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Abstract
This paper studies the uniform convergence and generalization bounds for nonconvex-(strongly)-
concave (NC-SC / NC-C) stochastic minimax optimization. We first establish the uniform conver-
gence between the empirical minimax problem and the population minimax problem and show
the Õ

(
dκ2ϵ−2

)
and Õ

(
dϵ−4

)
sample complexities respectively for the NC-SC and NC-C settings,

where d is the dimension number and κ is the condition number. To the best of our knowledge, this
is the first uniform convergence result measured by the first-order stationarity in stochastic minimax
optimization literature.

1. Introduction

In this paper, we consider nonconvex stochastic minimax problems:

min
x∈X

max
y∈Y

F (x, y) ≜ Eξ [f(x, y; ξ)], (1)

where X ⊆ Rd and Y ⊆ Rd′ (d, d′ ∈ N) are two nonempty closed convex sets, ξ ∈ Ξ is a random
variable following an unknown distribution D, and f : X ×Y×Ξ → R is continuously differentiable
and Lipschitz smooth jointly in x and y for any ξ. We denote the objective (1) as the population
minimax problem. Throughout the paper, we focus on the case where F is nonconvex in x and
(strongly) concave in y, i.e., nonconvex-(strongly)-concave (NC-SC / NC-C). Such problems widely
appear in practical applications like adversarial training [27, 42], generative adversarial networks
(GANs) [12, 19, 33], reinforcement learning [5, 6, 16] and robust training [37]. The distribution D is
often unknown and one generally only has access to a dataset S = {ξ1, · · · , ξn} consisting of n i.i.d.
samples from D and instead solves the following empirical minimax problem:

min
x∈X

max
y∈Y

FS(x, y) ≜
1

n

n∑
i=1

f(x, y; ξi). (2)

Since functions F and FS are nonconvex in x and pursuing their global optimal solutions is in-
tractable in general, instead one aims to design an algorithm A that finds an ϵ-stationary point, i.e.,
∥∇Φ(Ax(S))∥ ≤ ϵ or dist (0, ∂Φ(Ax(S))) ≤ ϵ, where Φ(x) ≜ maxy∈Y F (x, y) and ΦS(x) ≜

© S. Zhang, Y. Hu, L. Zhang & N. He.



UNIFORM CONVERGENCE AND GENERALIZATION FOR NONCONVEX STOCHASTIC MINIMAX PROBLEMS

maxy∈Y FS(x, y) are primal functions, Ax(S) is the x-component of the output of any algorithm A
for solving (2), dist (y,X) ≜ infx∈X ∥y − x∥ and ∂Φ is the (Fréchet) subdifferential of Φ. When
Φ is nonsmooth, we resort to the gradient norm of its Moreau envelope to measure the first-order
stationarity as it provides an upper bound on dist (0, ∂Φ(·)) [7].

Take the NC-SC setting as an example. The optimization error for solving the population minimax
problem (1) consists of two terms1:

E ∥∇Φ(Ax(S))∥ ≤ E ∥∇ΦS(Ax(S))∥︸ ︷︷ ︸
optimization error

+E ∥∇Φ(Ax(S))−∇ΦS(Ax(S))∥︸ ︷︷ ︸
generalization error

,
(3)

where the first term on the right-hand-side corresponds to the optimization error of solving the
empirical minimax problem (2) and the second term corresponds to the generalization error. Such
decomposition on the gradient norm has been studied recently in nonconvex minimization, e.g.,
[8, 11, 28]. Recently, there is a line of work that develops efficient algorithms for solving the
empirical minimax problems, which gives a hint on the optimization error; see e.g., [26, 46], just to
list a few. However, a full characterization of the generalization error is still lacking.

Characterizing the generalization error is not easy as both ΦS and Ax(S) depend on the dataset S,
which induces some correlation. One way to address such dependence issue in generalization bounds
is to establish the stability argument of specific algorithms in stochastic optimization [4, 15, 35] and
stochastic minimax optimization [2, 9, 20, 48]. However, these stability-based generalization bounds
have several drawbacks:

1. Generally, they require case-by-case analysis for different algorithms, i.e., these bounds are
algorithm-dependent.

2. Existing stability analysis only applies to simple gradient-based algorithms for minimization and
minimax problems (note that for minimax optimization, simple algorithms such as stochastic
gradient descent ascent often turn out to be suboptimal), yet such analysis can be difficult to
generalize to more sophisticated state-of-art algorithms.

3. Existing stability analysis generally requires specific parameters (e.g., stepsizes), which may
misalign with those required for convergence analysis, thus making the generalization bounds
less informative.

4. Existing stability-based generalization bounds generally use function value-based gap as the
measurement of the algorithm, which may not be suitable concerning the nonconvex landscape.
To the best of our knowledge, there are no generalization bound results measured by the
first-order stationarity in nonconvex minimax optimization.

To overcome these difficulties, we aim to derive generalization bounds via establishing the
uniform convergence from the empirical minimax optimization to the population minimax problem,
i.e., E supx∈X ∥∇Φ(x)−∇ΦS(x)∥. Note that uniform convergence is invariant to the choice of
algorithms and provides an upper bound on the generalization error for any Ax(S) ∈ X , thus
the derived generalization bound is algorithm-agnostic. Although uniform convergence has been
extensively studied in the literature of stochastic optimization [8, 17, 28], a key difference in uniform

1 Here for simplicity of illustration, we assume there is no constraint and primal functions are differentiable, detailed
setting will be formally introduced in Section 2.
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convergence for minimax optimization is that the primal function cannot be written as the average
over n i.i.d. random functions and one needs to additionally characterize the differences between
argmaxy∈Y FS(x, y) and argmaxy∈Y F (x, y). Thus techniques in uniform convergence for classical
stochastic optimization are not directly applicable.

Related Works In the NC-SC setting, many algorithms have been proposed in the literature, e.g.,
[3, 13, 23–26, 29, 36, 43–45], also recent years witnessed a surge of algorithms for NC-C problems
in deterministic, finite-sum, and stochastic settings, e.g., [3, 23, 29, 30, 38, 46, 49, 52], to name a few.
Uniform convergence is a very important topic and has been extensively studied in statistical learning
theory [10, 39, 40] and stochastic optimization [8, 17, 28, 40], but to the best of our knowledge,
we have not found any work that investigates the uniform convergence measured by the primal
stationarity in nonconvex minimax optimization.

Contributions In this work, we establish the first uniform convergence results between the popula-
tion and the empirical nonconvex minimax optimization in NC-SC and NC-C settings, measured by
the gradients of primal functions (or its Moreau envelope). Our results provide an algorithm-agnostic
generalization bound for any algorithms that solve the empirical nonconvex minimax problem.
Specifically, the sample complexities to achieve an ϵ-uniform convergence and an ϵ-generalization
error are Õ

(
dκ2ϵ−2

)
and Õ

(
dϵ−4

)
for the NC-SC and NC-C settings, respectively.

2. Problem Setting

First, we introduce the main assumptions used throughout the paper. For more notations and standard
definitions, we refer readers to check Appendix A.

Assumption 1 (Main Settings) We assume the following:

• The function f(x, y; ξ) is L-smooth jointly in (x, y) ∈ X × Y for any ξ.

• The function f(x, y; ξ) is µ-strongly concave in y ∈ Y for any x ∈ X and any ξ where µ ≥ 0.

• The gradient norms of f(·, ·; ξ) and Φ(·) are bounded by G,GΦ > 0 respectively for any ξ.

• The domains X and Y are compact convex sets, i.e., there exists constants DX , DY > 0 such
that for any x ∈ X , ∥x∥2 ≤ DX and for any y ∈ Y , ∥y∥2 ≤ DY , respectively.

Note that compact domain assumption is widely used in uniform convergence literature [8, 17].
Under Assumption 1, the objective function F is L-smooth in (x, y) and µ-strongly concave for any
ξ. When µ > 0, we call the population minimax problem (1) a nonconvex-strongly-concave (NC-SC)
minimax problem; when µ = 0, we call it a nonconvex-concave (NC-C) minimax problem.

Definition 1 (Moreau Envelope) For an L-weakly convex function Φ and 0 < λ < 1/L, we use
Φλ(x) and proxλΦ(x) to denote the the Moreau envelope of Φ and the proximal point of Φ for a
given point x, defined as following:

Φλ(x) ≜ min
z∈X

{
Φ(z) +

1

2λ
∥z − x∥2

}
, proxλΦ(x) ≜ argmin

z∈X

{
Φ(z) +

1

2λ
∥z − x∥2

}
. (4)
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Performance Measurement In the NC-SC setting, the primal functions Φ and ΦS are both L̃-
smooth. Regarding the constraint, we measure the difference between the population and empirical
minimax problems using the generalized gradient of the population and the empirical primal
functions, i.e., E ∥GΦ(Ax(S))− GΦS

(Ax(S))∥, where GΦ(x) ≜ L̃(x−projX (x− (1/L̃)∇Φ(x))).
The following inequality summarized the relationship of measurements in terms of generalized
gradient and in terms of gradient used in Section 1.

E ∥GΦ(Ax(S))− GΦS
(Ax(S))∥︸ ︷︷ ︸

generalization error of Algorithm A

≤ E ∥∇Φ(Ax(S))−∇ΦS(Ax(S))∥ ≤ E
[
max
x∈X

∥∇Φ(x)−∇ΦS(x)∥
]
,︸ ︷︷ ︸

algorithm-agnostic uniform convergence

where the first inequality holds as projection is a non-expansive operator. The term in the left-hand
side (LHS) above is the generalization error of an algorithm A we desire in the NC-SC case.

For the NC-C case, as the primal function Φ(x) is L-weakly convex, we use the gradient of its
Moreau Envelope to characterize the (near)-stationarity [7]. We measure the difference between the
population and empirical problems using the difference between the gradients of their respective
Moreau envelopes. The generalization error and the uniform convergence in the NC-C case are as
follows:

E
∥∥∥∇Φ1/(2L)(Ax(S))−∇Φ

1/(2L)
S (Ax(S))

∥∥∥︸ ︷︷ ︸
generalization error of Algorithm A

≤ E
[
max
x∈X

∥∥∥∇Φ1/(2L)(x)−∇Φ
1/(2L)
S (x)

∥∥∥]︸ ︷︷ ︸
algorithm-agnostic uniform convergence

.
(5)

The term in the LHS above is the generalization error of an algorithm A we desire in the NC-C case.

3. Uniform Convergence and Generalization Bounds

In this section, we discuss the sample complexity for achieving ϵ-uniform convergence and ϵ-
generalization error for NC-SC and NC-C stochastic minimax optimization.

3.1. NC-SC Stochastic Minimax Optimization

Under the NC-SC setting, we demonstrate in the following theorem the uniform convergence between
gradients of primal functions of the population and empirical minimax problems, which provides an
upper bound on the generalization error for any algorithm A. We defer the proof to Appendix C.

Theorem 2 (Uniform Convergence and Generalization Error, NC-SC) Under Assumption 1 with
µ > 0, we have

E
[
max
x∈X

∥∇Φ(x)−∇ΦS(x)∥
]
= Õ

(
d1/2κn−1/2

)
. (6)

Furthermore, to achieve ϵ-uniform convergence and ϵ-generalization error for any algorithm A such
that E ∥GΦ(Ax(S))− GΦS

(Ax(S))∥ ≤ ϵ, it suffices to have

n = n∗
NCSC ≜ Õ

(
dκ2ϵ−2

)
. (7)

To the best of our knowledge, it is the first uniform convergence and algorithm-agnostic generalization
error bound result for NC-SC stochastic minimax problem. In comparison, existing works in the
generalization error analysis [9, 20] utilize stability arguments for certain algorithms and thus are
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algorithm-specific. Zhang et al. [50] establish algorithm-agnostic stability and generalization in the
strongly-convex-strongly-concave regime, yet their analysis does not extend to the nonconvex regime.
Our generalization results apply to any algorithms for solving finite-sum problems, especially the
SOTA algorithms like Catalyst-SVRG [51] and finite-sum version SREDA [26]. These algorithms
are generally very complicated, and they lack stability-based generalization bounds.

The achieved sample complexity further implies that for any algorithm that achieves an ϵ-
stationarity point of the empirical minimax problem, its sample complexity for finding an ϵ-stationary
point of the population minimax problem is Õ

(
dκ2ϵ−2

)
. In terms of the dependence on the accuracy

ϵ and the condition number κ, such sample complexity is better than the SOTA sample complexity re-
sults achieved via directly applying gradient-based methods on the population minimax optimization,
i.e., O

(
κ2ϵ−4

)
by Stochastic Smoothed-AGDA [47] and O

(
κ3ϵ−3

)
by SREDA [26].

3.2. NC-C Stochastic Minimax Optimization

In this subsection, we derive the uniform convergence and algorithm-agnostic generalization bounds
for NC-C stochastic minimax problems. Recall that the primal function Φ is L-weakly convex [38]
and ∇Φ is not well-defined. We use the gradient of the Moreau envelope of the primal function as
the measurement [7].

Theorem 3 (Uniform Convergence and Generalization Error, NC-C) Under Assumption 1 with
µ = 0, we have

E
[
max
x∈X

∥∥∥∇Φ
1/(2L)
S (x)−∇Φ1/(2L)(x)

∥∥∥] = Õ
(
d1/4n−1/4

)
. (8)

Furthermore, to achieve ϵ-uniform convergence and ϵ-generalization error for any algorithm A such
that E

[∥∥∥∇Φ1/(2L)(Ax(S))−∇Φ
1/(2L)
S (Ax(S))

∥∥∥] ≤ ϵ, it suffices to have

n = n∗
NCC ≜ Õ

(
dϵ−4

)
. (9)

The proof of Theorem 3 is deferred to Appendix D. To the best of our knowledge, this is the first
algorithm-agnostic generalization error result in NC-C stochastic minimax optimization. Similar to
the NC-SC setting, Theorem 3 indicates that the sample complexity to guarantee an ϵ-generalization
error in the NC-C case for any algorithm is Õ

(
dϵ−4

)
. In comparison, it is much better than the

Õ
(
ϵ−6
)

sample complexity achieved by the SOTA stochastic approximation-based algorithms [32]
for NC-C stochastic minimax optimization for small accuracy ϵ and moderate dimension d.

4. Conclusion

In this paper, we take an initial step towards understanding the uniform convergence and correspond-
ing generalization performances of NC-SC and NC-C minimax problems measured by the first-order
stationarity. We hope that this work will shed light on the design of algorithms with improved
complexities for solving stochastic nonconvex minimax optimization.

Several future directions are worthy of further investigation. It remains interesting to see whether
we can improve the uniform convergence results under the NC-C setting, particularly the dependence
on accuracy ϵ. In terms of generalization bounds, it remains open to derive algorithm-specific
stability-based generalization bounds under the stationarity measurement.
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Appendix A. Additional Definitions and Tools

For convenience, we summarize the notations commonly used throughout the paper.

• Population minimax problem and its primal function2

F (x, y) ≜ Eξ f(x, y; ξ), Φ(x) ≜ max
y∈Y

F (x, y), y∗(x) ≜ argmax
y∈Y

F (x, y).

• Empirical minimax problem and its primal function

FS(x, y) ≜
1

n

n∑
i=1

f(x, y; ξi), ΦS(x) ≜ max
y∈Y

FS(x, y), y∗S(x) ≜ argmax
y∈Y

FS(x, y).

• Moreau envelope and corresponding proximal point:

Φλ(x) ≜ min
z∈X

{
Φ(z) +

1

2λ
∥z − x∥2

}
, proxλΦ(x) ≜ argmin

z∈X

{
Φ(z) +

1

2λ
∥z − x∥2

}
,

Φλ
S(x) ≜ min

z∈X

{
ΦS(z) +

1

2λ
∥z − x∥2

}
, proxλΦS

(x) ≜ argmin
z∈X

{
ΦS(z) +

1

2λ
∥z − x∥2

}
.

• GΦ(x): gradient mapping (generalized gradient) of a function Φ.

• ∥·∥: ℓ2-norm.

• ∇f = (∇xf,∇yf): the gradient of a function f .

• projX (x
′): the projection operator.

• A(S) ≜ (Ax(S),Ay(S)): the output of an algorithm A on the empirical minimax problem (2)
with dataset S.

• NC / WC: nonconvex, weakly convex.

• NC-SC / NC-C: nonconvex-(strongly)-concave.

• SOTA: state-of-the-art.

• d: dimension number of X .

• κ: condition number L
µ , L: Lipschitz smoothness parameter, µ: strong concavity parameter.

• Õ(·) hides poly-logarithmic factors.

• f = Ω(g) if f(x) ≥ cg(x) for some c > 0 and nonnegative functions f and g.

2 Another commonly used convergence criterion in minimax optimization is the first-order stationarity of F , i.e.,
∥∇xF∥ ≤ ϵ and ∥∇yF∥ ≤ ϵ (or its corresponding gradient mapping) [23, 43]. We refer readers to [23, 47] for a thorough
comparison of these two measurements. In this paper, we always stick to the convergence measured by the stationarity of
the primal function.

10
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• We say a function g : X → R is convex if ∀ x1, x2 ∈ X and p ∈ [0, 1], we have g(px1 + (1−
p)x2) ≥ pg(x1) + (1− p)g(x2).

• A function h : X → R is L-smooth3 if h is continuously differentiable in X and there exists a
constant L > 0 such that ∥∇h(x1)−∇h(x2)∥ ≤ L∥x1 − x2∥ holds for any x1, x2.

• Given µ ≥ 0, we say a function g : X → R µ-strongly convex if g(x) − µ
2∥x∥

2 is convex,
and it is µ-strongly concave if −g is µ-strongly convex. Also we say a function g is µ-weakly
convex if g(x) + µ

2∥x∥
2 is convex

Definition 4 (Smooth Function) We say a function f : X × Y → R is L-smooth jointly in (x, y)
if the function is continuous differentiable, and there exists a constant L > 0 such that for any
(x1, y1), (x2, y2) ∈ X × Y , we have ∥∇xf(x1, y1)−∇xf(x2, y2)∥ ≤ L(∥x1 − x2∥ + ∥y1 − y2∥)
and ∥∇yf(x1, y1)−∇yf(x2, y2)∥ ≤ L(∥x1 − x2∥+ ∥y1 − y2∥).

By definition, it is easy to find that an L-smooth function is also L-weakly convex. For completeness,
we introduce the definition of a sub-Gaussian random variable and related lemma, which are important
tools in the analysis.

Definition 5 (Sub-Gaussian Random Variable) A random variable η is a zero-mean sub-Gaussian
random variable with variance proxy σ2

η if E η = 0 and either of the following two conditions hold:

(a) E [exp(sη)] ≤ exp

(
σ2
ηs

2

2

)
for any s ∈ R; (b) P(|η| ≥ t) ≤ 2 exp

(
− t2

2σ2
η

)
for any t > 0.

We use the following McDiarmid’s inequality to show that a random variable is sub-Gaussian.

Lemma 6 (McDiarmid’s inequality) Let η1, . . . , ηn ∈ R be independent random variables. Let
h : Rn → R be any function with the (c1, . . . , cn)-bounded differences property: for every i =
1, . . . , n and every (η1, . . . , ηn), and (η′1, . . . , η

′
n) that differ only in the i-th coordinate (ηj = η′j for

all j ̸= i), we have ∣∣h(η1, . . . , ηn)− h(η′1, . . . , η
′
n)
∣∣ ≤ ci.

For any t > 0, it holds that

P(|h(η1, . . . , ηn)− Eh(η1, . . . , ηn)| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.

Below we recall some important properties on the primal function Φ and its Moreau envelope
Φλ(x) presented in the literature [7, 23, 38].

Lemma 7 (Properties of Φ and Φλ) In the NC-SC setting (µ > 0), both Φ(x) and ΦS(x) are
L̃ ≜ L(1 + κ)-smooth with the condition number κ ≜ L/µ, both y∗(x) and y∗S(x) are κ-Lipschitz
continuous and ∇Φ(x) = ∇xF (x, y∗(x)),∇ΦS(x) = ∇xFS(x, y

∗
S(x)). In the NC-C setting

3 Here the smoothness definition for single-variable functions is subtly different from that of two-variable functions in
Definition 4, so we list it here for completeness.
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(µ = 0), the primal function Φ is L-weakly convex, and its its Moreau envelope Φλ(x) is differentiable,
Lipschitz smooth, also

∇Φλ(x) = λ−1(x− x̂),
∥∥∥∇Φλ(x)

∥∥∥ ≥ dist (0, ∂Φ(x̂)), (10)

where x̂ = proxλΦ(x) and 0 < λ < 1/L.

For completeness, we formally define the stationary point here. Note that the generalized gradient
is defined on X while the Moreau envelope is defined on the whole domain Rd.

Definition 8 (Stationary Point) Let ϵ > 0, for an L̃-smooth function Φ : X → R, we call a point x
an ϵ-stationary point of Φ if ∥GΦ(x)∥ ≤ ϵ, where GΦ is the gradient mapping (or generalized gradient)
defined as GΦ(x) ≜ L̃

(
x− projX

(
x− (1/L̃)∇Φ(x)

))
; for an L-weakly convex function Φ, we

say a point x an ϵ-(nearly)-stationary point of Φ if
∥∥∇Φ1/(2L)(x)

∥∥ ≤ ϵ.

Appendix B. Additional Related Literature

Nonconvex Minimax Optimization Among the rich library of algorithms for NC-SC problems,
[51] achieved the optimal complexity O(

√
κϵ−2) in the deterministic case by introducing the Catalyst

acceleration scheme [22, 31] into minimax problems, and Luo et al. [26], Zhang et al. [51] achieved
the best complexity in the finite-sum case for now, which are O(

√
nκ2ϵ−2) and O(n3/4√κϵ−2),

respectively. For the purely stochastic NC-SC minimax problems, Yang et al. [47] introduced a
stochastic smoothed-AGDA algorithm, which achieves the best O(κ2ϵ−4) complexity, while Luo
et al. [26] achieves the best O(κ3ϵ−3) complexity if further assuming average smoothness. The
lower bounds of NC-SC problems in deterministic, finite-sum, and stochastic settings have been
extensively studied recently in [14, 21, 51]

In general, NC-C problems are harder than NC-SC problems since besides nonconvexity, their
primal functions can also be nonsmooth [23, 38]. To the best of our knowledge, [24, 38, 46] achieved
the best Õ(ϵ−3) complexity in the deterministic case, while [46] achieved the best Õ(n3/4ϵ−3)
complexity in the finite-sum case, and [32] provided the best Õ(ϵ−6) complexity in the purely
stochastic case.

Uniform Convergence A series of works from stochastic optimization and statistical learning
theory studied uniform convergence on the worst-case differences between the population objec-
tive L(x) and its empirical objective LS(x) constructed via sample average approximation (SAA,
also known as empirical risk minimization). Interested readers may refer to prominent results in
statistical learning [10, 39, 40]. For finite-dimensional problems, Kleywegt et al. [17] showed that
the sample complexity is O(dϵ−2) to achieve an ϵ-uniform convergence in high probability, i.e.,
P(supx∈X |L(x) − LS(x)| ≥ ϵ). For nonconvex empirical objectives, Mei et al. [28] and Davis
and Drusvyatskiy [8] established Õ(dϵ−2) sample complexity of uniform convergence measured
by the stationarity for nonconvex smooth and weakly convex functions, respectively. For infinite-
dimensional functional stochastic optimization with a finite VC-dimension, uniform convergence still
holds [40]. In addition, Wang et al. [41] use uniform convergence to demonstrate the generalization
and the gradient complexity of differential private algorithms for stochastic optimization.
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Stability-Based Generalization Bounds Another line of research focuses on analyzing general-
ization bounds of stochastic optimization via the uniform stability property of specific algorithms,
including SAA [4, 34], stochastic gradient descent [1, 15], and uniformly stable algorithms [18].
Recently, a series of works further extended the analysis to understand the generalization perfor-
mances of various algorithms in minimax problems. Farnia and Ozdaglar [9] gave the generalization
bound for the outputs of gradient-descent-ascent (GDA) and proximal-point algorithm (PPA) in both
(strongly)-convex-(strongly)-concave and nonconvex-nonconcave smooth minimax problems. Lei
et al. [20] focused on GDA and provided a comprehensive study for different settings of minimax
problems with various generalization measures on function value gaps. Boob and Guzmán [2]
provided stability and generalization results of extragradient algorithm (EG) in the smooth convex-
concave setting. On the other hand, Zhang et al. [50] studied stability and generalization of the
empirical minimax problem under the (strongly)-convex-(strongly)-concave setting, assuming that
one can find the optimal solution to the empirical minimax problem. But as we discussed before,
there are several key restrictions for the stability argument approach. To accommodate more involved
algorithms, here we will study the generalization performances via the lens of uniform convergence.

Appendix C. Proof of Theorem 2

We first briefly sketch the main flow of the proof of Theorem 2, which consists of two main steps:
Step 1: First, we use a υ-net {xk}Qk=1 [40] to decompose the error and handle the dependence issue
between argmaxx∈X ∥∇ΦS(x)−∇Φ(x)∥ and ΦS(x).
Step 2: For any xk within the υ-net, we have the following decomposition

∥∇ΦS(xk)−∇Φ(xk)∥
≤(∥∇ΦS(xk)−∇Φ(xk)∥ − E ∥∇ΦS(x)−∇Φ(xk)∥) + (E ∥∇ΦS(xk)−∇Φ(xk)∥).

We first upper bound the second term E ∥∇ΦS(xk)−∇Φ(xk)∥ in the right-hand side (RHS) using
the stability argument as the maximization problem over y is strongly concave. Then we utilize the
established stability argument to show that the first term in the RHS is sub-Gaussian and apply the
concentration inequality.

Now we proceed to the proof of Theorem 2.
Proof To derive the desired generalization bounds, we take an υ-net {xk}Qk=1 on X so that there
exists a k ∈ {1, · · · , Q} for any x ∈ X such that ∥x − xk∥ ≤ υ. Note that such υ-net exists with
Q = O(υ−d) for compact X [17]. Utilizing the definition of the υ-net, we have

Emax
x∈X

∥∇ΦS(x)−∇Φ(x)∥

≤ Emax
x∈X

[∥∇ΦS(x)−∇ΦS(xk)∥+ ∥∇ΦS(xk)−∇Φ(xk)∥+ ∥∇Φ(xk)−∇Φ(x)∥]

≤ Emax
k∈[Q]

∥∇ΦS(xk)−∇Φ(xk)∥+ 2L(1 + κ)υ,

(11)
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where the last inequality holds as Φ and ΦS are L(1+κ)-smooth following Lemma 7. For any s > 0,
we have

exp
(
sEmax

x∈X
∥∇ΦS(x)−∇Φ(x)∥

)
≤ exp

(
s
[
Emax

k∈[Q]
∥∇ΦS(xk)−∇Φ(xk)∥+ 2L(1 + κ)υ

])
≤ Emax

k∈[Q]
exp

(
s
[
∥∇ΦS(xk)−∇Φ(xk)∥+ 2L(1 + κ)υ

])
≤ E

∑
k∈[Q]

exp
(
s
[
∥∇ΦS(xk)−∇Φ(xk)∥+ 2L(1 + κ)υ

])
=
∑
k∈[Q]

E exp
(
s
[
∥∇ΦS(xk)−∇Φ(xk)∥+ 2L(1 + κ)υ

])
,

(12)

where the second inequality uses Jensen’s inequality and monotonicity of exponential function, and
the third inequality uses summation over k ∈ [Q] to handle the dependence issue, i.e., the xk in the
last line is independent of S. We use the exponential function as an intermediate step so that the final
sample complexity depends on log(Q) rather than Q, which is of order O(υ−d). Without loss of
generality, selecting υ such that 2L(1 + κ)υ = ϵ

2 , we have

Emax
x∈X

∥∇ΦS(x)−∇Φ(x)∥

≤ 1

s
log

( ∑
k∈[Q]

E exp (s[∥∇Φ(xk)−∇ΦS(xk)∥ − E ∥∇Φ(xk)−∇ΦS(xk)∥])

· exp (sE ∥∇Φ(xk)−∇ΦS(xk)∥) exp
(sϵ
2

))
.

(13)

To upper bound E ∥∇Φ(xk) − ∇ΦS(xk)∥, we use the following observation. Define y∗
S(i)(x) ≜

argmaxy∈Y FS(i)(x, y) where S = {ξi}ni=1, S(i) = {ξ1, . . . , ξi−1, ξ
′
i, ξi+1, . . . , ξn} and ξ′i is i.i.d.
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from ξi. Since x is independent of S or S(i) for any i, by Danskin’s theorem, we have

E∥∇Φ(x)−∇ΦS(x)∥ = E

∥∥∥∥∥Eξ ∇xf(x, y
∗(x); ξ)− 1

n

n∑
i=1

∇xf(x, y
∗
S(x); ξi)

∥∥∥∥∥
= E

∥∥∥∥∥Eξ ∇xf(x, y
∗(x); ξ)− 1

n

n∑
i=1

∇xf(x, y
∗(x); ξi)

+
1

n

n∑
i=1

∇xf(x, y
∗(x); ξi)−

1

n

n∑
i=1

∇xf(x, y
∗
S(x); ξi)

∥∥∥∥∥
≤ E

∥∥∥∥∥Eξ ∇xf(x, y
∗(x); ξ)− 1

n

n∑
i=1

∇xf(x, y
∗(x); ξi)

∥∥∥∥∥
+ E

∥∥∥∥∥ 1n
n∑

i=1

∇xf(x, y
∗(x); ξi)−

1

n

n∑
i=1

∇xf(x, y
∗
S(x); ξi)

∥∥∥∥∥
≤ E

∥∥∥∥∥Eξ ∇xf(x, y
∗(x); ξ)− 1

n

n∑
i=1

∇xf(x, y
∗(x); ξi)

∥∥∥∥∥+ L∥y∗(x)− y∗S(x)∥

≤
√

Var(∇xf)

n
+ L∥y∗(x)− y∗S(x)∥,

(14)

where Var(∇xf) is the variance of ∇xf(·, ·; ξ) and the second inequality holds by smoothness of f .
Since the variance is upper bounded by the second moment:

Var(∇xf) ≤ E∥∇xf(x, y
∗(x); ξ)∥2 ≤ G2, (15)

it further holds that

E∥∇Φ(x)−∇ΦS(x)∥ ≤ G√
n
+ L∥y∗(x)− y∗S(x)∥. (16)

To derive an upper bound on ∥y∗(x)− y∗S(x)∥, we first bound
∥∥∥y∗

S(i)(x)− y∗S(x)
∥∥∥ and utilize the

stability argument. Since f(x, y; ξ) is µ-strongly concave in y for any x and ξ and y∗S(x) is the
maximizer of FS(x, ·), we have(

−FS

(
x, y∗

S(i)(x)
))

− (−FS(x, y
∗
S(x))) ≥

µ

2

∥∥∥y∗S(i)(x)− y∗S(x)
∥∥∥2, (17)

On the other hand, we have

FS(x, y
∗
S(x))− FS(x, y

∗
S(i)(x))

=FS(i)(x, y∗S(x))− FS(i)(x, y∗S(i)(x))

+
1

n

[
f(x, y∗S(x); ξi)− f(x, y∗

S(i)(x); ξi) + f(x, y∗
S(i)(x); ξ

′
i)− f(x, y∗S(x); ξ

′
i)
]

≤FS(i)(x, y∗S(x))− FS(i)(x, y∗S(i)(x))

+
1

n

∣∣∣f(x, y∗S(i)(x); ξi)− f(x, y∗S(x); ξi)|+
1

n
|f(x, y∗

S(i)(x); ξ
′
i)− f(x, y∗S(x); ξ

′
i)
∣∣∣

≤2G

n

∥∥y∗
S(i)(x)− y∗S(x)

∥∥,
15
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where the last inequality holds by Lipschitz continuity and the optimality of y∗
S(i)(x). Combined

with (17), it holds that ∥∥∥y∗S(i)(x)− y∗S(x)
∥∥∥ ≤ 4G

µn
.

In addition, we have

E[F (x, y∗(x))− F (x, y∗S(x))]

= E [F (x, y∗(x))− FS(x, y
∗(x))] + E [FS(x, y

∗(x))− FS(x, y
∗
S(x))]

+ E [FS(x, y
∗
S(x))− F (x, y∗S(x))]

≤E [FS(x, y
∗
S(x))− F (x, y∗S(x))]

= E

[
1

n

n∑
i=1

f(x, y∗S(x); ξi)−
1

n

n∑
i=1

Eξ f(x, y
∗
S(x); ξ)

]

= E

[
1

n

n∑
i=1

f(x, y∗S(x); ξi)−
1

n

n∑
i=1

Eξi f(x, y
∗
S(i)(x); ξi)

]

= E

[
1

n

n∑
i=1

f(x, y∗S(x); ξi)−
1

n

n∑
i=1

f(x, y∗
S(i)(x); ξi)

]
≤ GE

∥∥y∗S(x)− y∗
S(i)(x)

∥∥
≤ 4G2

µn

(18)

where the first inequality holds as y∗S(x) = argmaxy∈Y FS(x, y
∗
S(x)) and E[F (x, y∗(x))−FS(x, y

∗(x))] =
0, the third equality holds as y∗S(x) and y∗

S(i)(x) are identical distributed and y∗
S(i)(x) is independent

of ξ by definition, the second inequality holds by Lipschitz continuity of f on y, and the last inequal-
ity holds by plugging the upper bound on ∥y∗S(x)− y∗

S(i)(x)∥. On the other hand, since F (x, y) is
strongly concave in y and y∗(x) = argmaxy∈Y F (x, y), it holds that

F (x, y∗(x))− F (x, y∗S(x)) ≥
µ

2
∥y∗(x)− y∗S(x)∥2.

Therefore, we have

E ∥y∗(x)− y∗S(x)∥ ≤

√
8G2

µ2n
.

Plugging into (16), it holds that

E ∥∇Φ(xk)−∇ΦS(xk)∥ ≤ L

√
8G2

µ2n
+

G√
n
. (19)
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Next we show that ∥∇Φ(x)−∇ΦS(x)∥−E ∥∇Φ(x)−∇ΦS(x)∥ is zero-mean sub-Gaussian. Notice
that for any ξ′i, we have

∥∇Φ(x)−∇ΦS(x)∥ − ∥∇Φ(x)−∇ΦS(i)(x)∥
≤ ∥∇ΦS(x)−∇ΦS(i)(x)∥

=

∥∥∥∥∥∥ 1n
n∑

j=1

∇xf(x, y
∗
S(x), ξj)−

1

n

n∑
j ̸=i

∇xf
(
x, y∗

S(i)(x), ξj
)
− 1

n
∇xf

(
x, y∗

S(i)(x), ξ
′
i

)∥∥∥∥∥∥
≤ L

∥∥y∗
S(i)(x)− y∗S(x)

∥∥+ 1

n

∥∥∇xf(x, y
∗
S(i)(x); ξ

′
i)−∇xf(x, y

∗
S(i)(x); ξi)

∥∥
≤ 4LG/µ+ 2G

n
,

(20)

where the first inequality uses triangle inequality, the first equality uses definition of ΦS and ΦS(i) , the
third inequality uses the assumption that G is the uniform upper bound of ∇f(x, y; ξ) on X × Y for
any ξ. By McDiarmid’s inequality (Lemma 6) and the definition of sub-Gaussian random variable, it
holds that ∥∇Φ(xk)−∇ΦS(xk)∥−E ∥∇Φ(xk)−∇ΦS(xk)∥ is a zero-mean sub-Gaussian random
variable with variance proxy σ2 ≜ (2LG/µ+G)2/n. By the definition of zero-mean sub-Gaussian
random variable, it holds that

E exp(s[∥∇Φ(xk)−∇ΦS(xk)∥ − E ∥∇Φ(xk)−∇ΦS(xk)∥]) ≤ exp

(
s2σ2

2

)
. (21)

Plugging (19) and (21) into (13), we have

E ∥∇ΦS(x)−∇Φ(x)∥ ≤ log(Q)

s
+

sσ2

2
+ L

√
8G2

µ2n
+

G√
n
+

ϵ

2
(22)

Minimizing the right hand side over s, we have

E ∥∇ΦS(x)−∇Φ(x)∥ ≤ 2

√
log(Q)σ2

2
+ L

√
8G2

µ2n
+

G√
n
+

ϵ

2

=

√
2log(Q)(2LG/µ+G)2

n
+ L

√
8G2

µ2n
+

G√
n
+

ϵ

2
.

(23)

Recall that Q = O(υ−d) with υ = ϵ/(4L(1 + κ)), thus log(Q) = O(d log(4L(1 + κ)ϵ−1)), which
verifies the first statement in the theorem. For the sample complexity, following the discussion on the
performance measurement in Section 2, it is easy to derive that it requires

n = O
(
2dϵ−2(2LG/µ+G)2 log(4L(1 + κ)ϵ−1)

)
= Õ(dκ2ϵ−2) (24)

to guarantee that E ∥∇ΦS(x)−∇Φ(x)∥ ≤ ϵ for any x ∈ X , which concludes the proof.
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Appendix D. Proof of Theorem 3

D.1. Important Lemma

The following lemma characterizes the distance between the proximal points of the primal function
of the original NC-C problem Φ and the regularized NC-SC problem Φ̂. Note that the lemma may be
of independent interest for the design and the analysis of gradient-based methods for NC-C problem.

Lemma 9 For ν > 0, denote Φ̂(x) = maxy∈Y F (x, y) − ν
2∥y∥

2 as the primal function of the
regularized NC-C problem. It holds for λ ∈ (0, (L+ ν)−1) that

∥proxλΦ(x)− proxλΦ̂(x)∥
2 ≤ νDYλ

1− λ(L+ ν)
.

This lemma implies that for small regularization parameter ν, the difference between the proximal
point of the primal function Φ of the NC-C problem and the primal function Φ̂ of the regularized
NC-SC problem is going to be small.

We first provide the proof of Lemma 9.
Proof Since F (x, y) is L-smooth, it is obvious that F (x, y)− ν

2∥y∥
2 is (L+ ν)-smooth. By [38,

Lemma 3], Φ̂(x) is (L+ ν)-weakly convex in x. Therefore, Φ̂(x) + 1
2λ∥x− x′∥2 is

(
1
λ − (L+ ν)

)
-

strongly convex in x for any fixed x′. Denote ŷ(x) ≜ argmaxy∈Y F (x, y) − ν
2∥y∥

2, y∗(x) ≜
argmaxy∈Y F (x, y). It holds that

1

2
(1/λ− (L+ ν))∥proxλΦ(x)− proxλΦ̂(x)∥

2

≤ Φ̂(proxλΦ(x)) +
1

2λ
∥proxλΦ(x)− x∥2 − Φ̂(proxλΦ̂(x))−

1

2λ
∥proxλΦ̂(x)− x∥2

= F (proxλΦ(x), ŷ(proxλΦ(x)))−
ν

2
∥ŷ(proxλΦ(x))∥2 +

1

2λ
∥proxλΦ(x)− x∥2

− F (proxλΦ̂(x), ŷ(proxλΦ̂(x))) +
ν

2
∥ŷ(proxλΦ̂(x))∥

2 − 1

2λ
∥proxλΦ̂(x)− x∥2

≤ F (proxλΦ(x), y
∗(proxλΦ(x))) +

1

2λ
∥proxλΦ(x)− x∥2 − ν

2
∥ŷ(proxλΦ(x))∥2

− F (proxλΦ̂(x), ŷ(proxλΦ̂(x)))−
1

2λ
∥proxλΦ̂(x)− x∥2 + ν

2
∥ŷ(proxλΦ̂(x))∥

2

≤ F (proxλΦ(x), y
∗(proxλΦ(x))) +

1

2λ
∥proxλΦ(x)− x∥2 − ν

2
∥ŷ(proxλΦ(x))∥2

− F (proxλΦ̂(x), y
∗(proxλΦ̂(x)))−

1

2λ
∥proxλΦ̂(x)− x∥2 + ν

2
∥y∗(proxλΦ̂(x))∥

2

= Φ(proxλΦ(x)) +
1

2λ
∥proxλΦ(x)− x∥2 − Φ(proxλΦ̂(x))−

1

2λ
∥proxλΦ̂(x)− x∥2

+
ν

2
∥y∗(proxλΦ̂(x))∥

2 − ν

2
∥ŷ(proxλΦ(x))∥2

≤ ν

2
∥y∗(proxλΦ̂(x))∥

2 − ν

2
∥ŷ(proxλΦ(x))∥2

≤ νDY
2

,

(25)
where the first inequality holds by strong convexity of Φ̂(z)+ 1

2λ∥z−x∥2 and optimality of proxλΦ̂(x)

for minz∈X Φ̂(z)+ 1
2λ∥z−x∥2, the first equality holds by definition of Φ̂, the second inequality holds
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by optimality of y∗(proxλΦ(x))) = argmaxy∈Y F (proxλΦ(x), y), the third inequality holds by
optimality of ŷ(proxλΦ(x))) = argmaxy∈Y F (proxλΦ(x), y)− ν

2∥y∥
2, the second equality holds

by definition of Φ, the fourth inequality holds by optimality of proxλΦ(x) = argminx∈X {Φ(z) +
1
2λ∥z − x∥2}, the last inequality holds by compact domain Y .

D.2. Proof of Theorem 3

The analysis of Theorem 3 is closely related to the analysis of NC-SC setting and consists of three
parts.
Step 1: By the expression of the gradient of the Moreau envelope, it holds that ∥∇Φλ

S(x) −
∇Φλ(x)∥ ≤ 1

λ∥proxλΦ(x) − proxλΦS
(x)∥. We first use a υ-net {xk}Qk=1 [40] to handle the

dependence issue between x̃∗ ≜ argmaxx∈X ∥proxλΦ(x)− proxλΦS
(x)∥ and ΦS .

Step 2: Then we build up a connection between NC-C stochastic minimax optimization problems
and NC-SC stochastic minimax optimization problems via adding an ℓ2-regularization and carefully
choosing a regularization parameter.
Step 3: It remains to characterize the distance between proxλΦ̂(x) and proxλΦ̂S

(x) and show
that ∥proxλΦ̂S

(x) − proxλΦ̂(x)∥ − E ∥proxλΦ̂S
(x) − proxλΦ̂(x)∥ is a sub-Gaussian random

variable. For the distance between proxλΦ̂(x) and proxλΦ̂S
(x), by definition, it is equivalent to

the difference between the optimal solutions on x of strongly-convex strongly-concave (SC-SC)
population minimax problem and its empirical minimax problem. We utilize the existing stability-
based results for SC-SC minimax optimization [50] to upper bound such distance and show the
variable is sub-Gaussian.

Next, we demonstrate the proof of Theorem 3.
Proof By Lemma 9, we have

∥proxλΦ(x)− proxλΦ̂(x)∥ ≤

√
λνDY

1− λ(L+ ν)
;

∥proxλΦS
(x)− proxλΦ̂S

(x)∥ ≤

√
λνDY

1− λ(L+ ν)
.

To derive the desired uniform convergence, similar to the proof of Theorem 2, we take an υ-net
{xk}Qk=1 on X so that there exists a k ∈ {1, · · · , Q} for any x ∈ X such that ∥x − xk∥ ≤ υ.
Note that such υ-net exists with Q = O(υ−d) for compact X . We first decompose the error as
approximation error from NC-SC minimax problems to NC-C minimax problems. Then we utilize
the υ-net to address the dependence between S and argmaxx∈X ∥∇Φλ

S(x)−∇Φλ(x)∥. First note
that
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Emax
x∈X

∥∇Φλ
S(x)−∇Φλ(x)∥

=
1

λ
Emax

x∈X
∥proxλΦS

(x)− proxλΦ(x)∥

≤ 1

λ
Emax

x∈X
∥proxλΦS

(x)− proxλΦ̂S
(x)∥+ ∥proxλΦ̂S

(x)− proxλΦ̂(x)∥

+ ∥proxλΦ̂(x)− proxλΦ(x)∥

≤ 2

λ

√
λνDY

1− λ(L+ ν)
+

1

λ
Emax

x∈X
∥proxλΦ̂S

(x)− proxλΦ̂(x)∥

≤ 2

λ

√
λνDY

1− λ(L+ ν)
+

1

λ
Emax

x∈X

[
∥proxλΦ̂S

(x)− proxλΦ̂S
(xk)∥

+ ∥proxλΦ̂S
(xk)− proxλΦ̂(xk)∥+ ∥proxλΦ̂(xk)− proxλΦ̂(x)∥

]
≤2

√
νDY

λ(1− λ(L+ ν))
+

1

λ
Emax

k∈[Q]
∥proxλΦ̂S

(xk)− proxλΦ̂(xk)∥+
2υ

λ(1− λ(L+ ν))

≤2

√
νDY

λ(1− λ(L+ ν))
+

1

λs
log

∑
k∈[Q]

E exp
(
s
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥)


+
2υ

λ(1− λ(L+ ν))
,

(26)

where the first and the third inequality use the triangle inequality, the second inequality uses Lemma 9
for Φ and ΦS , xk is the closest point to x in the υ-net, the fourth inequality holds by (1−λ(L+ν))−1-
Lipschitz continuity of proximal operator [8, Lemma 4.3] since F (x, y)− ν

2∥y∥
2 is a (L+ν)-smooth

function, and the last inequality follows a similar argument in (12). All that remains is to bounding
E exp

(
s
∥∥∥proxλΦ̂S

(x)− proxλΦ̂(x)
∥∥∥) for x ∈ X that is independent of S. Notice that

E exp
(
s
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥)

= E exp
(
s
[∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥− E

∥∥∥proxλΦ̂S
(xk)− proxλΦ̂(xk)

∥∥∥])
· exp

(
sE
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥)

Next, we show that
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥−E

∥∥∥proxλΦ̂S
(xk)− proxλΦ̂(xk)

∥∥∥ is a zero-

mean sub-Guassian random variable and E
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥ is bounded. Since xk

is independent of S, it is sufficient to show an upper bound of the following term where x ∈ X is
independent of S.

E ∥proxλΦ̂S
(x)− proxλΦ̂(x)∥.
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Recall the definition that

proxλΦ̂(x) = argmin
z∈X

{
max
y∈Y

Eξ f(z, y; ξ)−
ν

2
∥y∥2 + 1

2λ
∥z − x∥2

}
, (27)

proxλΦ̂S
(x) = argmin

z∈X

{
max
y∈Y

1

n

n∑
i=1

[
f(z, y; ξi)−

ν

2
∥y∥2 + 1

2λ
∥z − x∥2

]}
. (28)

Denote the solution of (27) as (z∗(x), y∗(x)) and the solution of (28) as (zS(x), yS(x)). We need
to bound the distance between z∗(x) and zS(x), note that these (z∗(x), y∗(x)) comes from a
strongly-convex-strongly-concave stochastic minimax problem, where the modulus are 1−λL

λ and
ν, respectively; while the other comes from the sample average approximation counterpart. By [50,
Theorem 1 and Appendix A.1], we have the following results:

1− λL

2λ
E ∥zS(x)− z∗(x)∥2 + ν

2
E ∥yS(x)− y∗(x)∥2 ≤ 2

√
2

n

(
L̂2
xλ

1− λL
+

L̂2
y

ν

)
,

where L̂x is the Lipschitz continuity parameter of f(z, y; ξ) + 1
2λ∥z − x∥2 in z ∈ X for any given

y ∈ Y and ξ, and L̂y is the Lipschitz continuity parameter of f(z, y; ξ)− ν
2∥y∥

2 in y ∈ Y for any
given z ∈ X and ξ. More specifically, since f(·, ·; ξ) is G-Lipschitz continuous for any ξ, we have

L̂x ≤ G+
2
√
DX
λ

, L̂y ≤ G+ ν
√
DY .

Therefore, we have

E ∥proxλΦ̂S
(x)− proxλΦ̂(x)∥ = E ∥zS(x)− z∗(x)∥

≤
√

E ∥zS(x)− z∗(x)∥2 ≤

√√√√ 2λ

1− λL

2
√
2

n

(
L̂2
xλ

1− λL
+

L̂2
y

ν

)
.

(29)

Next, we show that ∥zS(x) − z∗(x)∥ − E ∥zS(x) − z∗(x)∥ is a zero-mean sub-Gaussian random
variable. Replacing one sample ξi in S with an i.i.d. sample ξ′i and denote the new dataset as S(i), by
[50, Lemma 2], it holds that

∥zS(x)− z∗(x)∥ − ∥zS(i)(x)− z∗(x)∥ ≤ ∥zS(x)− zS(i)(x)∥ ≤ 2

n

√
L̂2
xλ

2

(1− λL)2
+

L̂2
yλ

ν(1− λL)
,

where zS(i) follows a similar definition of zS but with a different dataset S(i). By McDiarmid’s
inequality (Lemma 6) and the definition of sub-Gaussian random variable, it holds that ∥zS(x)−
z∗(x)∥ − E ∥zS(x) − z∗(x)∥ is a zero-mean sub-Gaussian random variable with variance proxy
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1
n

(
L̂2
xλ

2

(1−λL)2
+

L̂2
yλ

ν(1−λL)

)
. By the definition of sub-Gaussian random variable and (29), it holds that

E exp
(
s
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥)

= E exp
(
s
[∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥− E

∥∥∥proxλΦ̂S
(xk)− proxλΦ̂(xk)

∥∥∥])
· exp

(
sE
∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥)

≤ E exp
(
s
[∥∥∥proxλΦ̂S

(xk)− proxλΦ̂(xk)
∥∥∥− E

∥∥∥proxλΦ̂S
(xk)− proxλΦ̂(xk)

∥∥∥])
· exp

s

√√√√ 2λ

1− λL

2
√
2

n

(
L̂2
xλ

1− λL
+

L̂2
y

ν

)
≤ exp

(
s2

2n

(
L̂2
xλ

2

(1− λL)2
+

L̂2
yλ

ν(1− λL)

))
exp

s

√√√√ 2λ

1− λL

2
√
2

n

(
L̂2
xλ

1− λL
+

L̂2
y

ν

),

(30)

where the second inequality uses definition of zero-mean sub-Gaussian random variable. Combining
(30) with (26), for

λ =
1

2L
, υ =

ϵλ(1− λL)

8
=

ϵ

32L
, s =

√√√√2n log(Q)

(
L̂2
xλ

2

(1− λL)2
+

L̂2
yλ

ν(1− λL)

)−1

, (31)
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it holds that

Emax
x∈X

∥∇Φλ
S(x)−∇Φλ(x)∥

≤ 2

√
νDY

λ(1− λ(L+ ν))
+

2υ

λ(1− λ(L+ ν))

+
1

λs
log

(
Q exp

(
s2

2n

(
L̂2
xλ

2

(1− λL)2
+

L̂2
yλ

ν(1− λL)

)))

+
1

λs
log

exp

s

√√√√ 2λ

1− λL

2
√
2

n

(
L̂2
xλ

1− λL
+

L̂2
y

ν

)
≤ 2

√
νDY

λ(1− λL)
+

1

λs
log(Q) +

1

λs

s2

2n

(
L̂2
xλ

2

(1− λL)2
+

L̂2
yλ

ν(1− λL)

)

+
1

λs
s

√
2λ

1− λL

2
√
2

n

( L̂2
xλ

1− λL
+

L̂2
y

ν

)
+

2υ

λ(1− λL)

= 2

√
νDY

λ(1− λL)
+

log(Q)

λs
+

1

λ

s

2n

(
L̂2
xλ

2

(1− λL)2
+

L̂2
yλ

ν(1− λL)

)

+
1

λ

√√√√ 2λ

1− λL

2
√
2

n

(
L̂2
xλ

1− λL
+

L̂2
y

ν

)
+

ϵ

4

= 2
√
4LνDY + 4L

√√√√ log(Q)

2n

(
L̂2
x

L2
+

L̂2
y

νL

)
+ 2L

√√√√4
√
2

Ln

(
L̂2
x

L
+

L̂2
y

ν

)
+

ϵ

4

= 2
√

4LνDY + 4L

√√√√ log(Q)

2n

(
L̂2
x

L2
+

L̂2
y

νL

)

+ 2L

√
4
√
2

Ln

(
(G+ 4L

√
DX )2

L
+

(G+ ν
√
DY)2

ν

)
+

ϵ

4
.

(32)

Here the first equality holds by the selection of υ, the second equality holds by the selection of λ
and s, and the last equality holds by plugging in L̂x and L̂y. Note that υ, s, and ν are only used for
analysis purposes, and λ is only used in the definition of gradient mapping. Thus one has free choices

on these parameters. Since Q = O
((

DX
υ

)d)
, then we choose υ = Õ

(√
d
n

)
in the right-hand

side above, which verifies the first statement. For the sample complexity result, to make sure that the
right-hand side of (32) of order O(ϵ), it suffices to have

ν = O(ϵ2), n = O
(
log(Q)

ν
ϵ−2

)
= O

(
dϵ−4 log

(
ϵ−1
))
, (33)

which concludes the proof.
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Comparison Among Minimization, NC-SC, and NC-C Settings For general stochastic noncon-
vex optimization minx∈X E[f(x; ξ)], the sample complexity of achieving ϵ-uniform convergence,

Emax
x∈X

∥∥∥ 1
n

n∑
i=1

∇f(x; ξi)− E∇f(x; ξ)
∥∥∥ ≤ ϵ,

between the gradient of the population problem and the empricial problem is Õ(dϵ−2) [8, 28]. For
nonconvex minimax optimization, if we care about the uniform convergence in terms of the gradient
of F , i.e.,

E max
x∈X ,y∈Y

∥∥∥∥∥ 1n
n∑

i=1

∇f(x, y; ξi)− E∇f(x, y; ξ)

∥∥∥∥∥,
existing analysis in Mei et al. [28] directly gives a Õ(dϵ−2) sample complexity. However, since we
care about the gradient of the primal function, the analysis becomes more complicated.

1. In the NC-SC setting, to establish the uniform convergence, we bound

Emax
x∈X

∥∇ΦS(x)−∇Φ(x)∥ = Emax
x∈X

∥∥∥ 1
n

n∑
i=1

∇f(x, y∗S ; ξi)− E∇f(x, y∗; ξi)
∥∥∥,

where y∗S(x) ≜ argmaxy∈Y FS(x, y) and y∗(x) ≜ argmaxy∈Y F (x, y). The primal function
ΦS is not in the form of averaging over n samples and thus existing analysis for minimization
problem is not directly applicable. In addition, as the optimal point y∗S(x) differs from y∗(x),
such difference brings in an additional error term. In the NC-SC case, such error is upper
bounded by O(n−1/2), which is of the same scale of the error from establishing uniform
convergence on x. Thus the eventual uniform convergence bound established in Theorem 2 is
of the same order as that for minimization problem [8, 28] except for an additional dependence
on the condition number κ.

2. In the NC-C case, since there may exists multiple maximizers, we have

y∗ ∈ Y∗ = argmaxy∈YEf(x, y; ξ), y∗S ∈ Y∗
S = argmaxy∈Y

1

n

n∑
i=1

f(x, y; ξi).

Thus, the distance between y∗ and y∗S may not be well-defined. Instead, we bound the distance
between ŷ∗S(x) ≜ argmaxy∈Y FS(x, y) − ν

2∥y∥
2 and ŷ∗(x) ≜ argmaxy∈Y F (x, y) − ν

2∥y∥
2

for a small regularization parameter ν = O(n−1/2). Such distance is controlled by O(n−1/4).
Thus the sample complexity for achieving ϵ-uniform convergence for the NC-C case is large
than that of the NC-SC case. We leave it for future investigation to see if one could achieve
smaller sample complexity in the NC-C case via a better characterization of the extra error
brought in by y in the NC-C setting.
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