
OPT2021: 13th Annual Workshop on Optimization for Machine Learning

Integer Programming Approaches To Subspace Clustering With
Missing Data

Akhilesh Soni SONI6@WISC.EDU
Jeff Linderoth LINDEROTH@WISC.EDU
Jim Luedtke JIM.LUEDTKE@WISC.EDU
Department of Industrial and Systems Engineering, University of Wisconsin-Madison

Daniel Pimentel-Alarcón PIMENTELALAR@WISC.EDU

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison

Abstract
In the Subspace Clustering with Missing Data (SCMD) problem, we are given a collection of n
data points, arranged into columns of a matrix X ∈ Rd×n, and each of the data points is observed
only on a subset of its coordinates. The data points are assumed to be concentrated near a union
of low-dimensional subspaces. The goal of SCMD is to cluster the vectors of the data matrix X
as per their subspace membership. State-of-the-art algorithms for SCMD can perform poorly on
instances with a large amount of missing data or if the data matrix X is nearly full-rank. We propose
a novel integer programming-based method for SCMD. The approach is based on dynamically
determining a set of candidate subspaces and optimally assigning points to selected subspaces. The
problem structure is identical to the classical facility-location problem, with subspaces playing
the role of facilities and data points that of customers. We propose a column-generation approach
for identifying candidate subspaces combined with a Benders decomposition approach for solving
the linear programming relaxation of the formulation. An empirical study demonstrates that the
proposed approach can achieve better clustering accuracy than state-of-the-art methods when the
data is high-rank or the percentage of missing data is high.

1. Introduction

Given a partially observed data matrix X ∈ Rd×n, where the column vectors of X are assumed
to lie on or near a union of low-dimensional subspaces, subspace clustering with missing data
(SCMD) is the task of identifying clusters of vectors belonging to the same subspace. Column
vectors, X1, X2, . . . Xn of X are sampled from a union of K subspaces,

⋃K
i=1 Si, where each of the

subspaces Si is of dimension r < d. The SCMD problem has applications in many areas such as
image classification [16, 29], motion segmentation [23, 24], and recommendation systems [22]. In
this short paper, we describe a computationally-effective approach for SCMD that is based on integer
programming.

Prior Work. In the last few years, many innovative methods for SCMD have been proposed [15].
Self-expressive methods, originally proposed for complete data by Elhamifar and Vidal [7], have been
extended to the case of missing data [5, 8, 9, 17, 25, 27]. Self-expressive methods may have trouble
correctly clustering the data points when the percentage of missing data is high or the matrix is high-
rank, i.e., when Kr ≈ d. Another family of methods is based on matrix factorization that directly
seeks the bases of the low-dimensional subspaces [2, 20]. The resulting optimization problems are
non-convex, and thus these methods are prone to converge to locally-optimal solutions. Lane et al.

c© A. Soni, J. Linderoth, J. Luedtke & D. Pimentel-Alarcón.

INTEGER PROGRAMMING APPROACHES TO SUBSPACE CLUSTERING WITH MISSING DATA

[15] did an extensive empirical evaluation of existing SCMD algorithms and concluded that zero
filled sparse subspace clustering methods (based on self expressiveness) [27], when alternated with
low-rank matrix completion [17], a method called Alt-PZF-EnSC+gLRMC, showed the overall best
performance. A disadvantage of Alt-PZF-EnSC+gLRMC is that it requires setting two regularization
hyperparameters. Mixed integer linear programming (MILP)-based methods for subspace clustering
have not been extensively explored. One exception is the work of Hu et al. [12], who give an integer
programming model for subspace clustering. However, the approach does not account for missing
data, assumes that candidate subspaces are explicitly enumerated as input to the model, and does not
scale to large instances.

Paper contributions. We propose a novel MILP solution framework for the SCMD problem that
is based on dynamically determining a set of candidate subspaces and optimally assigning data points
to the closest selected subspace. A key challenge in this approach is identifying, in a rigorous manner,
a suitable set of candidate subspaces to include in the formulation. We cast this subspace generation
problem as a nonlinear nonconvex optimization problem and propose a gradient-based approximate
solution approach. Our framework can readily accommodate a huge number of candidate subspaces
through its use of Benders decomposition to solve the linear programming (LP) relaxation of the
MILP. The model has the advantage of integrating the subspace generation and clustering in a single,
unified optimization framework without requiring any hyperparameter tuning. Our computational
results reveal that the proposed method can achieve higher clustering accuracy than state-of-the-art
methods in certain data regimes.

2. Integer Programming Formulation

We assume that we are given a data matrix X ∈ Rd×n, with missing entries, whose columns
are concentrated near a union of K subspaces, and each subspace is of dimension r. We let
Ω ∈ {0, 1}d×n be the indicator matrix of observed entries for X , and we denote the set of integers
{1, 2, . . . , T} as [T]. Our approach is based on iteratively building a collection of T candidate
subspaces, where for each candidate subspace t ∈ [T], we let Ut ∈ Rd×r be a basis for its column
subspace. Integer programming is then employed to simultaneously select the best set of K candidate
subspaces and assign each column of X to its closest selected subspace.

We define the closeness cjt of the vector Xj , j ∈ [n] to a candidate subspace t ∈ [T] as its
residual (squared-distance) on the observed entries which has a closed form solution [2]:

cjt := min
v∈Rr

{ ∑
i:(i,j)∈Ω

(Xij − (Utv)i)
2
}

= ‖(Xj)Ω − P(Ut)Ω,j
(Xj)Ω‖22. (1)

Here UΩ,j denotes the restriction of the subspace with basis U to the rows observed in column j
and PUΩ,j

denotes the projection operator, PUΩ,j
:= UΩ,j(U

T
Ω,jUΩ,j)

−1UTΩ,j . Given T candidate
subspaces, we formulate the SCMD problem as an integer program. Let xjt ∈ {0, 1}, ∀j ∈ [n], t ∈
[T] be a binary assignment variable that determines if vector j is assigned to subspace t, and
zt ∈ {0, 1}, ∀t ∈ [T] be a binary selection variable that indicates whether subspace t is selected. Our
complete integer programming formulation is given in (2). Objective (2a) ensures that the model
looks for the least cost assignment of vectors and subspaces. Constraints (2b) ensures that each
vector is assigned to exactly one subspace, and constraints (2c) enforce that a vector is assigned
to only a selected subspace. Constraint (2d) ensures that exactly K subspaces are selected. The
assignment of points to selected subspaces is similar to the facility location problem [26], where

2

INTEGER PROGRAMMING APPROACHES TO SUBSPACE CLUSTERING WITH MISSING DATA

the goal is to select facilities to open and assign each customer to an open facility. In our SCMD
formulation, subspaces play the role of facilities, and vectors play the role of customers.

min
x∈{0,1}n×T ,z∈{0,1}T

∑
t∈[T]

∑
j∈[n]

cjtxjt (2a, MILP)

∑
t∈[T]

xjt = 1, ∀j ∈ [n] (2b)

xjt ≤ zt, ∀j ∈ [n], t ∈ [T] (2c)∑
t∈[T]

zt = K, (2d)

3. Decomposition algorithm

The formulation (2) is solved via the well-known branch-and-bound method [14], which relies on
solving a sequence of linear programming (LP) relaxations. The LP relaxation of (2) is the problem
created by replacing the integrality conditions zt, xjt ∈ {0, 1} with simple bound constraints
zt, xjt ∈ [0, 1]. The optimal solution value of the LP relaxation provides a lower bound on the
optimal solution to (2). The optimal dual variables of the LP relaxation also provide a systematic
mechanism for dynamically generating new candidate subspaces—a vital component of our solution
framework. Because the number of candidate subspaces T and the number of points n may be
quite large, solving the LP relaxation is a computational challenge. In Section 3.1, we discuss a
problem-specific implementation of the Benders decomposition method for the solution of the LP
relaxation to (2). Section 3.2 describes how to dynamically generate improving candidate subspaces.

3.1. Row generation

Benders decomposition is a technique that enables solution of extremely large LP problems that
have special structure [4]. It has been applied to large-scale facility locations by Fischetti et al. [10],
and our formulation has the same structure. We eliminate xjt variables (# n× T) and add a set of
continuous variables wj (#n) representing the assignment cost for vector j ∈ [n]. The resulting
reformulation of the LP relaxation of (2) is

min
w,z

{ ∑
j∈[n]

wj :
∑
t∈[T]

zt = K,wj ≥ Φj(z) ∀j ∈ [n], zt ∈ [0, 1] ∀t ∈ [T]
}
. (3)

The function Φj(z) gives the minimum assignment cost for the vector j ∈ [n] to a collection of
subspaces parameterized by the variables z ∈ [0, 1]T . Note that the components of z may take
fractional value. Specifically, Φj(z), j ∈ [n] is calculated by the following subproblem:

Φj(ẑ) = min
x

{ ∑
t∈[T]

cjtxt :
∑
t∈[T]

xt = 1, 0 ≤ xt ≤ ẑt,∀t ∈ [T]
}
. (4)

The function Φj(z) is piecewise-linear and convex, and Benders decomposition works by dynamically
building a lower-bounding approximation to Φj(z). Moreover, its evaluation also gives sufficient
information from which to create a lower-bounding approximation. The optimization problem (4)
used to evaluate Φ(·) has a closed-form solution. We refer reader to Appendix A.1 for more details.

3

INTEGER PROGRAMMING APPROACHES TO SUBSPACE CLUSTERING WITH MISSING DATA

3.2. Column generation

In our discussion to this point, we have assumed that we are given T candidate subspaces. However,
in reality, there are infinitely-many subspaces to consider. Let T be the set of all subspaces. Key to
our approach is a column generation method for dynamically identifying new subspaces that have
the potential to improve the solution to (2). Column generation is a classical method for LP [11] that
also has seen significant use in solving MILP problems [3]. The key idea behind column generation
is to create an auxiliary problem, called the pricing problem, whose solution identifies if there is
an additional variable (a candidate subspace), that, when added to the LP (3), could improve its
solution value. The formulation of the pricing problem follows naturally from LP duality theory. If
the reduced cost of a column (subspace variable) is negative, then, by increasing the value of that
variable from its nominal value of zero, the objective value of the LP may improve. Thus, we should
seek columns (subspaces) with negative reduced cost. If all columns have non-negative reduced cost,
the current solution of the LP with the subset T of candidate subspaces is optimal to the true problem
containing all subspaces T .

Given the optimal dual variables (β, α) to the solution of (3) (details in Appendix A.1, (8)), the
reduced cost of a column/subspace variable zt is given by the formula

− β −
∑
j∈[n]

∑
i∈[pj]

αji max{c∗ji − cjt, 0}, (5)

where cjt is the assignment cost of column vector Xj onto subspace t. Recall (1), that describes

the cjt as a function of the basis matrix, cjt := hj(Ut) := minv∈Rr

{∑
i:(i,j)∈Ω(Xij − (Utv)i)

2
}
.

Thus, to obtain a column of minimum reduced cost, we can solve the following pricing problem to
identify the subspace basis matrix:

max
U∈Rd×r

g(U) =
∑
j∈[n]

∑
i∈[pj]

αji max{c∗ji − hj(U), 0}. (6)

The optimization problem (6) is not convex, and hence is difficult to solve to provable global
optimality. We find local solutions to (6) with a gradient-based approach discussed in Appendix A.2.

Row and column generation is performed iteratively until no new negative reduced cost columns
are found. We refer reader to Appendix A.3 for details of our unified framework.

4. Computational study

4.1. Synthetic experiments

Experimental Setup. We construct K random subspaces with bases Uk ∈ Rd×r,∀k ∈ [K]. Each
entry of Uk is sampled from a standard Gaussian. Each data vector j ∈ [n] is sampled from one
of the K subspaces, i.e., Xj = Ukvj for a random k ∈ [K] where vj ∈ Rr is sampled from a
standard Gaussian. We drop a certain fraction f of the entries of the data matrix X yielding the set
of observed entries Ω. The choices of d, K, and r in our synthetic experiments are similar to the
synthetic experiments in literature [15, 27]. We benchmark our MILP approach against zero filled
sparse subspace clustering algorithm (ZF-SSC) [27], Alt-PZF-EnSC+gLRMC [15], and k-GROUSE
[2]. The k-GROUSE algorithm is initialized with the output clusters from ZF-SSC, and Alt-PZF-
EnSC+gLRMC is initialized with output clusters from ZF-EnSC [28]. All methods are tuned for

4

INTEGER PROGRAMMING APPROACHES TO SUBSPACE CLUSTERING WITH MISSING DATA

best performance with parameters configurations reported in Appendix A.4. We evaluate the above
algorithms using misclassification error which is defined as the ratio of the number of misclassified
points to the total number of points. The best mapping between ground-truth and predicted clusters
is found using Hungarian algorithm [13]. We used Gurobi 8.1 as the MILP solver with a time limit
of 5 hours for each MILP run. These experiments were performed on a 4 core 16 GB machine.

(a) Effect of missing data (b) Effect of d/Kr

Figure 1: Misclassification error as a function of missing data and d/Kr. Error bars plotted using
minimum and maximum errors.

Effect of missing data fraction. We study the effect of missing data on misclassification error.
We fix d = 30, n = 200,K = 6, r = 3, and vary f between 10-70%. Figure 1(a) shows the
misclassification error as a function of the missing data fraction. We observe that ZF-SSC exhibits
significantly increased misclassification error already for f > 20%. Alt-PZF-EnSC+gLRMC and
k-GROUSE perform similarly and have increased classification error when f is larger than 50-55%.
The MILP approach on the other hand successfully classifies most instances up to f around 65%. In
the high-missing data regime (40-70%), MILP yields the smallest misclassification error.

Effect of ambient dimension and total dimension of subspaces. We next study the effect of
total dimension of the data (K × r) relative to the ambient dimension d. We remove f = 60%
of the data and we fix n = 40K. We choose d, r,K such that d/(Kr) ∈ [1, 5]. We show the
misclassification error for each method with respect to d/(Kr) in Figure 1(b). Since ZF-SSC does
not perform well with high missing data (f = 60%), we find that ZF-SSC gives high misclassification
errors in all cases. Performance of the algorithms improve as we move towards the low-rank regime.
In low-rank regime (d/(Kr) ∈ [2.5, 5]), both MILP and k-GROUSE give perfect classification and
Alt-PZF-EnSC+gLRMC performs well. In the high-rank regime (d/Kr ∈ [1, 2.5]), we observe that
only MILP gives near perfect classifications while Alt-PZF-EnSC+gLRMC has high misclassification.
Computational times for these experiments are reported in Appendix A.5.

5. Conclusion

We proposed a novel MILP framework for the subspace clustering with missing data (SCMD)
problem and showed its effectiveness relative to other state-of-the-art methods, especially in certain
instance regimes. Our MILP framework gives the user flexibility to use a different function for cost

5

INTEGER PROGRAMMING APPROACHES TO SUBSPACE CLUSTERING WITH MISSING DATA

of assignment between vector and subspace and can also easily be extended to include constraints. A
direction for future work is to investigate techniques for dynamically determining the dimensions of
the subspaces used in the formulation. One simple idea in this direction is a sequential framework,
where one starts with dimension one subspaces and consecutively moves towards high dimensions
while removing points which can be explained with low dimensional subspaces.

References

[1] L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces from highly
incomplete information. In 2010 48th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 704–711, 2010. doi: 10.1109/ALLERTON.2010.5706976.

[2] L. Balzano, A. Szlam, B. Recht, and R. Nowak. K-subspaces with missing data. In 2012 IEEE
Statistical Signal Processing Workshop (SSP), pages 612–615, 2012. doi: 10.1109/SSP.2012.
6319774.

[3] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance. Branch
and price: Column generation for solving huge integer programs. Operations Research, 46:
316–329, 1998.

[4] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems.
Numerische mathematik, 4(1):238–252, 1962.

[5] Z. Charles, A. Jalali, and R. Willett. Sparse subspace clustering with missing and corrupted
data. In 2018 IEEE Data Science Workshop (DSW), pages 180–184, 2018. doi: 10.1109/DSW.
2018.8439907.

[6] Frank H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, 1983.

[7] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory, and applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11):2765–2781, 2013.
doi: 10.1109/TPAMI.2013.57.

[8] Ehsan Elhamifar. High-rank matrix completion and clustering under self-expressive
models. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
9f61408e3afb633e50cdf1b20de6f466-Paper.pdf.

[9] Jicong Fan and Tommy W.S. Chow. Matrix completion by least-square, low-rank, and
sparse self-representations. Pattern Recognition, 71:290–305, 2017. ISSN 0031-3203.
doi: https://doi.org/10.1016/j.patcog.2017.05.013. URL https://www.sciencedirect.
com/science/article/pii/S0031320317302030.

[10] Matteo Fischetti, Ivana Ljubić, and Markus Sinnl. Redesigning benders decomposition for
large-scale facility location. Management Science, 63(7):2146–2162, 2017. doi: 10.1287/mnsc.
2016.2461.

6

https://proceedings.neurips.cc/paper/2016/file/9f61408e3afb633e50cdf1b20de6f466-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/9f61408e3afb633e50cdf1b20de6f466-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0031320317302030
https://www.sciencedirect.com/science/article/pii/S0031320317302030

INTEGER PROGRAMMING APPROACHES TO SUBSPACE CLUSTERING WITH MISSING DATA

[11] L. R. Ford and D. R. Fulkerson. A suggested computation for maximal multi-commodity
network flows. Management Science, 5(1):97–101, 1958. doi: 10.1287/mnsc.5.1.97. URL
https://doi.org/10.1287/mnsc.5.1.97.

[12] H. Hu, J. Feng, and J. Zhou. Exploiting unsupervised and supervised constraints for subspace
clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8):1542–1557,
2015. doi: 10.1109/TPAMI.2014.2377740.

[13] Harold W. Kuhn. The hungarian method for the assignment problem. In 50 Years of Integer
Programming, 2010.

[14] AH Land and AG Doig. An automatic method of solving discrete programming problems.
Econometrica, 28(3):497–520, 1960.

[15] Connor Lane, Ron Boger, Chong You, Manolis Tsakiris, Benjamin Haeffele, and Rene Vidal.
Classifying and comparing approaches to subspace clustering with missing data. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Oct 2019.

[16] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

[17] C. Li and R. Vidal. A structured sparse plus structured low-rank framework for subspace
clustering and completion. IEEE Transactions on Signal Processing, 64(24):6557–6570, 2016.
doi: 10.1109/TSP.2016.2613070.

[18] Nagarajan Natarajan and Inderjit Dhillon. Inductive matrix completion for predicting gene-
disease associations. Bioinformatics (Oxford, England), 30:i60–i68, 06 2014. doi: 10.1093/
bioinformatics/btu269.

[19] Gurobi Optimization. Algorithms in gurobi, 2016. URL https://www.gurobi.com/
pdfs/user-events/2016-frankfurt/Die-Algorithmen.pdf.

[20] D. Pimentel-Alarcón, L. Balzano, R. Marcia, R. Nowak, and R. Willett. Group-sparse subspace
clustering with missing data. In 2016 IEEE Statistical Signal Processing Workshop (SSP),
pages 1–5, 2016. doi: 10.1109/SSP.2016.7551734.

[21] Boris Polyak. Introduction to optimization. Optimization Software, Inc, 1987.

[22] Andy Ramlatchan, Mengyun Yang, Quan Liu, Min Li, Jianxin Wang, and Yaohang Li. A survey
of matrix completion methods for recommendation systems. Big Data Mining and Analytics, 1:
308–323, 12 2018. doi: 10.26599/BDMA.2018.9020008.

[23] Shankar Rao, Roberto Tron, René Vidal, and Lei Yu. Motion segmentation in the presence
of outlying, incomplete, or corrupted trajectories. IEEE transactions on pattern analysis and
machine intelligence, 32:1832–45, 10 2010. doi: 10.1109/TPAMI.2009.191.

[24] Roberto Tron and Rene Vidal. A benchmark for the comparison of 3-d motion segmentation
algorithms. In 2007 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8,
2007. doi: 10.1109/CVPR.2007.382974.

7

https://doi.org/10.1287/mnsc.5.1.97
https://www.gurobi.com/pdfs/user-events/2016-frankfurt/Die-Algorithmen.pdf
https://www.gurobi.com/pdfs/user-events/2016-frankfurt/Die-Algorithmen.pdf

INTEGER PROGRAMMING APPROACHES TO SUBSPACE CLUSTERING WITH MISSING DATA

[25] Manolis Tsakiris and Rene Vidal. Theoretical analysis of sparse subspace clustering with miss-
ing entries. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4975–4984, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/tsakiris18a.html.

[26] Vedat Verter. Uncapacitated and Capacitated Facility Location Problems, pages 25–
37. Springer US, New York, NY, 2011. ISBN 978-1-4419-7572-0. doi: 10.1007/
978-1-4419-7572-0_2. URL https://doi.org/10.1007/978-1-4419-7572-0_
2.

[27] Congyuan Yang, Daniel Robinson, and Rene Vidal. Sparse subspace clustering with missing
entries. In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 2463–2472, Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.
mlr.press/v37/yangf15.html.

[28] Chong You, Chun-Guang Li, Daniel P. Robinson, and René Vidal. Oracle based active set
algorithm for scalable elastic net subspace clustering. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3928–3937, 2016. doi: 10.1109/CVPR.2016.426.

[29] E. L. Zapata, J. Gonzalez-Mora, F. De la Torre, N. Guil, and R. Murthi. Bilinear active ap-
pearance models. In 2007 11th IEEE International Conference on Computer Vision, pages
1–8, Los Alamitos, CA, USA, oct 2007. IEEE Computer Society. doi: 10.1109/ICCV.
2007.4409185. URL https://doi.ieeecomputersociety.org/10.1109/ICCV.
2007.4409185.

8

http://proceedings.mlr.press/v80/tsakiris18a.html
https://doi.org/10.1007/978-1-4419-7572-0_2
https://doi.org/10.1007/978-1-4419-7572-0_2
http://proceedings.mlr.press/v37/yangf15.html
http://proceedings.mlr.press/v37/yangf15.html
https://doi.ieeecomputersociety.org/10.1109/ICCV.2007.4409185
https://doi.ieeecomputersociety.org/10.1109/ICCV.2007.4409185

INTEGER PROGRAMMING APPROACHES TO SUBSPACE CLUSTERING WITH MISSING DATA

Appendix A.

A.1. Benders decomposition

Recall from Section 2 that cjt represents closeness of the vector Xj , j ∈ [n] to a candidate subspace
t ∈ [T]. Let {σj1, . . . , σ

j
T } be a permutation of {1, . . . , T} satisfying c

jσj
1
≤ c

jσj
2
≤ · · · ≤ c

jσj
T

, and

let t∗j := min{t :
∑t

s=1 ẑσs ≥ 1} be the critical index. As described in [10], the Benders cut that
can be used to lower-approximate the function Φj(·) is

wj +

t∗j−1∑
i=1

(c
jσj

t∗
j

− c
jσj

i
)zσi ≥ cjσj

t∗
j

. (7)

These inequalities are accumulated iteratively. Let pj denote the number of Benders cuts included in
the model at the current stage in the algorithm for each j ∈ [n]. Let t∗ji denote the critical index for
vector j ∈ [n] associated with Benders cut i ∈ [pj], and let c∗ji := c

jσj
t∗
ji

denote the critical cost for

the jth vector in cut i ∈ [pj]. The Benders master problem is then

min
w,z

∑
j∈[n]

wj (8)

∑
t∈[T]

zt = K, (β)

wj +

t∗ji−1∑
`=1

(c∗ji − cjσj
`
)z
σj
`
≥ c∗ji, ∀j ∈ [n], i ∈ [pj], (αji)

0 ≤ zt ≤ 1, ∀t ∈ [T]. (µt)

Here β, α, and µ are dual variables corresponding to the respective constraints, and play an important
role in the column generation process described in Section 3.2. Solving (8) gives a solution (ŵ, ẑ).
The subproblem (4) is then solved to evaluate Φj(ẑ) for each j ∈ [n] and to generate new Benders
cuts (7). If Φj(ẑ) = ŵj , then the generated inequality does not improve the approximation to Φj(·),
and the cut is not added to (8). The Benders procedure stops when no new cuts are added. At this
point, the LP relaxation of (2) is solved.

A.2. Pricing problem

Gradient-based approach for pricing problem. Recall from Section 3.2,

cjt := hj(Ut) := min
v∈Rr

{ ∑
i:(i,j)∈Ω

(Xij − (Utv)i)
2
}
.

If hj(U) 6= c∗ji ∀j ∈ [n], i ∈ [pj], then the function g(U) =
∑

j∈[n]

∑
i∈[pj] αji max{c∗ji−hj(U), 0},

described in (6) is differentiable. For notational convenience, we use the indicator parameter ŷji = 1
if c∗ji > hj(Û) and 0 otherwise. The partial derivative of g(·) with respect to matrix element Uab
evaluated at Û is given by

∂g(Û)

∂Uab
=

∑
j∈[n]

∑
i∈[pj]

2ŷjiαji
∑
`∈Ωj

(X`j − û>` v̂j)v̂jb ∀a ∈ [d], b ∈ [r]. (9)

9

INTEGER PROGRAMMING APPROACHES TO SUBSPACE CLUSTERING WITH MISSING DATA

Here û` represents `th row of basis Û , and v̂j is the minimizer in (1) for Ut = Û . If hj(Û) = c∗ji
for some j ∈ [n], i ∈ [pj], we can still apply the formula (9) to obtain an element of the generalized
subdifferential for g(·) at Û [6].

Algorithm 1: Gradient-based approach for locally solving pricing problem
Data: XΩ, subspaces dimension (r), critical costs c∗ji and dual solution αji,∀j ∈ [n], i ∈ [pj]

Input: U0 ; /* initial subspace */
Output: Subspaces generated from each iteration

1 Û ← U0 ;
2 while not converged
3 for j = 1, 2, . . . , n do
4 for i = 1, 2, . . . , pj do
5 ŷji ← 1 if c∗ji > ‖(Xj)Ω − PÛΩ,j

(Xj)Ω‖22, 0 otherwise ;

6 end
7 end
8 Calculate∇g(Û) using (9) ;

9 ĝ ←
∑

j∈[n]

∑
i∈[pj] αjiŷjic

∗
ji, γ̂ ←

ĝ−g(Û)

‖∇g(Û)‖22
; /* Polyak step size */

10 Û ← Û + γ̂∇g(Û) ; /* move in positive gradient direction */

11 end

We outline our gradient-based approach in Algorithm 1. In each iteration, we calculate ŷ (lines 4-
6), the gradient (line 8), and move in the positive gradient direction (line 10). We use the Polyak step
size [21], and this requires an estimate of the optimal value of objective function. We approximate
the optimal value g∗, as g∗ ≈

∑
j∈[n]

∑
i∈[pj] αjiŷjic

∗
ji (line 9). Empirical experiments show that

this choice of step size works well. In our implementation, we terminate the algorithm (line 2) after
a maximum of 2000 iterations, if ‖∇g(Û)‖2 < 0.0001, or if g(Û) has not improved by at least
ε = 0.01 in the last 100 iterations. Of all the columns generated, only those with negative reduced
cost as calculated in (5) are added to the master problem (8).

A.3. Unified Framework

We discuss a unified MILP framework for SCMD problem that integrates the use of Benders
decomposition and column generation. We also point out that we generate new columns (zt variables)
only at the initial LP relaxation (the so-called root node), and not at additional nodes in the branch-
and-bound tree. We describe the overall MILP framework in Algorithm 2. We initialize the algorithm
with m randomly generated subspaces (line 1) to initialize model (8). We then solve the master
LP relaxation (8) in line 7, and generate Benders cuts for each j ∈ [n] (lines 8-11). We repeat this
until no violated cuts are found (line 10). We then proceed to generate new columns by solving the
pricing problem (6). Because we use a gradient-based approach to solve the nonconvex problem (6),
we initialize Algorithm 1 with different random choices of U0 (lines 14-18) to identify different
locally-optimal solutions. Each U0 is obtained by selecting a random subset of 2r vectors from
the 3Kr vectors that have the largest ŵj values in the current LP solution of the master problem
(8). Then, we use a fast low-rank matrix completion algorithm [1] to find the basis U0 for a best-fit
subspace for these vectors. We repeat this until we have tried at least K different U0 and have found

10

INTEGER PROGRAMMING APPROACHES TO SUBSPACE CLUSTERING WITH MISSING DATA

at least one negative reduced cost column, or reach the maximum allowed iterations. If negative
reduced cost columns are found, we add them to the master LP, delete existing Benders cuts since
they become invalid due to new zt variables (lines 21-22), and return to the process of generating
Benders cuts. We repeat this process as long as we are able to generate new columns.

Once we fail to find a negative reduced cost column, we exit the root node loop and pass the
updated MILP model with the new columns and cuts included to a MILP solver (we use Gurobi
[19]). We also provide a callback routine to the solver to generate Benders cuts as necessary when
an integer solution is found during the branch-and-bound tree search. We use the solution from the
MILP solver to determine the selected subspaces and assignments of vectors to them (line 27).

A.4. Parameters choice for state-of-the-art methods

We tuned the methods against which we compare our MILP approach for different parameter
configurations. We report these configurations in Table 1. The range for each parameter is based
on the recommendations from the original papers [2, 15, 27]. The best parameter configuration is
selected based on the least misclassification error.

A.5. Computation time

We report average computation times for some of the instances we considered in Section 4.1 in
Table 2 . As expected, ZF-SSC and k-GROUSE are significantly faster than the other two methods,
with computing times ranging from 2-6 minutes, whereas the computing time ranges between 45
minutes and 3.1 hours for the MILP approach and between 11 minutes and 11.4 hours for Alt-PZF-
EnSC+gLRMC. For Alt-PZF-EnSC+gLRMC, the time reported includes the necessary time for
hyperparameter tuning and hence is much higher than ZF-SSC since it involves solving LRMC and
EnSC repeatedly for different set of parameters. We give a detailed breakdown of the computation
time spent in each component of the MILP approach in Table 3. A large portion of the computation
in the MILP approach (≈ 50%) is spent computing the cjt coefficients and about 20% is spent
calculating gradients, which are both operations that can be done in highly parallel fashion. Thus,
while we did not pursue a parallel implementation, we expect significant speedups are possible.
Overall, these results indicate that the MILP framework is feasible for moderate size data and
competitive with Alt-PZF-EnSC+gLRMC, but is best suited for applications where one desires
accuracy over speed, e.g., predicting gene-disease association [18].

We report detailed computational times of the MILP approach in Table 3. For the same instances
reported in Table 2, we report the number of new columns generated from solving the pricing problem
(# New cols), the number of Benders cuts at the Root node and in the B&B (Callback), the number
of nodes explored in B&B tree, the MILP total solution time (Total sol. time), the time spent solving
the pricing problem (Pricing), the time spent solving the Benders LP (Benders LP), the time spent in
B&B tree (B&B), and the time spent in calculating residuals costs (Residuals). All numbers reported
in Table 3 are averaged over five different random instances.

We point out that the majority of the computational time in our MILP approach is spent in
calculating residuals costs and solving the pricing problem many times. The time spent on processing
the B&B tree is very small (≈ 1%) of the total MILP time when no Benders cuts are generated
in B&B tree with the callback. When Benders cuts are required to be generated in the B&B tree,
then the time spent processing the B&B tree goes up as well. We also observe that in most cases

11

INTEGER PROGRAMMING APPROACHES TO SUBSPACE CLUSTERING WITH MISSING DATA

Algorithm 2: Unified MILP framework for SCMD
Input: XΩ, subspaces dimension r, number of subspaces K
Output: Segmentation of columns of X in K clusters: Sk and basis Uk,∀k ∈ [K]

1 Generate m = 500 ∗K random subspaces to initialize MILP model (3) ;
2 root node continue← True, generate cuts← True;
3 while root node continue
4 root node continue← False ; /* switched back on if new columns found

*/
// generate Benders cuts

5 while generate cuts
6 generate cuts← False ;
7 solve master LP relaxation (8) to obtain ẑ;
8 for j = 1, 2, . . . , n do
9 Generate and add Benders cuts of the form (7) to master (8);

10 if cuts found: generate cuts← True ;
11 end
12 end

// generate new columns
13 Tn ← ∅;
14 for it = 1, . . . ,maxIt = 50 do
15 U0 ← best fit subspace on randomly sampled 2 ∗ r vectors from costliest 3 ∗K ∗ r

vectors;
16 Solve pricing problem using Algorithm 1 and add columns with negative reduced cost to

Tn;
17 if |Tn| ≥ 1 and it ≥ K: break;
18 end
19 if Tn 6= ∅
20 Calculate residual cost cjt,∀j ∈ [n], t ∈ Tn using (??);
21 [T]← [T] ∪ Tn ; /* Add new zt, t ∈ Tn variables */
22 Remove all Benders cuts from (8) ; /* invalid due to new zt vars */
23 root node continue← True;
24 end
25 end
26 x̂, ẑ ← Solve MILP model (3) with Gurobi, give a callback routine for Benders cuts;
27 return {St = {j ∈ [n] : x̂jt = 1}, Ut,∀t ∈ [T]s.t. ẑt = 1} ;

Table 1: Parameters choice for evaluated algorithms

Algorithm Parameters

ZF-SSC [27] λ ∈ {10−3, 10−2, 0.1, 1, 10, 102, 103}
Alt-PZF-EnSC+gLRMC [15] λ ∈ {5, 50, 300}, γ ∈ {0.5, 0.7, 0.9}
k-GROUSE [2] η0 = 0.1, diminishing step size

12

INTEGER PROGRAMMING APPROACHES TO SUBSPACE CLUSTERING WITH MISSING DATA

Table 2: Comparison of computation time (s). Instance notation: I-30-200-6-3-40 stands for d =
30, n = 200,K = 6, r = 3, f = 40%

Instance ZF-SSC Alt-PZF-EnSC+gLRMC k-GROUSE MILP

I-40-200-4-3-60 118.6 1591.2 153.6 2680.4
I-30-200-6-3-20 163.7 672.3 181.9 3830.3
I-30-200-6-3-40 155.6 791.2 190.7 4127.3
I-30-300-6-3-65 338.9 29205.9 347.2 12299.4
I-30-360-9-3-60 290.2 41123.5 291.2 11117.7

Table 3: Detailed computational times for MILP
Instance # New cols # Benders cuts # B&B nodes Time (s)

Root node Callback Total sol. time Pricing Benders LP B&B Residuals

I-30-120-6-3-65 140241 11663 2558 11 19739.4 7944.2 126.1 755.5 6977.9
I-30-160-4-2-60 37104 7167 0 0 2002.5 998.7 7.6 2.2 997.9
I-30-160-4-3-60 49982 7071 0 0 3043.6 1426.3 9.3 3.4 1382.0
I-30-180-6-3-65 146253 14334 144 0 18751.7 8188.4 143.1 146.0 7313.3
I-30-200-5-3-60 51252 8156 0 0 2841.3 1410.3 9.2 3.2 1419.1
I-30-200-6-3-10 28246 8135 0 0 4177.5 1550.6 16.0 3.3 1736.3
I-30-200-6-3-20 33257 8998 0 0 3816.7 1440.7 30.2 2.7 1625.3
I-30-200-6-3-30 30042 10090 0 0 3417.2 1286.6 15.6 2.3 1410.0
I-30-200-6-3-40 34774 9163 0 0 4111.3 1741.6 16.4 3.9 1892.0
I-30-200-6-3-50 37211 8316 0 0 4125.6 1820.0 16.9 4.9 1937.3
I-30-200-6-3-55 50338 9613 0 0 5799.6 2663.3 19.1 4.0 2727.6
I-30-200-6-3-60 64502 10073 0 0 7058.0 3486.1 32.6 7.6 3458.6
I-30-200-6-3-65 118255 12552 120 0 14453.6 6834.9 94.9 164.8 6420.3
I-30-200-6-3-70 135352 11627 2560 11 21699.9 9593.6 129.1 2010.8 8702.6
I-30-240-6-3-60 57925 11514 0 0 4125.6 2010.9 16.4 4.1 2012.4
I-30-240-6-3-65 87303 12461 0 0 11813.3 5821.1 61.5 15.9 5598.9
I-30-280-7-3-60 71170 13946 0 0 4538.0 2169.4 22.5 7.4 2059.2
I-30-300-6-3-65 67051 15379 0 0 12272.0 5872.8 69.1 18.5 5763.1
I-30-320-8-3-60 79744 16073 188 0 15189.5 7779.2 166.9 154.7 7676.5
I-30-360-6-3-65 60075 15951 0 0 6924.0 3620.2 29.5 8.0 3603.9
I-30-360-9-3-60 86972 19349 0 0 11082.7 5647.4 72.8 15.3 5488.2
I-30-60-6-3-65 54863 5026 432 8 4114.2 1490.8 32.2 88.3 1385.7
I-40-160-4-2-60 28746 6071 28 0 4250.8 2077.7 14.6 3.2 2158.3
I-40-200-4-3-60 31498 7561 0 0 2673.6 1217.2 8.0 2.5 1286.2

the problem is solved without branching at all—the number of B&B nodes is 0. The time spent in
solving LP relaxations while generating Benders cuts is also very small.

13

	Introduction
	Integer Programming Formulation
	Decomposition algorithm
	Row generation
	Column generation

	Computational study
	Synthetic experiments

	Conclusion
	
	Benders decomposition
	Pricing problem
	Unified Framework
	Parameters choice for state-of-the-art methods
	Computation time

