent/ascent. Note that, PU has a closed form update ruke and its computa-
tional cost scales linearly with number of parameters.
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Figure 1: AMOO tested against equal weighting of loss functions (EWO) when optimized by SGD
(left) or Adam (right). Additionally, we test the effect of additive Normal noise of the
optimal representation hθ(x). AMOO performs better than its counterpart in all 6 settings.

4. Experiment

We will compare our implementation of AMOOO to a weighting mechanism that equally weighting
the objectives (EWO). Specifically, we choose 10 axis-aligned quadratic losses of the form

fi(x) = (hθ(x)− hθ⋆(x))
⊤Hi(hθ(x)− hθ⋆(x)), ∀i ∈ [10], (3)

where Hi ∈ R10×10 is a diagonal positive semi-definite Hessian matrix. Both hθ⋆ : Rd → Rd and
hθ : Rd → Rd are 2-layer neural networks with parameters θ⋆ and θ. Observe that all of the loss
functions are minimized when hθ(x) = hθ⋆(x), and, hence, it is an instance of the AMOO setting.

In our experiment, we choose all but one of the losses to have low curvature, simulating a se-
lection example (see Section 2). The features x are generated by sampling from a d dimensional
Normal distributionN (0, I10), and the targets are perturbed by an additional Normal noise, namely,
y = hθ⋆(x) + ϵσ where ϵσ ∼ N (0, σ2I10), where Id is the identity matrix in dimension d. We
experiment with three different noise levels by modifying σ. We test both AMOOO and EWO as the
mechanisms for calculating a weighted loss fw at each iteration, and apply either SGD or Adam
optimizer to fw. In both cases we perform a grid search on the learning rate to find the best per-
forming learning rate parameter. In Figure 1, we show the results of our simulation. Generally,
AMOOO performs better than EWO in all settings across optimizers and noise levels. Adam (right)
approaches a more optimal representation than SGD. See additional details in Appendix C.

5. Conclusion

In this work, we introduced the AMOO framework to study how aligned multi-objective feedback
can improve gradient descent convergence. We designed the AMOOO algorithm, which adaptively
weights objectives and offers provably improved convergence guarantees. Our experimental results
demonstrate AMOOO’s effectiveness optimizing a large number of tasks that share optimal solution.
Future research directions include determining optimal rates for AMOO and conducting compre-
hensive empirical studies. Such advancements will improve our ability to scale learning algorithms
to handle a large number of related tasks efficiently.
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Appendix A. Related Work

A.1. Multi-task Learning and Gradient Weights

Our work is closely related optimization methods from the multi-task learning (MTL) literature,
particularly those that integrate weights into the task gradients or losses. The multiple gradient
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descent algorithm (MGDA) approach of [10], which proposes an optimization objective that gives
rise to a weight vector that implies a descent direction for all tasks. MGDA converges to a point on
the Pareto set. MGDA was introduced into the deep MTL setting in [31], which propose extensions
to MGDA weight calculation that can be more efficiently solved.

The PCGrad paper [37] identified that conflicting gradients, especially when there is high pos-
itive curvature and differing gradient magnitudes, can be detrimental to MTL. The authors then
propose to alter the gradients to remove this conflict (by projecting each task’s gradient to the nor-
mal plane of another task), forming the basis for the PCGrad algorithm. Another work that tackles
conflicting gradients is the conflict-averse gradient descent (CAGrad) method of [22]. CAGrad
generalizes MGDA: its main idea is to minimize a notion of “conflict” between gradients from
different tasks, while staying nearby the gradient of the average loss. Notably, CAGrad maintains
convergence toward a minimum of the average loss. Another way to handle gradient conflicts is the
Nash-MTL method of [25], where the gradients are combined using a bargaining game. Other opti-
mization techniques for MTL include tuning gradient magnitudes so that all tasks train at a similar
rate [6], taking the geometric mean of task losses [7], and random weighting [21].

Our approach, AMOOO, is similar to existing work in that it also computes gradient weights in
order to combine information from multiple pieces of feedback. However, unlike previous work,
we focus on exploiting prior knowledge that the objectives are aligned and show both theoretically
and empirically that such knowledge can be beneficial for optimization.

A.2. Proxy, Multi-fidelity, and Sim-to-real Optimization

Two other streams of related work are (1) machine learning using proxies and (2) multi-fidelity
optimization. These works stand out from MTL in that they both focus on using closely related
objectives, while traditional MTL typically considers a set of tasks that are more varied in nature.
Proxy-based machine learning attempts to approximate the solution of a primary “gold” task (for
which data is expensive or sparsely available) by making use of a proxy task where data is more
abundant [2, 11].

Similarly, multi-fidelity optimization makes use of data sources of varying levels of accuracy
(and potentially lower computational cost) to optimize a target objective [12]. In particular, the
idea of using multiple closely-related tasks of varying levels of fidelity has seen adoption in settings
where function evaluations are expensive, including bandits [14, 15], Bayesian optimization [16,
32–34], and active learning [18, 19, 36]. Sim-to-real learning can be thought of as a particular
instance of multi-fidelity optimization, where one hopes to learn real world behavior via simulations
(typically in robotics) [28, 38]. In many of these papers, however, the objectives are queried one at
a time, differing slightly from the MTL or AMOO settings.

The motivations behind the AMOO setting are clearly similar to those of proxy optimization,
multi-fidelity optimization, and sim-to-real learning. However, our papers takes a pure optimization
and gradient-descent perspective, which to our knowledge, is novel in the literature.
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Appendix B. Proofs of Theoretical Results

B.1. Assumptions & Consequences

In this section we formally provide our working assumptions. We assume access to multi-objective
feedback with m objectives F (x) = (f1(x), . . . , fm(x)). Considering AMOO, we assume the
functions are aligned in the sense of equation 1, namely, that they share an optimal solution.

We assume that the exist a local weighting for which the the minimal eigenvalue of the Hessian
of the weighted function is at least µ⋆. Further, we define the following quantities, for the single
and multi optimization settings:

∥y∥2x := ∥y∥∇2f(x)

∥y∥2x,w := ∥y∥∇2fw(x) .

Assumption 4 (Smoothness) All function are β-smooth. ∀i ∈ [m], fi : Rn −→ R it holds that
∀x,y ∈ X :

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
β

2
∥x− y∥2 .

Assumption 5 (Self-concordant) All functions are self-concordant with Mf ≥ 0 parameter. ∀i ∈
[m] f : Rn −→ R and ∀x,y ∈ X :

⟨∇3fi(x)[y]y,y⟩ ⪯ 2Mf ∥y∥3x ,

where ∇3g(x)[y] := limα→0
1
α

(
∇2g(x+αy)−∇2g(x)

α

)
is the directional derivative of the hessian

in y.

These assumptions have the following important consequences.

Lemma 6 (Theorem 5.1.8 & Lemma 5.1.5, Nesterov [26]) Let f : X → R be an Mf self-
concordant function. Let x, y ∈ X , we have

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ 1

M2
f

ω (Mf ∥y − x∥x) ,

where ω(t) = t− ln(1− t), and, for any t > 0, ω(t) ≥ t2

2(1+t) .

Lemma 7 (Theorem 5.1.1, Nesterov et al. [27]) Let f1, f2 : X → R be Mf self-concordant
functions. Let w1, w2 > 0. Then, f = w1f1 + w2f2 is M = maxi{ 1√

wi
}Mf self-concordant

function.

Lemma 8 Let {fi : X → R}ni=1 be Mf self-concordant functions. Let {wi > 0}. Then, f =∑n
i=1wifi is M = maxi{ 1√

wi
}Mf self-concordant function.

10
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Proof Let f =
∑n

i=1wifi. We prove it by using induction.
Basis: n = 2. Using Lemma 7 we obtain that f is maxi∈[1,2]{ 1√

wi
}Mf self-concordant function.

Induction assumption: For every n < k it hold that f is maxi∈[1,n]{ 1√
wi
}Mf self-concordant

function.
Induction step: Let f =

∑k
i=1wifi. Define g =

∑k−1
i=1 wifi. From the Induction assumption it hold

that g is maxi∈[1,k−1]{ 1√
wi
}Mf self-concordant function. Since f = g + wkfk, by using Lemma 7

we obtain that f is max{maxi∈[1,k−1]{ 1√
wi
}, 1√

wk
}Mf = maxi∈[1,k]{ 1√

wi
}Mf self-concordant

function.

Lemma 9 (Standard, E.g., 9.17 Boyd and Vandenberghe [3]) Let f : Rn → R a β-smooth over
X , and let x⋆ ∈ argmin

x∈R
f(x). Then, it holds that

∥∇f(x)∥2 ≤ 2β (f(x)− f(x⋆)) .

Further, we have the following simple consequence of the AMOO setting.

Lemma 10 For all w ∈ ∆m and x ∈ X it holds that fw(x)− fw(x⋆) ≥ 0.

Proof
Observe that fw(x) − fw(x⋆) =

∑m
i=1wi (fi(x)− fi(x⋆)) . Since x⋆ is the optimal solution

for all objectives it holds that fi(x) − fi(x⋆) ≥ 0. The lemma follows from the fact wi ≥ 0 for all
i ∈ [m].

Further, recall that the following observation holds.

Observation 11 Let w ∈ ∆m. Assume {fi}mi=1 are β smooth. Then, fw(x) :=
∑m

i=1wifi(x) is
also β smooth.

B.2. Proof of Proposition 3

Recall the following results which is a corollary of Weyl’s Theorem.

Theorem 12 (Weyl’s Theorem) Let A and ∆ be symmetric matrices in Rd×d. Let λj(A) be the jth
largest eigenvalue of a matrix A. Then, for all j ∈ [d] it holds that ∥λj(A)−λj(A+∆)∥ ≤ ∥∆∥2,
where ∥∆∥2 is the operator norm of ∆.

Proposition 3 is a direct outcome of this result. We establish it for a general deviation in Hessian
matrices without requiring it to be necessarily diagonal.
Proof

Denote Ai := ∇2f(x) + ∆i. Let w⋆ denote the solution of,

w⋆ ∈ argmax
w∈∆

λmin

(∑
i

wi∇2fi(x)

)
,

11
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and let g(w⋆) denote the optimal value, g(w⋆) = λmin

(∑
iw⋆,i∇2fi(x)

)
. Similarly, let ŵ⋆ denote

the solution of the optimization problem of the perturbed problem:

ŵ⋆ ∈ argmax
w∈∆

λmin

(∑
i

wiAi

)
,

and denote ĝ(ŵ⋆) as its value, ĝ(ŵ⋆) = λmin (
∑

i ŵ⋆,iAi). Then, the following holds.

g(w⋆) = g(w⋆)− ĝ(w⋆) + ĝ(w⋆)− ĝ(ŵ⋆) + ĝ(ŵ⋆)− g(ŵ⋆) + g(ŵ⋆)

(1)

≤ g(w⋆)− ĝ(w⋆) + ĝ(ŵ⋆)− g(ŵ⋆) + g(ŵ⋆)

≤ |g(w⋆)− ĝ(w⋆)|+ |ĝ(ŵ⋆)− g(ŵ⋆)|+ g(ŵ⋆)

(2)

≤ 2∥∆∥2 + g(ŵ⋆).

(1) holds since ĝ(w⋆) − ĝ(ŵ⋆) ≤ 0 by the optimality of ŵ⋆ on ĝ. Further, (2) holds due to
Weyl’s Thoerem (Theorem 12) and the assumptions of the approximation error. Recall that for any
w ∈ ∆m it holds that∥∥∥∥∥∑

i

wiAi −
∑
i

wi∇2fi(x)

∥∥∥∥∥
2

≤
∑
i

wi

∥∥Ai −∇2fi(x)
∥∥
2
≤ ∥∆∥2

since
∑

iwi = 1. Hence, by Weyl’s theorem it holds that

|g(w⋆)− ĝ(w⋆)∥ ≤ ∥∆∥2 and |g(ŵ⋆)− ĝ(ŵ⋆)∥ ≤ ∥∆∥2.

Finally, since g(w⋆) ≥ µ⋆, by Definition 1, we get that

g(ŵ⋆) ≥ µ⋆ − 2∥∆∥2,

which concludes the proof.

B.3. Proof of Theorem 2

In highlevel, the proof follows the standard convergence analysis of µ-strongly convex and L-
smooth function, while applying Lemma 6, instead of using only properties of strongly convex
functions alone.

In addition, we choose the minimal weight value, wmin, such that the weighted function at each
iteration fwk

has a sufficiently large self-concordant parameter, while the minimal eigenvalue of its
Hessian is close to µ⋆. Before proving Theorem 2, we provide two results that allow us to control
these two aspects.

Lemma 13 For any iteration k, the function fwk
is 1/
√
wminMf self-concordant.

Proof This is a direct consequence of Lemma 8 and the fact Algorithm 2 sets the weights by opti-
mizing over a set where the weight vector, w. is lower bounded by wmin.

12



ALIGNED MULTI OBJECTIVE OPTIMIZATION

Lemma 14 For any iteration k, we have λmin

(
∇2fwk

)
≥ µ⋆ − 2mwminβ.

Proof
To establish the lemma we want to show that for any w ∈ ∆m there exists ŵ ∈ ∆m,wmin

such that λmin

(∑
i ŵi∇2fi(xt)

)
≥ λmin

(∑
iwi∇2fi(xt)

)
− wminβ. We start by bounding the

following term
∥∥∇2fw(x)−∇2fŵ(x)

∥∥
2

for any x ∈ X . We have∥∥∥∥∥∑
i

(wi − ŵi)∇2fi(x)

∥∥∥∥∥
2

≤
∑
i

|wi − ŵi|
∥∥∇2fi(x)

∥∥
2
≤ β

∑
i

|wi − ŵi|,

while the last inequality holds since {fi}i∈[m] are β smooth. Since for any w ∈ ∆m there exist
ŵ ∈ ∆m,wmin such that

∑
i |wi − ŵi| ≤ 2mwmin, we obtain that for every x ∈ X it holds that∥∥∇2fw(x)−∇2fŵ(x)

∥∥
2
≤ 2mwminβ.

Thus, by using Theorem 12 we have

|λmin(∇2fw(x))− λmin(∇2fŵ(x))| ≤
∥∥∇2fw(x)−∇2fŵ(x)

∥∥
2
≤ 2mwminβ.

Recall that λmin(∇2fw(x)) ≥ µ∗ assuming Definition 1 holds. Then, we obtain

λmin(∇2fŵ(x)) ≥ µ∗ − 2mwminβ.

With these two results we are ready to prove Theorem 2.
Proof

The GD update rule is given by xk+1 = xk − η∇fwk
(xk), where η is the step size, and wk ∈

argmaxw∈∆m λmin

(∑
iwi∇2fi(xt)

)
. With the assumption that maxw∈∆m λmin

(
∇2fwk

(xk)
)
=

µ⋆ > 0, Lemma 14, and since we set wmin = µ⋆/ (8mβ) we have that

λmin

(
∇2fwk

(xk)
)
≥ µ⋆ − 4mwminβ := µ⋆/2 = µ̂⋆, (4)

for all iterations k.
We bound the squared distance between xk+1 and x⋆:

∥xk+1 − x⋆∥2 = ∥xk − η∇fwk
(xk)− x⋆∥2

= ∥xk − x⋆∥2 − 2η⟨∇fwk
(xk),xk − x∗⟩+ η2 ∥∇fwk

(xk)∥2

By Lemma 13 it holds that fwk
is

M̂f := 1/
√
wminMf ≤ 3

√
mβMf/

√
µ⋆

self concordant. Then, by applying Lemma 6 with y = x⋆ and x = xk we have

⟨∇fwk
(xk),xk − x⋆⟩ ≥ fwk

(xk)− fwk
(x⋆) +

1

M̂f

ω
(
M̂f ∥x⋆ − xk∥x,wk

)
.

13
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which allows us to bound ∥xk+1 − x⋆∥2 by

∥xk − x⋆∥2 − 2η

(
fwk

(xk)− fwk
(x⋆) +

1

M̂f

ω
(
M̂f ∥x⋆ − xk∥x,wk

))
+ η2 ∥∇fwk

(xk)∥2

(1)

≤ ∥xk − x⋆∥2 −
2η

M̂f
2ω
(
M̂f ∥x⋆ − xk∥x,wk

)
+ 2η (2βη − 1) (fwk

(xk)− fwk
(x⋆))

(2)

≤ ∥xk − x⋆∥2 −
1

βM̂f
2ω
(
M̂f ∥x⋆ − xk∥x,wk

)
(3)

≤ ∥xk − x⋆∥2 −
1

2β

∥x⋆ − xk∥2x,wk

1 + M̂f ∥x⋆ − xk∥x,wk

(4)

≤ ∥xk − x⋆∥2 −
µ̂⋆

2β

∥x⋆ − xk∥2

1 + M̂f

√
β ∥x⋆ − xk∥

where (1) is due to Lemma 9, (2) holds by fwk
(xk)−fwk

(x⋆) ≥ 0 (Lemma 10) and η (2βη − 1) ≤
0 since 0 < η ≤ 1/2β, (3) is due to the lower bound on ω(t) from Lemma 6, and (4) follows from
equation (4) and since fw is β smooth for all w ∈ ∆m.

The above recursive equation results in polynomial contraction for large ∥x⋆ − xk∥, and, then
exhibits linear convergence. To see this, let κ := µ̂⋆

β , and examine the two limits.

Linear convergence, ∥x⋆ − xk∥ ≤ δ/M̂f

√
β, δ ≤ 1. With this assumption we have the follow-

ing bound on the recursive equation:

∥xk+1 − x⋆∥2 ≤
(
1− κ

2(1 + δ)

)
∥xk − x⋆∥2 .

By setting δ = 1 we get the result. Further, ∥xk+1 − x⋆∥2 contracts monotonically, without exiting
the ball ∥x⋆ − xk∥ ≤ δ/M̂f

√
β, the linear convergence rate approaches κ/2.

Polynomial convergence, ∥x⋆ − xk∥ > 1/M̂f

√
β. With this assumption we have the following

bound:

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 −
κ

4M̂f

√
β
∥xk − x⋆∥ .

This recursive equation decays in a linear rate and have the following closed form upper bound
∥xk+1 − x⋆∥ ≤ ∥x0 − x⋆∥ − k κ

8M̂f
√
β

.

By plugging the values of M̂f and µ̂⋆ we obtain the final result.

Appendix C. Practical Implementation

Dataset. We generate 10 dimensional inputs, x ∈ R10 from an independent Normal distribution
N (0, Id). The target generating network hθ⋆ is randomly generated. The noise on targets is sampled
from a Normal distribution ϵσ ∼ N (0, σId) and the noise level is either high σ = 1, medium size
σ = 0.1 or low σ = 0.001.
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Network architecture. We choose the ground truth network and target network to have the
same architecture. Both are 2 layer neural networks with 256 hidden dimensions and ReLu activa-
tion. The neural network outputs a vector in dimension 10, similar to the input of the network.

Loss functions. We choose H1 = I10, and for i > 1 Hi = αI10 + (1 − α)A and α = 10−4

where

Ai,j =

{
1 i = j = 1

0 o.w.,

namely, A is a diagonal matrix with value of 1 in the first diagonal index and zero otherwise.
In this problem, the function generated by the H1 Hessian has the largest minimal eigenvalue

and we expect AMOOO to choose this function, whereas EWO gives equal weight to every loss func-
tion.

Training. We optimize learning rates across a grid of candidates and pick the best performing
one on training loss [1e−5, 1e−4, 1e−3, 1e−2], 1e−3 performed best in all settings. We choose
a batch size of 1024. We perform each run with 5 different seeds and average their performance.

General parameters for AMOOO. We set the number of samples for the Hutchinson method to
be NHutch = 100. Namley, we estimate the Hessian matrices by averaging NHutch = 100 estimates
obtained from the Hutchnison method. Additionally, we use exponential averaging to update the
Hessian matrices with β = 0.99. Further, at each training step we perform a single update of the
weights based on the PU update rule of Cen et al. [4] to solve the max-min Bilinear optimization
problem (see Section 3.1).

Validation. We measure the L2 distance between hθ and hθ⋆ averaged over 1024·103 validation
points and measured per dimension. This quantity suppose to approximate the quality of the learned
model θ which is given by Ex

[
∥hθ(x)− hθ⋆(x)∥

2
]
.
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