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Abstract
In this work, we study the recently discovered neural collapse (NC) phenomenon, which is preva-
lent in training over-parameterized deep neural networks for classification tasks. Existing work has
shown that any optimal solution of the trained problem for classification tasks is an NC solution
and has a benign landscape under the unconstrained feature model. However, these results do not
provide an answer to the question of how quickly gradient descent can find an NC solution. To
answer this question, we prove an error bound property of the trained problem, which refers to the
inequality that bounds the distance of a point to the optimal solution set by the norm of its gradient,
under the unconstrained feature model. Using this error bound, we show linear convergence of
gradient descent for finding an NC solution.

1. Introduction

Over the past years, a large amount of work is devoted to attempting to understand the underlying
mechanism of deep neural networks (DNNs) from a theoretical point of view; see, e.g., [1, 6, 12].
Towards the goal of understanding the representations learned by deep neural networks, a recent line
of seminal works [3, 14] presents an intriguing phenomenon named neural collapse (NC) that occurs
pervasively across a range of canonical classification problems during the terminal phase of training.
Specifically, the authors observed that the last-layer features and the last-layer linear classifiers of
a trained DNN exhibit the following simple but elegant structure: (i) Variability Collapse: the
individual features of each class concentrate to their class-means; (ii) Convergence to Simplex ETF:
the class-means have the same length and are maximally distant. In other words, they form a
Simplex Equiangular Tight Frame (ETF); (iii) Convergence to Self-Duality: the last-layer linear
classifiers perfectly match their class-means up to rescaling.

Study of NC under unconstrained feature model. Recently, a line of works demystifies the NC
phenomenon in theory based on the so-called unconstrained feature model [13, 23], which is also
called layer-peeled model [3]; see, e.g., [3, 4, 14, 15, 18, 20, 21, 23] and the references therein.
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ERROR BOUND OF NEURAL COLLAPSE

Specifically, consider an L-layer fully connected neural network of the form

ψΘ(x) = WL σ (WL−1 . . . σ (W1x+ b1) + bL−1)︸ ︷︷ ︸
ϕθ(x)

+bL,

where σ(·) is an activation function, Θ = {Wk, bk}Lk=1 denotes all the network parameters, and
θ = {Wk, bk}L−1

k=1 denotes the network parameters up to the last layer. In particular, the output of
the penultimate layer, denoted by ϕθ(x), is referred to as the feature of the sample x learned by
the neural network. Given training samples {(xk,i,yk)} ⊆ Rd × RK drawn from the same data
distribution, they studied the multi-class (e.g., K classes) classification problem by minimizing the
empirical risk over these samples,

min
Θ

1

N

K∑
k=1

n∑
i=1

L (ψΘ(xk,i),yk) +
λ

2
∥Θ∥2F , (1)

where N = nK is the total number of samples, yk ∈ RK is an one-hot vector with only the k-th
entry being 1 and the remaining ones being 0 for all k ∈ [K], xk,i ∈ Rd is the i-th sample in
the k-th class, n denotes the number of training samples in each class, λ > 0 is the regularization
parameter, and L : RK × RK → R is a loss function. Note that the unconstrained feature model
assumes that the last-layer features of the neural network are free optimization variables, which sim-
plifies the non-linear interaction across layers. Intuitively, this simplification is reasonable because
modern deep neural networks are often highly over-parameterized such that last-layer features can
approximate or interpolate any point in the feature space [5, 10]. We introduce an auxiliary variable
hk,i = ϕθ(xk,i), which denotes the last-layer feature corresponding to the sample xk,i. Using the
unconstrained feature model and letting W = W T

L and b = bL, we consider a variant of Problem
(1) by treating hk,i for all k, i as free optimization variables, i.e.,

min
W ,H,b

1

N

K∑
k=1

n∑
i=1

L
(
W Thk,i + b,yk

)
+
λW
2

∥W ∥2F +
λH
2

∥H∥2F +
λb
2
∥b∥2, (2)

where λW , λH , λb ≥ 0 are regularization parameters. Recently, it has been shown that any global
optimal solution of Problem (2) and its constrained counterparts satisfies the NC properties when
the function L is the CE loss, MSE loss, or supervised contrastive loss function; see, e.g., [3, 4, 14,
15, 18, 20, 23]. In particular, Yaras et al. [18], Zhou et al. [20], Zhu et al. [23] showed that their
studied training function has a benign landscape with no spurious local minimum. This implies
that the NC solutions can be reached by gradient descent methods with random initialization [2, 7].
However, these results still cannot answer the question that how fast gradient descent can reach an
NC solution.

Linear convergence analysis under the error bound. A powerful approach to analyzing the
convergence behavior of gradient descent type methods for optimizing convex optimization prob-
lems is to use an error bound property; see, e.g., [11, 16, 22] and the references therein. Recently,
Liu et al. [8, 9], Wang et al. [17], Zheng et al. [19] extended this approach to study non-convex
optimization problems. Consider an optimization problem

v∗ = min
x∈E

F (x), (3)
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where E is a finite-dimensional Euclidean space and F : E → (−∞,+∞) is a continuously differ-
entiable function. Let X ⊆ E denote the set of optimal solutions of Problem (3). Then, we say that
an error bound holds for Problem (3) if there exist constants δ, κ > 0 such that for all x ∈ E with
dist (x,X ) ≤ δ,

dist (x,X ) ≤ κ∥∇F (x)∥2. (4)

Suppose that the error bound holds for Problem (3). A unified approach to analyzing convergence
rate of first-order iterative methods have been established based on the error bound; see, e.g., [11,
16, 22].

Fact 1 Suppose that the optimal solution of Problem (3) is non-empty, i.e., X ≠ ∅, and the error
bound (4) holds for Problem (3). Suppose in addition that the sequence {xk}k≥k1 for an index
k1 ≥ 0 satisfies the following conditions:
(i). (Sufficient Decrease) There exists a constant κ1 > 0 such that

F (xk+1)− F (xk) ≤ −κ1∥xk+1 − xk∥2.

(ii). (Cost-to-Go Estimate) There exists a constant κ2 > 0 such that

F (xk+1)− v∗ ≤ κ2

(
dist2(xk,X ) + ∥xk+1 − xk∥2

)
.

(iii). (Safeguard) There exists a constant κ3 > 0 such that

∥∇F (xk)∥ ≤ κ3∥xk+1 − xk∥.

Then, the sequence {F (xk)}k≥0 converges Q-linearly to v∗ and {xk}k≥0 converges R-linearly to
some x∗ ∈ X .

Contributions of this work. Motivated by the above discussions, we are devoted to establishing
an error bound for Problem (2) and proving linear convergence of gradient descent for solving
Problem (2) in this work. Specifically, we study Problem (2) with the MSE loss and CE loss,
respectively. We first characterize the optimal solution set of Problem (2) and then prove the error
bound using the structure of the optimal solution set. Our experimental results on synthetic datasets
complement and support our theoretical developments.

2. Main Results

Before we proceed, we introduce some essential notation. Given a point y ∈ Rn and a non-
empty and closed set X ⊆ Rn, we denote the Euclidean distance of y to X by dist (y,X ) =
min {∥x− y∥2 : x ∈ X}. We use 1n to denote the n-dimensional all-one vector. Let P := I −
1K1TK/K and P⊥ := 1K1TK/K. Given a positive integer n, we denote by [n] the set {1, . . . , n}.
We write all the features and the classifiers in the matrix form

H :=
[
H1 . . . Hn

]
∈ Rd×N , Hi =

[
h1,i, . . . ,hK,i

]
∈ Rd×K , W :=

[
w1 . . . wK

]
∈ Rd×K .

For ease of exposition, let X denote the optimal solution set of Problem (2). Without loss of gener-
ality, we assume the label matrix to be Y = 1Tn ⊗ IK , where ⊗ denotes the Kronecker product.
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2.1. Mean Squared Error Loss

Suppose that the loss function L is the MSE loss of the form L(z,yk) =
1
2∥z − yk∥22. Substituting

this into Problem (2) with considering λb = 0 yields

min
W ,H,b

F (W ,H, b) :=
1

2N

∥∥W TH + b1TN − Y
∥∥2
F
+
λW
2

∥W ∥2F +
λH
2

∥H∥2F . (5)

Then, we characterize the optimal solution set of Problem (5) as follows.

Proposition 1 For the matrix P = IK − 1K1TK/K, let P = V ΣV T be its eigenvalue decom-

position such that V = [V̄ v] ∈ OK with V̄ V̄ T = P , vvT = P⊥, and Σ =

[
IK−1 0
0 0

]
. The

optimal solution set X of Problem (5) can be characterized as follows:
(i) If λWλH ≥ 1/(nK2), we have X =

{(
0,0, 1

K1K
)}
.

(ii) If λWλH < 1/(nK2), we have

X =

{(
W ,H,

1

K
1K

)
: W =

4
√
nλH

4
√
λW

[√
γUV̄ T

0

]
,Hi =

√
λW√
nλH

W ,∀i ∈ [n],U ∈ Od×(K−1)

}
,

where γ := 1−K
√
nλWλH .

This result indicates that when λWλH < 1/(nK2), any global optimal solution of Problem (5)
satisfies the NC properties. Compared to [20, Theorem 3.1], we provide all the parameters that
depend on λW and λH explicitly. Based on the above result, we prove the error bound of Problem
(5).

Theorem 2 For Problem (5), if λWλH < 1/(nK2), there exist constants δ1, κ1 > 0 that depend
on λW and λH such that for any (W ,H, b) satisfying dist ((W ,H, b),X ) ≤ δ1, it holds that

dist ((W ,H, b),X ) ≤ κ1∥∇F (W ,H, b)∥F . (6)

Before we proceed, some remarks are in order. First, when λWλH < 1/(nK2), we show that
the error bound holds for Problem (5) for any point in the neighborhood of the optimal solution set.
Second, using this error bound and Fact 1, we can prove the linear convergence of gradient descent
for solving Problem (5).

2.2. Cross-Entropy Loss

Suppose that the loss function L is the CE loss of the form

LCE(z,yk) = − log

(
exp(zk)∑K
ℓ=1 exp(zℓ)

)
. (7)

As done in [3, 4], we consider Problem (2) without the bias term when we use the CE loss. Substi-
tuting (7) into Problem (2) yields

min
W ,H

F (W ,H) :=
1

N

K∑
k=1

n∑
i=1

LCE(W
Thk,i,yk) +

λW
2

∥W ∥2F +
λH
2

∥H∥2F . (8)

Then, we characterize the optimal solution set of Problem (8) as follows.
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Proposition 3 Suppose that the dimension of features is no smaller than the number of classes, i.e.,
d ≥ K. Then, the global optimal solution set X of Problem (8) can be characterized as follows:
(i) If λWλH ≥ 1/(nK2), it holds that X = {(0,0)}.
(ii) If λWλH < 1/(nK2), it holds that

X =

{
(W ,H) : W =

4
√
nλH

4
√
λW

√
log γUP , Hi =

√
λW√
nλH

W ,∀i ∈ [n], U ∈ Od×K

}
,

where γ := 1/
√
nλWλH −K + 1.

Based on this result, we prove the error bound for Problem (8).

Theorem 4 Suppose that the number of classes K = 2 and the dimension of features is no smaller
than the number of classes, i.e., d ≥ K. For Problem (8), if λWλH < 1/(nK2), there exist con-
stants δ2, κ2 > 0 that depend on λW and λH such that for any (W ,H) satisfying dist ((W ,H),X ) ≤
δ2, it holds that

dist ((W ,H),X ) ≤ κ2∥∇F (W ,H)∥F .

Remark that since the structure of the CE loss is more complicated than that of the MSE loss, we
can only establish the error bound for Problem (8) when K = 2. We leave the error bound when
K ≥ 2 for future work.

3. Experimental Results

In this section, we corroborate our theory with experimental results by solving Problem (2) and by
solving Problem (1) with ψΘ being a two-layer neural network on synthetic data. First, we employ
batch gradient descent using backtracking line search for optimizing Problem (2) with both MSE
and CE losses and different weight and feature regularization parameters λW , λH , respectively. In
the tests, we set the number of classes as K = 10, the number of samples in each class as n = 10,
and the dimension of features as d = 20. Then, we report the convergence performance of gradient
descent in Figure 1 with different λW and λH . One can observe that the optimality gap measured by
F k − F ∗, where F k is the function value at the k-th iteration and F ∗ is the optimal function value
computed by the NC solutions, converges linearly independent of the regularization parameters
λW , λH . We refer the readers to Appendix for the convergence rate of the NC metrics.

Next, we consider training a two-layer neural network on synthetic data by solving Problem
(1) using gradient descent with constant step size. We generate the training samples as follows.
The samples xk,i are drawn i.i.d. from a zero-mean D-dimensional Gaussian distribution with
D = 1000 and covariance I/4, and the labels are drawn uniformly from {1, . . . ,K} (so that we
have balanced classes). In the tests, we set the number of classes as K = 10, the number of samples
in each class as n = 100, width of the first layer as m = 256, and dimension of features as d = 20.
Then, we report the results in Figure 2. Unlike the UFM, we found that the regularization parameter
is important in the convergence rate and requires careful tuning - for particular settings of λW , λH ,
we can achieve linear convergence when training a shallow network with explicit regularization. We
refer the readers to Appendix for the convergence rate of the NC metrics.
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Figure 1: K = 10 classes, n = 10 samples per class, d = 20, λW = nλ, λH = λ.

Figure 2: We use K = 10 classes, n = 100 samples per class, first-layer width m = 256, d = 20
dimensional feature space, with regularization λW = nλ, λH = λ.

4. Conclusions

In this work, we studied the NC phenomenon under the unconstrained feature model. We first
characterized the set of optimal solutions of the trained problem. Based on this characterization,
we showed that error bound holds for the trained problem. Using this, we further established the
linear convergence of gradient descent for optimizing the trained problem. Finally, we supported our
theoretical results by experimental results. As a future work, we would like to extend our analysis
to the case of K ≥ 2 for the CE loss. Another interesting direction is to analyze the error bound of
the constrained counterparts of Problem (2); see, e.g., [3, 18].
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Appendix

Linear Convergence of the NC Metrics

In Section 3, we demonstrated that gradient descent achieves linear convergence in terms of function
value for training Problem (1) under the UFM and Problem (2) with shallow networks, respectively.
A natural question is that whether we can empirically observe linear convergence of metrics that
measure the various aspects of neural collapse. For measuring different aspects of neural collapse
as introduced in Section 1, we adopt similar NC metrics as those in [14, 20, 23],

NC1 :=
1

K
trace(ΣWΣ†

B)

NC2 :=

∥∥∥∥ W⊤W

∥W⊤W ∥F
− 1√

K − 1

(
IK − 1K1⊤K

)∥∥∥∥
F

NC3 :=

∥∥∥∥ W⊤H

∥W⊤H∥F
− 1√

K − 1

(
IK − 1K1⊤K

)∥∥∥∥
F

,

where ΣW and ΣB are the within-class and between-class covariance matrices (see [14, 23] for
more details), Σ†

B denotes pseudo inverse of ΣB , and H is the centered class mean matrix. More
specifically, NC1 measures within class variability collapse, NC2 measures convergence to the
simplex ETF, and NC3 measures duality collapse.

We first investigate the convergence rate of the NC metrics under the UFM, using the same setup
as that in Section 3. We report the result in Figure 3. One can observe that all three metrics converge
linearly to 0 for both MSE and CE losses. In particular, NC1 converges substantially faster than the
other two metrics.

Figure 3: K = 10 classes, n = 10 samples per class, d = 20, λW = 5× 10−4, λH = 5× 10−5.

Analogously, we investigate the convergence rate of the NC metrics for a two-layer neural net-
work using the same setup and data as those in Section 3. We report the result in Figure 4. We again
observe that all three metrics converge linearly to 0 for both MSE and CE losses using appropriate
regularization.
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Figure 4: We use K = 10 classes, n = 100 samples per class, first-layer width m = 256, d = 20
dimensional feature space, with regularization λW = nλ, λH = λ.

Motivated by the above observations, an interesting direction is to prove linear convergence of
these NC metrics using the error bound condition. This is left as a future work.
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