
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Information-Theoretic Trust Regions for Stochastic Gradient-Based
Optimization

Philipp Dahlinger1 PHILIPP.DAHLINGER@KIT.EDU

Philipp Becker1,2
Maximilian Hüttenrauch1
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Abstract

Stochastic gradient-based optimization is crucial to optimize neural networks. While popular ap-
proaches heuristically adapt the step size and direction by rescaling gradients, a more principled
approach to improve optimizers requires second-order information. Such methods precondition
the gradient using the objective’s Hessian. Yet, computing the Hessian is usually expensive and
effectively using second-order information in the stochastic gradient setting is non-trivial. We pro-
pose using Information-Theoretic Trust Region Optimization (arTuRO) for improved updates with
uncertain second-order information. By modeling the network parameters as a Gaussian distribu-
tion and using a Kullback-Leibler divergence-based trust region, our approach takes bounded steps
accounting for the objective’s curvature and uncertainty in the parameters. Before each update, it
solves the trust region problem for an optimal step size, resulting in a more stable and faster opti-
mization process. We approximate the diagonal elements of the Hessian from stochastic gradients
using a simple recursive least squares approach, constructing a model of the expected Hessian over
time using only first-order information. We show that arTuRO combines the fast convergence of
adaptive moment-based optimization with the generalization capabilities of SGD.

1. Introduction

In this work, we introduce Information-Theoretic Trust Region Optimization (arTuRO), an ap-
proach using approximate second-order information for stochastic optimization1. While using
second-order information for preconditioning and step size selection is ubiquitous in classical op-
timization literature [8], it is not broadly adopted for stochastic optimization in deep learning as it
suffers from two main problems. First, controlling the step size, using, e.g., a line search, breaks
down if the second-order information is only approximate [7, 17]. Second, while modern automatic
differentiation tools allow computing the Hessian, this is often impractical due to high memory and
processing demands.

arTuRO addresses the uncertainty in the stochastic second-order information by limiting the max-
imal update step using trust regions. We take a distributional view of the network parameters and
formalize a constrained optimization problem with an information-theoretic trust region [1, 20] that
considers the objective’s curvature. Furthermore, we estimate the Hessian’s diagonal using gradient

1. Code available at https://github.com/ALRhub/arturo.
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information to avoid computing it explicitly. Using only a single gradient per step, we iteratively
approximate the Hessian using recursive least squares and use a drift model [23] to account for
the parameters changing during updates. Assuming a Gaussian random walk of the Hessian, older
gradients have a smaller weight in the regression.

We show that arTuRO profits from both the trust regions and its improved way of estimating the
Hessian on several standard benchmark tasks and model architectures where it exhibits similar or
better performance compared to optimizers with moment-based adaptations and SGD.

2. Information-Theoretic Trust Region Optimization
Global Optimum
SGD Direction
arTuRO Direction
Trust Region
arTuRO Update

Figure 1: Visualization of the
main idea behind arTuRO -
Information-Theoretic Trust Re-
gions. arTuRO’s update direc-
tion (green arrow) is clearly bet-
ter than simply stepping in the
gradient direction (red). Yet,
due to the stochastic nature of
the optimization, fully relying
on second-order information can
be suboptimal. Thus, we use a
trust region (blue) based on the
current parameter uncertainty to
restrict the update length.

We study a typical supervised learning task where the aim is to solve
an unconstrained non-convex optimization problem of the form

minθ L(θ) = 1
N

∑N
i=1 li(θ;xi, yi). (1)

Here, θ ∈ Rn are the parameters of a neural network we aim to
optimize, (xi, yi) are pairs of input data and output targets while
li defines a differentiable loss function. The objective is usually
approximated using mini-batches instead of the entire dataset.

Trust Region Optimization using Second-Order Information.
We define a distribution over the parameters in order to introduce
an information-theoretic trust region. A natural choice is a Gaus-
sian distribution πt(θ) = N (θ;µt,Σt), with mean µt and co-
variance Σt. The probabilistic view allows us to define a princi-
pled trust region. Given a bound ε ≥ 0, we bound the change
in parameter distribution by the Kullback-Leibler (KL) divergence
KL(πt||πt−1) ≤ ε. We can now solve Eq. (1) by repeatedly mini-
mizing the expectation of the loss function over the distribution πt
under the trust-region constraint

min
πt

Eθ∼πt [L(θ)], s.t. KL(πt||πt−1) ≤ ε.

The primal solution of this problem has a closed-form solution for quadratic functions L(θ)[1].
Thus, we use a second-order Taylor expansion of the loss function around the current mean µt

of the parameter distribution L(θ) ≈ ft(θ) = 0.5θTAtθ + θTbt + ct. Since the Hessian Hµt

and the gradient ∇L(µt) of the full dataset is unknown due to mini-batching, we have a further
approximation of the Taylor coefficients At ≈ Hµt and bt ≈ ∇Lt(µt)−Hµtµt. This formulation
allows for closed-form solutions of the expectation in the optimization problem as the distribution
over parameters θ is Gaussian.

Disentangled Trust Regions and Entropy Regularization. Previous work [2, 13] shows that
disentangling the KL in independent constraints for the change of the mean and covariance im-
proves the optimization procedure. The KL divergence for Gaussian distributions has a closed-form
solution KL(πt||πt−1) = Cµ + CΣ with

Cµ = 0.5(µt − µt−1)
TΣ−1

t−1(µt − µt−1) and

CΣ = 0.5
[
tr
(
Σ−1

t−1Σt

)
− n+ log det(Σt−1)− log det(Σt)

]
.
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As we are ultimately interested in a maximum a posteriori (MAP) solution, i.e., the mean of the
parameter distribution, we propose to use the covariance part of the KL divergence in the arTuRO
objective instead of using it as a constraint. This regularizes the optimal updated covariance towards
the old covariance Σt−1. We further introduce a KL divergence Cλ = KL(πt||N (0, λ−1I)) to a
prior distribution and add it to the objective which regularizes the entropy of the distribution. The
resulting objective of the arTuRO optimization problem is given as

min
πt

Eθ∼πt [ft(θ)] + ρCλ + νCΣ s.t. Cµ ≤ ε. (2)

The factors ρ, ν ∈ R weight the regularization, while the precision λ ∈ R defines the prior’s scaling.

Solving the Trust Region Problem. We use the method of Lagrange multipliers to find a solution
to Eq. (2). Taking the derivative of the Lagrangian with respect to the primal parameters µt and Σt

and setting it to 0, we obtain the primal solutions

µt(η) = (At + ηΣ−1
t−1 + ρλIn)

−1(ηΣ−1
t−1µt−1 − bt), (3)

Σt = (ρ+ ν)(At + ρλIn + νΣ−1
t−1)

−1 (4)

where η ≥ 0 is a Lagrange multiplier. Thus, we see how η interpolates between fully trusting and
discarding the second-order information. To compute the optimal value η∗ we need to maximize the
dual objective g(η) corresponding to Eq. (2). For a detailed derivation, we refer to Appendix A. In
order to scale to high dimensional problems we use a diagonal parameterization of the covariance
Σt = diag(σ2

t ) and the matrix At = diag(at).

It remains to define the update of the surrogate model. The general idea is to accumulate the previous
gradient information of the loss function into the current update using recursive least squares with
a drift model. The solution is a Kalman update which is scalable to high-dimensional problems. In
Appendix B we describe the derivation and the update equations of At and bt.

A crucial part of arTuRO is computing the Lagrange multiplier η ≥ 0, which gives the step size
of the update. Here, we use a bisection method due to its simplicity and amenability to a GPU
implementation. As the change in η between iterations is small, we can initialize the bisection using
tight bounds around the previous η. Using this method, we usually only need 2 to 4 iterations to
find a sufficiently precise η. For hyperparameters and further details, see Appendix C.

3. Experiments

We test the performance of arTuRO on the well-established benchmarks Fashion-MNIST, CIFAR-
10, and CIFAR-100. As the network architecture greatly affects the optimization procedure, we
use a classical convolutional neural network (CNN), as well as ResNet architectures to evaluate the
algorithms over different-sized networks. For architecture details, see Appendix C. We repeat each
experiment over 10 seeds. In the Fashion-MNIST CNN experiment, we train the network for 120
epochs, while the other experiments run for 160 epochs.

Results. We compare arTuRO against the state-of-the-art optimization algorithms SGD with mo-
mentum, Adam [15], and AdamW [16]. All algorithms including arTuRO use weight decay. We
also include a learning rate scheduler for SGD, Adam, and AdamW, while in arTuRO, we schedule
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Figure 2: Test accuracies of arTuRO, SGD, Adam and AdamW.

Fashion-MNIST CIFAR-10 CIFAR-100
CNN ResNet-18 CNN ResNet-34 CNN ResNet-34

SGD 92.84± 0.08 92.64± 0.07 87.11± 0.15 87.92± 0.16 59.20± 0.18 63.05± 0.16
Adam 92.90± 0.10 91.76± 0.17 85.86± 0.15 85.89± 0.51 56.35± 0.27 56.32± 0.45
AdamW 92.92± 0.09 91.97± 0.11 85.88± 0.12 86.07± 0.30 56.50± 0.22 56.86± 0.28

arTuRO 93.01± 0.10 92.13± 0.12 87.37± 0.13 87.66± 0.19 60.53± 0.13 63.19± 0.24

Table 1: Results of a CNN and a ResNet architecture on Fashion-MNIST, CIFAR-10, and CIFAR-100. We
report the mean and the doubled standard error of the test accuracy in [%].

the trust region bound ε. Twice during the optimization, the effective step size is reduced by a fac-
tor2 of 0.1. For a fair comparison, we conduct an extensive hyperparameter optimization for each
objective and algorithm. In Table 1, we report the resulting final accuracy on previously unseen test
data. arTuRO performs superior on all CNN architectures and is comparable to SGD and clearly
outperforms Adam and AdamW on the ResNet tasks. Furthermore, SGD outperforms the adaptive
learning rate methods Adam and AdamW in every task besides Fashion-MNIST CNN. Appendix C
lists the used hyperparameters for each experiment and algorithm. In Fig. 2, we present the accu-
racy on the test set throughout the optimization for four of the six experiments. arTuRO combines
the faster convergence of Adam and AdamW with the generalization potential of SGD and benefits
greatly from learning rate decay steps similar to SGD. Adam and AdamW can only compete on the
CNN architecture on Fashion-MNIST (top-left). SGD on ResNet-34 shows a more unstable behav-
ior as the test accuracy drops during a period of the optimization procedure. While SGD achieves
a slightly higher final test accuracy, it is harder to tune. The remaining two figures, as well as the
train loss curves, are given in Appendix D.

2. Since the trust region bound of arTuRO scales quadratically, we use a different scaling factor of 0.006. Empirically,
this results in the same reduction of the step size.
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Figure 3: Ablation Results. Left: arTuRO ablation of the trust region and the surrogate computation. We
report the test accuracy of the Fashion MNIST CNN task over the elapsed epochs. The blue line is the
standard arTuRO algorithm, the green line uses a constant η instead of the solution to the dual problem,
and the orange line replaces the recursive least squares surrogate computation with Adam’s first and second
moments estimation. Right: Ablation on Fashion MNIST with a smaller network where the computation
of the analytic diagonal Hessian is feasible. arTuRO(Hessian) uses a running average over the Hessian and
the gradient instead of our squared surrogate. AdaHessian (Hessian) uses the AdaHessian algorithm with the
exact Hessian computation.

Ablations. First, we investigate the step size selection while using the identical update direction
of the arTuRO algorithm. We compare the trust region approach with an ablation where the dual
parameter η remains fixed. We carefully selected the fixed η with insights from the trust region
approach as a general choice of η is not obvious. Additionally, we use a running average of the
moment estimates from the Adam algorithm as the parameters of the quadratic surrogate to show
that while the trust region approach is highly effective, it depends on an accurate model. We present
the results on the left side in Fig. 3. We can conclude that a good surrogate is a key property for
second-order algorithms. When having an adequate surrogate, the information-theoretic trust region
gives an extra performance increase.

Second, we compare the second-order estimation of arTuRO on a smaller network architecture
against other second-order estimation techniques. To this end, we compute the exact (stochastic)
diagonal of the Hessian with a variation of the backpropagation algorithm [10]. The running average
of the Hessian and the gradient is then used as the surrogate parameters. We compare against
Adam and the diagonal Hessian approximation of AdaHessian [28]. To further evaluate AdaHessian
approximation to the exact diagonal of the Hessian, we replace the AdaHessian approximation with
the exact Hessian without altering the rest of the AdaHessian algorithm. The results of the ablation
displayed in Fig. 3 (right side) indicate that correct Hessian information based on mini-batches in
the stochastic setting does not result in better optimization results and we can outperform other
second-order methods with our fit of the quadratic surrogate.

4. Related Work

First-Order Methods. First-order optimization methods like Stochastic Gradient Descent (SGD)
[22] are widely used in deep learning for their simplicity and effectiveness. To improve perfor-
mance, techniques like momentum [18, 25] and adaptive learning rates [11, 29] are have been in-
troduced. The Adamalgorithm [15] is a popular variant that employs both of them. Still, there
are challenges, such as choosing the correct learning rate, addressing convergence issues [21], and
correctly including regularization [16]. While variants of Adam, such as AMSGRAD [21] and
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AdamW [16] try to address these issues, there are remaining issues with generalization [14, 27],
convergence [26] and the theoretical understanding [30] of Adam and its variants.

Second-Order Methods. Using second-order information to precondition the gradients and au-
tomatically setting the learning rate has many practical and theoretical benefits in classical opti-
mization [3, 5]. However, classical Hessian approximation schemes[9] are not straightforwardly
applicable in the stochastic optimization setting. While many approaches [17, 28] propose alter-
natives to approximate and use Hessians in this setting, devising a generally applicable, efficient
second-order optimizer for large-scale stochastic optimization remains an open research question.

Information Theoretic Trust Regions. Information-theoretic trust regions find widespread use
in reinforcement learning (RL)[19, 24]. The crucial difference is that arTuRO proposes a KL-bound
in parameter space while the previous methods limit the KL-divergence in the output space. Inspired
by zero-order stochastic-search algorithms [1, 12, 20], Arenz et al. [4] propose a first-order method
to directly optimize model parameters, but their approach does not gracefully scale to even small
neural networks with thousands of parameters and even less so to larger ones.

5. Conclusion

We introduced Information-Theoretic Trust Region Optimization (arTuRO), a novel approach to
stochastic optimization of deep neural networks. First, arTuRO efficiently estimates second-order
information from gradients using a recursive least squares approach. In the parameter update, ar-
TuRO accounts for uncertainty in the second-order information and current parameters by limiting
the updates using information-theoretic trust regions. arTuRO matches the convergence behavior of
approaches using gradient statistics for preconditioning and step size control, e.g., Adam [15], while
giving results comparable to those of a carefully tuned SGD with momentum. In future work, we
aim to use our approach for Bayesian Deep Learning. There are similarities between our objective
and the variational evidence lower bound which we could further exploit and learn a full distribution
over network parameters.
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[13] Maximilian Hüttenrauch and Gerhard Neumann. Regret-aware black-box optimization with
natural gradients, trust-regions and entropy control. arXiv preprint arXiv:2206.06090, 2022.

[14] Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switch-
ing from adam to SGD. CoRR, abs/1712.07628, 2017. URL http://arxiv.org/abs/
1712.07628.

[15] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, pages 1–15, 2015.

[16] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR, 2019.

[17] Aryan Mokhtari and Alejandro Ribeiro. Res: Regularized stochastic bfgs algorithm. IEEE
Transactions on Signal Processing, 62(23):6089–6104, 2014.

[18] Juri Nesterov. A method for solving the convex programming problem with convergence rate
o(1/k2). Dokl. Akad. Nauk SSSR, 269:543–547, 1983. URL https://ci.nii.ac.jp/
naid/10029946121/en/.

[19] Fabian Otto, Philipp Becker, Vien Anh Ngo, Hanna Carolin Maria Ziesche, and Gerhard Neu-
mann. Differentiable trust region layers for deep reinforcement learning. In International Con-
ference on Learning Representations, 2021. URL https://openreview.net/forum?
id=qYZD-AO1Vn.

[20] Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Twenty-
Fourth AAAI Conference on Artificial Intelligence, 2010.

[21] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
In 6th International Conference on Learning Representations, ICLR. OpenReview.net, 2018.

[22] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Math-
ematical Statistics, 22(3):400–407, 1951. ISSN 00034851. URL http://www.jstor.
org/stable/2236626.
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Appendix A. Detailed solution of the Optimization problem

This section presents the detailed solution to the arTuRO optimization problem

min
πt

Eθ∼πt [ft(θ)] + ρCλ + νCΣ

s.t. Cµ ≤ ε
(5)

with

πt(θ) = N (θ;µt,Σt)

ft(θ) =
1

2
θT
t Atθt + θTbt + ct,

Cλ = KL(πt||N (0, λ−1In)

CΣ =
1

2

[
tr
(
Σ−1

t−1Σt

)
− n+ log det(Σt−1)− log det(Σt)

]
Cµ =

1

2
(µt − µt−1)

TΣ−1
t−1(µt − µt−1).

The variables µt,Σt are the primal parameters. We define a dual parameter η ∈ R. Inserting the
diagonal forms Σt = diag(σ2

t ) and At = diag(at), and solving the expectation over the quadratic
surrogate, the Lagrangian is given by

L(µt,σ
2
t , η) =

1

2

n∑
j=1

[
µ2
t,jat,j + at,jσ

2
t,j + µt,jbt,j + ct

]
+ρ

1

2

n∑
j=1

[
σ2
t,jλ− 1 + µ2

t,jλ+ log
(
λ−1

)
− log

(
σ2
t,j

)]
+ν

1

2

n∑
j=1

[ σ2
t,j

σ2
t−1,j

− 1 + log
(
σ2
t−1,j

)
− log

(
σ2
t,j

)]
+η

1

2

n∑
j=1

(µt,j − µt−1,j)
2

σ2
t−1,j

− ηε.
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Here, we sum over the parameter dimensions j = 1, . . . , n. Next, we compute the derivative with
respect to the mean and set it to zero

∂L

∂µt,j
= µt,jat,j + bt,j + ρλµt,j + η

µt,j − µt−1,j

σ2
t−1,j

!
= 0.

This results in the primal solution of the mean

µt(η) = (At + ηΣ−1
t−1 + ρλIn)

−1(ηΣ−1
t−1µt−1 − bt).

In the same way, we compute the primal solution of the variance

∂L

∂σ2
t,j

=
1

2

[
at,j + ρλ+

ρ

σ2
t,j

+
ν

σ2
t−1,j

− ν

σ2
t,j

]
!
= 0

=⇒ Σt = (ρ+ ν)
(
At + ρλIn + νΣ−1

t−1

)−1
.

Note, that Σt is independent of the Lagrange multiplier η since we have dropped the covariance part
of the KL divergence from the constraints.

It remains to solve the dual optimization problem to obtain η. The dual function is given by inserting
the primal solution into the Lagrangian, resulting in

g(η) = L(µt(η),Σt(η), η).

We solve the convex dual optimization problem

η∗ = argmaxη g(η), s.t. η ≥ 0 (6)

by finding an η∗ with the derivative
g′(η∗) = 0.

The derivative of the dual has a simple form given by

g′(η) =
1

2
(µt(η)− µt−1)

TΣ−1
t−1(µt(η)− µt−1)− ε. (7)

We find η∗ using a bisection method. It is possible that the derivative in Eq. (7) is always negative.
This happens when the optimal solution lies inside the trust region. In that case, the solution to
Eq. (6) is given by η∗ = 0.

Appendix B. Derivation of the Surrogate Model Fitting

This section describes the computation of the quadratic surrogate

L(θ) ≈ ft(θ) = 0.5θTAtθ + θTbt + ct (8)

from previous gradient evaluations g0 = ∇L0(θ)|θ=µ0 , . . . , gt = ∇Lt(θ)|θ=µt . The general idea
is to accumulate the information about the loss function into the current update using recursive least

10
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Figure 4: Probabilistic state space model for fitting the quadratic surrogate. The drift of the surrogate param-
eters wt over time is modeled using a Gaussian random walk. The observed gradients gt in each step are
modeled using a linear model with Gaussian noise.

squares with a drift model. Taking the derivative on both sides of Eq. (8), the quadratic surrogate of
the objective function is equivalent to a linear surrogate of its gradient

Atθ + bt ≈ ∇θL(θ). (9)

As we have seen in Section 2, the update of the parameter distribution πt(θ) does not depend on
the scalar parameter ct of the surrogate. Therefore, the linear surrogate of the gradient contains all
the necessary information. Selecting a diagonal matrix At = diag(at) leads to independent one-
dimensional regression problems for fitting the surrogate. We can find the values at ∈ R and bt ∈ R
from the gradients g0, . . . , gt ∈ R evaluated at the parameters µ0, . . . µt ∈ R for each dimension
of the parameter space independently. To utilize matrix-vector formulations, we define the weight
vector

wt = (at, bt)
T .

A recursive least squares approach [23] is a capable framework for solving this problem. In the
recursive setting, we get one new observation and update our current belief accordingly. The new
observation is the gradient gt that we want to approximate.

In general, there are two stochastic processes we have to model here. First, we allow the surrogate
to drift over time since we are not evaluating the gradients at the same point in the parameter
space throughout the optimization process. Therefore, older observations may not align with the
current surrogate. Second, we have to deal with the fact that the gradient information is noisy due
to the noisy objective Lt(θ). This is a crucial detail since other second-order algorithms like L-
BFGS [9] have suffered from this problem [6]. A formulation that addresses these issues builds
upon a Bayesian view and utilizes a probabilistic state space model given in Fig. 4. The goal is to
compute the parameters mt ∈ R2 and Pt ∈ R2×2 of the filtering distribution

p(wt|g0:t) := N (wt|mt,Pt). (10)

We have no information about the development of wt throughout the optimization. Hence, we
model its dynamics as a Gaussian random walk

p(wt|wt−1) = N (wt|wt−1, qI)

11
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with drift variance q ∈ R. To address the noisy gradient evaluations, we define a measurement
model which describes the observation gt given the current state wt

p(gt|wt) = N (gt|Htwt, r).

The matrix Ht = (µt, 1) ∈ R2 displays the linear relationship of the gradient from Eq. (9) while
the value r ∈ R models the noise of the gradients. The noise values q and r are hyperparameters for
the arTuRO algorithm.

Given a previous state space distribution p(wt−1|g0:t−1) = N (wt−1|mt−1,Pt−1), the update equa-
tion to obtain the filtering distribution Eq. (10) at step t are the following [23]

P−
t = Pt−1 + qI

vt = HtP
−
t HT

t + r

Kt = P−
t HT

t v
−1
t

mt = mt−1 +Kt(gt −Htmt−1)

Pt = P−
t − vtKtK

T
t .

(11)

We use the maximum a posteriori solution (at, bt)
T := mt to approximate the parameters of the

quadratic surrogate Eq. (2). The described one-dimensional computation of (at, bt)T from the cur-
rent gradient evaluation gt shown in Eq. (11) is easily vectorizable and can be implemented effi-
ciently even for high dimensional parameter spaces with millions of parameters.

Appendix C. Experiment Details

This section lists the details for the empirical evaluation in Section 3. We present an illustration
of the CNN architectures used for the experiments in Fig. 5. Regarding the ResNet architectures,
we use the untrained architectures implemented by PyTorch in the torchvision package. For the
Fashion-MNIST task, we change the first layer of the ResNet architecture to accept images with
only one channel.

To obtain a fair comparison, we tune all hyperparameters for all algorithms on all available tasks. We
use the Weights and Biases sweep functionality (Biewald, 2020). We apply k-fold cross-validation
(Kohavi et al., 1995) with k = 8 for the HPO since the datasets do not contain a separate validation
set. For each configuration of task and algorithm, we test 50 hyperparameter configurations and
evaluate each configuration on 3 different seeds. The seed has an impact on the initial weights of
the architecture and the shuffling of the dataset. We use a Bayesian optimization (BO) which uses an
initial distribution of hyperparameters and proposes new configurations of hyperparameters based
on the validation accuracy of previous runs. After obtaining all the hyperparameter configurations
per experiment, we cross-evaluated the combinations to see if another combination can perform
better than the one found by the BO.

For arTuRO, we have to define the trust region bound ε, the initial variance Σ0, the scaling values
ρ, ν of the objective, the prior precision λ and the noise values r, q for fitting the surrogate. We use
default values for the initial variance Σ0 = 0.01 of the parameter distribution, the prior precision
λ = 0.0015, and the scaling ν = 1.3 of the covariance part of the KL since they did not have a big

12
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Figure 5: CNN architectures for the CIFAR-10/100 dataset (left) and for the Fashion-MNIST dataset (right).

arTuRO Fashion-MNIST CIFAR-10 CIFAR-100
CNN ResNet-18 CNN ResNet-34 CNN ResNet-34

ε 0.085675 0.085675 0.002787 0.007133 0.002787 0.007234
ρ 0.058657 0.058657 0.296786 1.597354 0.296786 1.676770
r 2.816791 2.816791 1.219750 9.328440 1.219750 4.822032
q 0.017393 0.017393 0.002455 0.089381 0.002455 0.009779
Weight Decay 0.000002 0.000002 0.000000 0.000703 0.000000 0.000000

Table 2: Tuned hyperparameter for the arTuRO algorithm

impact upon the results of the optimization. We further select a small value for the initial variance
of the filtering distribution P0 = diag((0.00005, 0.00005)). The bisection method uses a warm
start method for the interval bounds based on the previous computation of η∗. The lower and upper
bound Cl and Cu are initialized as

Cl =
η∗

3
,

Cu = 3η∗.

The bisection method either stops when

Cu − Cl < 0.5,

or when
|g′(η)| < 0.1ε.

This leaves us with four relevant hyperparameters, the trust region bound ε, the prior scaling ρ, and
the noise values r and q required for the update of the surrogate model.

The tuned hyperparameters for all algorithms are given in Tables 2 to 5.
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SGD Fashion-MNIST CIFAR-10 CIFAR-100
CNN ResNet-18 CNN ResNet-34 CNN ResNet-34

Learning Rate 0.071049 0.137031 0.017834 0.056480 0.017834 0.067994
Momentum 0.865730 0.854087 0.946762 0.866487 0.946762 0.867370
Weight Decay 0.000225 0.001963 0.000163 0.001697 0.000163 0.001800

Table 3: Tuned hyperparameter for the SGD algorithm

Adam Fashion-MNIST CIFAR-10 CIFAR-100
CNN ResNet-18 CNN ResNet-34 CNN ResNet-34

Learning Rate 0.001012 0.045115 0.001129 0.006652 0.001129 0.001612
β1 0.945256 0.907895 0.851157 0.890313 0.851157 0.864582
β2 0.990342 0.999999 0.998940 0.999387 0.998940 0.999953
Weight Decay 0.000000 0.000002 0.001090 0.000447 0.001090 0.001941

Table 4: Tuned hyperparameter for the Adam algorithm

AdamW Fashion-MNIST CIFAR-10 CIFAR-100
CNN ResNet-18 CNN ResNet-34 CNN ResNet-34

Learning Rate 0.001004 0.018744 0.001129 0.006652 0.001129 0.001245
β1 0.922247 0.862748 0.851157 0.890313 0.851157 0.858643
β2 0.999945 0.999999 0.998940 0.999387 0.998940 0.998802
Weight Decay 0.000142 0.000040 0.001090 0.000447 0.001090 0.001804

Table 5: Tuned hyperparameter for the AdamW algorithm
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Fashion-MNIST CIFAR-10 CIFAR-100
CNN ResNet-18 CNN ResNet-34 CNN ResNet-34

SGD 1.23 4.19 6.60 9.05 7.09 12.08
Adam 1.33 5.16 6.71 9.83 7.21 11.33
AdamW 1.28 5.13 6.80 9.92 7.18 11.57
arTuRO 1.85 5.42 7.40 15.59 7.92 15.87

Table 6: Average time per training epoch in seconds.
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Figure 6: Test accuracies of the competing algorithms arTuRO, SGD, Adam and AdamW on the two remain-
ing experiments ResNet-18 on Fashion-MNIST (left) and CNN on CIFAR-10 (right). arTuRO outperforms
Adam and AdamW which is consistent to the other experiments. SGD beats arTuRO on the ResNet-18 task
applied to FashionMNIST, however its learning curve shows unstable behavior.

Appendix D. Additional Results

This section lists the missing figures of the test accuracies for the experiments ResNet-18 on Fashion-
MNIST and CNN on CIFAR-10 in Fig. 6. We also present the train loss curves of all experiments
in Fig. 7.

As mentioned in the paper, the arTuRO algorithm needs a longer computation time compared to
state-of-the-art optimizer. We present the average time per training epoch in Table 6. All experi-
ments are run on a single NVIDIA GeForce RTX 3080.
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Figure 7: Train loss curves of the competing algorithms arTuRO, SGD, Adam and AdamW.

16


	Introduction
	Information-Theoretic Trust Region Optimization
	Experiments
	Related Work
	Conclusion
	Acknowledgments
	Detailed solution of the Optimization problem
	Derivation of the Surrogate Model Fitting
	Experiment Details
	Additional Results

