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Abstract
Recent years have witnessed the booming of various differentiable optimization algorithms. These
algorithms exhibit different execution patterns, and their execution needs massive computational
resources that go beyond a single CPU and GPU. Existing differentiable optimization libraries,
however, cannot support efficient algorithm development and multi-CPU/GPU execution, mak-
ing the development of differentiable optimization algorithms often cumbersome and expensive.
This paper introduces TorchOpt, a PyTorch-based efficient library for differentiable optimiza-
tion. TorchOpt provides a unified and expressive differentiable optimization programming ab-
straction. This abstraction allows users to efficiently declare and analyze various differentiable opti-
mization programs with explicit gradients, implicit gradients, and zero-order gradients. TorchOpt
further provides a high-performance distributed execution runtime. This runtime can fully paral-
lelize computation-intensive differentiation operations (e.g. tensor tree flattening) on CPUs / GPUs
and automatically distribute computation to distributed devices. Experimental results show that
TorchOpt achieves 5.2⇥ training time speedup on an 8-GPU server. TorchOpt is available at:
https://github.com/metaopt/torchopt.

1. Introduction

Recent years have witnessed the booming of differentiable optimization-based algorithms, including
MAML [11], OptNet [2], and MGRL [25]. One of the important parts of differentiable optimiza-
tion is meta-gradient, which is the gradient term of outer-loop variables by differentiating through
the inner-loop optimization process. By leveraging meta-gradients, machine learning models can
increase the sample efficiency [11] and the final performance [25].

Developing differentiable optimization algorithms poses several challenges. First, developers
need to realize different inner-loop optimization and implement algorithms with gradient flows on
complex computational graphs. Examples include explicit gradient computation of unrolled op-
timization [11, 25], implicit gradient for differentiable optimization [1, 2], evolutionary strategies
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Table 1: Comparison of TorchOpt and other differentiable optimization libraries. Note: Xr indi-
cates that the feature is partially supported.

Differentiable
Optimizer

Implicit
Differentiation

Zero-order
Gradient

Accelerated
Operator

Distributed
Training

Debugging
Support Backend

higher [13] 3 7 7 7 7 7 PyTorch
Optax [4] 3 7 7 7 7 7 JAX
Torchmeta [9] 3 7 7 7 7 7 PyTorch
learn2learn [3] 3 7 7 7 Xr 7 PyTorch
JAXopt [6] 3 3 7 7 3 7 JAX
HyperTorch [12] 3 3 7 7 7 7 PyTorch
Betty [8] 3 Xr 3 7 Xr 7 PyTorch
TorchOpt (ours) 3 3 3 3 3 3 PyTorch

for non-differentiable optimization [10], adjoint methods for differentiable ordinary differentiable
equations [7], Gumbel-Softmax to differentiate through discrete distribution [14], and function in-
terpolation for differentiable combinatorial solvers [21], etc. Second, differentiable optimization is
computation-intensive. The meta-gradient computation requires heavy Hessian computation [11],
high-dimensional linear equations [22], or large task-level batch size [20]. Such computation re-
quirement often goes beyond what a single CPU and GPU can provide.

None of the existing differentiable optimization libraries can provide full support for efficient
algorithm development and execution. Most libraries target a limited number of differentiable op-
timizers [3, 4, 9, 13]. They cannot fully support implicit differentiation [6, 8, 12], zero-order gra-
dient [8], and distributed training [3, 6], as shown in Table 1. As a result, researchers have to im-
plement algorithms in an ad-hoc and application-specific manner, making the development process
cumbersome and expensive. Further, critical system optimization techniques (e.g. GPU optimiza-
tion and distributed execution) are tightly coupled with certain algorithms and they are hard to be
enabled for all possible algorithms.

To address these issues, this paper introduces TorchOpt, a PyTorch library that makes it effi-
cient to develop and execute differentiable optimization algorithms with multiple GPUs. The design
and implementation of TorchOpt make the following contributions:

(1) Unified and expressive differentiation mode for differentiable optimization. TorchOpt
provides a general set of low-level / high-level / functional / Object-Oriented (OO) API to help users
flexibly enable differentiable optimization within the computational graphs produced by PyTorch.
Specifically, TorchOpt supports three differentiation modes for handling differentiable optimiza-
tion problems: (i) Explicit gradient for unrolled optimization, (ii) implicit gradient for differentiable
optimization, and (iii) zero-order gradient estimation for non-smooth/differentiable functions.

(2) High-performance and distributed execution runtime. TorchOpt aims to enable differ-
entiable optimization algorithms to fully utilize CPUs and GPUs. To achieve this, we design (i)
CPU/GPU accelerated optimizers (e.g., SGD, RMSProp, Adam) that realize the fusion of small dif-
ferentiable operators and a full offloading of these operators to GPUs, (ii) parallel OpTree which can
fully parallelize the nested structure flattening (Tree Operations), a key computation-intensive oper-
ation in differentiable optimization, on distributed CPUs, and (iii) a distributed auto-grad framework
which can automatically identify the inner-loop tasks in differentiable optimizers and dispatch the
execution of inner-loop tasks to distributed CPUs and GPUs.
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Figure 1: TorchOpt’s architecture overview.

Experimental results show that TorchOpt can reduce PyTorch optimizer forward/backward
time, by 5⇥ to 10⇥ on CPU and 5⇥ to 20⇥ on GPU. TorchOpt can reduce the training time of the
MAML [11] algorithm by 5.2⇥ by distributing MAML computation to 8 GPUs.

2. TorchOpt Design and Implementation

2.1. Architecture Overview

Figure 1 gives an overview of the system architecture, TorchOpt consists of two different aspects,
the unified and expressive differentiable optimization programming lets users easily implement dif-
ferentiable optimization algorithms, we provide both high-level APIs and low-level APIs for three
differentiation modes along with debugging tools, all of which are described in Sec. 2.2. Then
the high-performance and distributed execution runtime contains several accelerated solutions to
support fast differentiation with different modes on GPU & CPU and distributed training features
for multi-node multi-GPU scenario, which we demonstrate boost performance in Sec. 2.3. Addi-
tionally, we offer OpTree to enable fast structure flatten and unflatten, which is specially
designed for our functional programming implementation. We use an optimized structure to avoid
memory allocation if the sub-tree is small.

2.2. Programming Abstraction

TorchOpt aims to provide (i) high-level APIs that allow users to directly import differentiable
optimizers, (ii) low-level APIs that enable automatic differentiation in different applications, and
(iii) tools that allow users to analyze gradient flow in gigantic computational graphs.

The key challenge of consolidating these high-level and low-level APIs in a single library is that
we must have a unified abstraction that allows different differentiable optimization algorithms to be
easily declared. To address this, we design a differentiable optimization updating scheme, which
can be easily extended to realize various differentiable optimization processes.
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Figure 2: TorchOpt’s differentiation modes. By formulating the problem as a differentiable prob-
lem, TorchOpt offers Autograd support for the backward pass (dotted lines).

As shown in Fig. 2, the scheme contains an outer level that has parameters 5 that can be learned
end-to-end through the inner level parameters solution ) 0(5) (treating solution ) 0 as a function of
5) by using the best-response derivatives m) 0(5)/m5. It can be seen that the key component of
this algorithm is to calculate the best-response (BR) Jacobian. From the BR-based perspective,
TorchOpt supports three differentiation modes: explicit gradient over unrolled optimization, im-
plicit differentiation, and zero-order differentiation.
Explicit Gradient (EG) over unrolled optimization. As shown in Fig. 2-2a, the idea of EG is to
treat the gradient step as a differentiable function and try to backpropagate through the unrolled op-
timization path. This differentiation mode is suitable for algorithms when the inner-level optimiza-
tion solution is obtained by a few gradient steps, such as MAML [11] and MGRL [25]. TorchOpt
offers both functional and OOP API. Refer to Listing 1 for the code snippet.

# Functional API

opt = torchopt.adam()
# Define meta and inner parameters

meta_params = ...
fmodel, params = make_functional(model)
# Initialize optimizer state

state = opt.init(params)

for iter in range(iter_times):
loss = inner_loss(fmodel, params, meta_params)
grads = torch.autograd.grad(loss, params)
# Apply non-inplace parameter update

updates, state = opt.update(grads, state, inplace=False)
params = torchopt.apply_updates(params, updates)

loss = outer_loss(fmodel, params, meta_params)
meta_grads = torch.autograd.grad(loss, meta_params)

# OOP API

# Define meta and inner parameters

meta_params = ...
model = ...
# Define differentiable optimizer

opt = torchopt.MetaAdam(model)

for iter in range(iter_times):
# Perform the inner update

loss = inner_loss(model, meta_params)
opt.step(loss)

loss = outer_loss(model, meta_params)
loss.backward()

Listing 1: TorchOpt code snippet for explicit gradient.

Implicit Gradient (IG). As shown in Fig. 2-2b, by treating the solution ) 0 as an implicit function of
5, the idea of IG is to directly get analytical best-response derivatives m) 0(5)/m5 by implicit func-
tion theorem [16]. This is suitable for algorithms when the inner-level optimal solution is achieved
( m� (),5)

m)

���
)
0 = 0) or reaches some stationary conditions (� () 0, 5) = 0), such as iMAML [22] and

DEQ [5]. TorchOpt offers functional/OOP API for supporting both conjugate gradient-based [22]
and Neumann series-based [18] method. Refer to Listing 2 for the code snippet.
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# Functional API for implicit gradient

def stationary(params, meta_params, batch, labels):
# Stationary condition construction

...
return stationary condition

@torchopt.diff.implicit.custom_root(stationary)
def solve(params, meta_params, batch, labels):

# Forward optimization process

...
return optimal_params

# OOP API

class Module(torchopt.nn.ImplicitMetaGradientModule):
def __init__(self, meta_module, ...):

...
def forward(self, x):

# Forward process

...
def optimality(self, batch, labels):

# Stationary condition construction

...
def solve(self, batch, labels):

# Forward optimization process

...
return self

Listing 2: TorchOpt code snippet for implicit gradient.

Zero-order Differentiation (ZD). As shown in Fig. 2-2c, when the inner-loop process is non-
differentiable or one wants to eliminate the heavy computation burdens in the previous two modes
(brought by Hessian), one can choose ZD. ZD typically gets gradients based on zero-order estima-
tion, such as finite-difference, or Evolutionary Strategy (ES) [23]. ESMAML [24], and NAC [10],
successfully solve the differentiable optimization problem based on ES. Instead of optimizing the
objective �, ES optimizes a Gaussion smoothing objective defined as 5̃f ()) = Öz⇠N(0,O3) [ 5 () + fz)],
where f denotes precision. The gradient of such objective is r\ 5̃f (\) = 1

fÖz⇠N(0,O3) [ 5 () + fz)z].
TorchOpt also offers functional and OOP API for ES method. Refer to Listing 3 for code snippets.

# Functional API

# Customize the noise sampling function in ES

def sample(sample_shape):
...
return sample_noise

# Specify the method and parameter of ES

@torchopt.diff.zero_order(method, sample)
def forward(params, batch, labels):

# Forward process

return output

# OOP API

class ESModule(torchopt.nn.ZeroOrderGradientModule):
def sample(self, sample_shape):

# Customize the noise sampling function in ES

...
return sample_noise

def forward(self, batch, labels):
# Forward process

...
return output

Listing 3: TorchOpt code snippet for zero-order differentiation.

Gradient graph visualization. Complex gradient graph in meta-learning/differentiable optimiza-
tion brings a great challenge for managing the gradient graph and debugging the code. TorchOpt
provides a visualization tool that draws variable (e.g. network parameters or meta parameters)
names on the gradient graph for better analysis. The visualization tool is modified from TorchViz [26].
Compared with TorchViz, TorchOpt fuses the operations within the optimization algorithm (such
as Adam) to reduce the complexity and provide simpler visualization. Refer to the visualization
example in Appendix A.

2.3. High-performance and Distributed Runtime

CPU/GPU-accelerated optimizers. We take the optimizer as a whole instead of separating it
into several basic operators (e.g., sqrt and div). Therefore, by manually writing the forward
and backward functions, we can perform the symbolic reduction. In addition, we can store some
intermediate data that can be reused during the back-propagation. Our design reduces computa-
tion and also benefits numerical stability (by explicitly canceling some 0/0 cases in higher gradi-
ent computation). We write the accelerated functions in C++ OpenMP and CUDA, bind them by
pybind11 to allow Python can call them, and then we define the forward and backward behavior
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Figure 3: Performance of TorchOpt, (0) and (1) are the forward/backward time (Adam opti-
mizer) in different parameter sizes comparing TorchOptand PyTorch, (2) is the speedup
ratio on multi-GPUs using RPC compared with the sequential implementation.

using torch.autograd.Function. The results in Fig. 3(a) and Fig. 3(b) show that our design
largely reduces the optimizer forward and backward time. Refer to Appendix B for experimental
results comparing TorchOptand Higher [13] on the MAML example.
Memory-efficient and cache-friendly PyTree. The tree operations (e.g., flatten and unflatten) are
frequently called by the functional and Just-In-Time (JIT) components in TorchOpt. To enable
memory-efficient nested structure flattening, we implement the pytree utilities, named OpTree. By
optimizing their memory and cache performance (e.g., absl::InlinedVector), TorchOpt
can significantly improve the performance of differentiable optimization at scale. Refer to Appendix
D for OpTree experimental results.
Distributed differentiable optimization. TorchOpt allows users to reduce training time by us-
ing parallel GPUs. Different from existing MPI-based synchronous training [19] and asynchronous
model averaging [15] systems, TorchOpt adopts RPC as a flexible yet performance communi-
cation backend. The distributed GPUs perform differentiable optimization tasks in parallel. These
GPUs are coordinated by a chosen GPU device which realizes the synchronous execution of parallel
GPUs, thus guaranteeing the convergence of the model in a distributed training setting).

As shown in Fig. 6, TorchOpt distributes a differentiable optimization job across multiple
GPU workers and executes the workers in parallel. TorchOpt users can wrap code in the dis-
tributed Autograd module and achieve substantial speedup in training time with only a few changes
in existing training scripts. Fig. 3(c) shows that TorchOpt can achieve linear speed-up with
MAML when increasing the number of GPU workers (more details in Appendix C).

3. Conclusion and Future work

This paper introduces TorchOpt, a novel efficient differentiable optimization library for PyTorch.
Experimental results show that TorchOpt can act as a user-friendly, high-performance, and scal-
able library when supporting challenging gradient computation with PyTorch. In the future, we
aim to support more complex differentiation modes and cover more non-trivial gradient computa-
tion problems, such as adjoint methods for the gradient of ODE solutions, RL or Gumbel-Softmax
method for differentiating through discrete distribution, and differentiable combinatorial solvers.
TorchOpt has already been used for meta-gradient research problem [17] and we believe it can be
served as an important auto-differentiation tool for more differentiable optimization problems.
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Appendix A. Gradient Graph Visualization

Fig. 4 shows the visualization example of MAML. We use red squares to represent what each
part accomplishes separately. Compared with TorchViz, TorchOpt fuses the operations within the
Adam together (orange) to reduce the complexity and provides a more straightforward visualization.
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Figure 4: Gradient graph visualization comparison between TorchViz and TorchOpt.
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Appendix B. CPU/GPU-Accelerated Optimizers

Fig. 5 shows the meta-optimization time comparison with Higher [13] in the CPU and GPU settings.
Note that the meta-optimization process consists of extra computation beyond the optimizer, where
we do not offer acceleration. However, the acceleration is still significant (around %25) for the MLP
model in the CPU setting and both Conv/MLP model in the GPU setting.

(a) CPU-accelerated Meta optimization time (b) GPU-accelerated Meta optimization time

Figure 5: Performance of TorchOptcompared with Higher using MAML example, (0) and (1)
are the meta-optimization time (Adam optimizer) in different inner steps and model struc-
tures.

Appendix C. Distributed Training

C.1. Distributed Framework

In Fig. 6 we show the overview of our distributed framework.

Figure 6: Overview of the Distributed RPC and Autograd framework. The forward and backward
pass can be distributed on multiple processes and multiple nodes. The RPC framework
supports heterogeneous workloads for different workers.
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C.2. Distributed MAML Performance

In Fig. 7, we show the training accuracy and wall time comparison on the MAML Omniglot exam-
ple. Distributed training achieves better performance and much higher computational efficiency.

Figure 7: Wall time comparison between sequential training results and distributed training on 8
GPUs for MAML implemented with TorchOpt.

Appendix D. OpTree Performance

In Table. 2 we show the Speedup ratios of tree operations with ResNet models comparing OpTree,
JAX XLA, PyTorch, and DM-Tree. In Fig. 8, 9 and 10, we show the time cost of tree-flatten, tree-
unflatten, and tree-map trees in a different number of nodes comparing OpTree, JAX XLA, PyTorch,
and DM-Tree. OpTree achieves a large speedup compared with all baselines.

Table 2: Speedup ratios of tree operations with ResNet models. Here, O, J, P, D refer to OpTree,
JAX XLA, PyTorch, and DM-Tree, respectively.

Module Scale ResNet18 ResNet50 ResNet101 ResNet152
Speedup Ratio J / O P / O D / O J / O P / O D / O J / O P / O D / O J / O P / O D / O

Tree Flatten 2.80 27.31 1.49 2.63 26.52 1.40 2.46 25.18 1.38 2.56 23.25 1.28
Tree UnFlatten 2.68 4.47 15.89 2.56 4.16 14.51 2.55 4.32 14.86 2.68 4.51 15.70

Tree Map 2.61 10.17 10.86 2.63 10.18 10.62 2.35 9.26 10.13 2.53 9.69 10.16
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Figure 8: Tree-Flatten time comparison with respect to the tree scale.

Figure 9: Tree-UnFlatten time comparison with respect to the tree scale.

Figure 10: Tree-Map time comparison with respect to the tree scale.

13


