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Abstract

We propose a general optimum-statistical collaboration framework for sequential black-box
optimization. Based on general definitions of the resolution descriptor and the uncertainty
quantifier, we provide a general regret analysis of the proposed framework. We then show
that the proposed framework can be applied to a broader range of functions that have
different smoothness, and it inspires tighter measures of the statistical uncertainty and
thus a faster algorithm.

1. Introduction

We study the problem of sequentially optimizing a black-box objective function f : X 7→ R,
where X is the parameter space. The sampling budget (number of evaluations) is denoted
by an unknown constant n, which is often limited when the cost of evaluating f(x) is
expensive. At each round (evaluation) t, the algorithm selects a value xt ∈ X and receives
an stochastic feedback rt ∈ [0, 1] , modelled by rt ≡ f(xt)+εt, where the noise εt is assumed
to be mean zero, bounded by [− b

2 ,
b
2 ] for some constant b > 0, and independent from

the historical observed algorithm performance and the path of selected xt’s. We assume
that there exists at least one point x∗ ∈ X such that it attains the maximum f∗, i.e.,
f∗ ≡ f(x∗) = supx∈X f(x). The goal of a black-box optimization algorithm is to gradually
find xn such that f(xn) is close to the global maximum f∗.

2. Preliminaries

Regret Analysis Framework. Given the measurable space X and the unknown function
f , our objective is to find the maximum of f with a total of n evaluations. We measure
the performance of different algorithms using the cumulative regret. With respect to the
optimal value f∗, the cumulative regret of a black-box optimization algorithm is defined as
Rn ≡ nf∗ −

∑n
t=1 rt.

Hierarchical partitioning. We use the hierarchical partitioning P = {{Ph,i}
|Ih|
i=1}∞h=0

to discretize the hyperparameter space X into cells (nodes), which are previously studied
in Munos (2011); Bubeck et al. (2011); Valko et al. (2013). For any non-negative integer
h, the set {Ph,i}1≤i≤|Ih| partitions the whole space X , where Ih is the set of nodes at each
depth level h. At depth h = 0, a single node P0,1 covers the entire space. Every time we
increase the level of depth, each node at the current depth level will be separated into two
children; that is, Ph,i = Ph+1,2i−1 ∪Ph+1,2i. Such a hierarchical partition naturally inspires
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tree-based algorithms which explores the space by traversing the partitions and selecting
the nodes with higher rewards to form a tree structure, with P0,1 being the root.Similar to
Grill et al. (2015), we name the partition where each cell is split into regular same-sized
subcells as the standard partitioning.

We introduce the generalized definition of near-optimality dimension, which is a natural
generalization of the near-optimality notion introduced by Grill et al. (2015).

Near-optimality dimension. For any constants α > 0, C > 1, and any function
ξ(h) that satisfies ∀h ≥ 1, ξ(h) ∈ (0, 1] , we define the near-optimality dimension of f with
respect to P as

d = d(α,C, ξ(h)) ≡ inf{d′ > 0 : ∀h ≥ 0,Nh(αξ(h)) ≤ Cξ(h)−d
′}

where Nh(ε) is the number of cells Ph,i on level h such that supx∈Ph,i
f(x) ≥ f∗ − ε

In simpler words, for each h > 0, Nh(αξ(h)) is the number of near-optimal regions that
are (αξ(h))-close to the optimum so that any algorithm has to sample from these regions.
d = d(α,C, ξ(h)) upper bounds the logarithm of these quantities on the whole partition P
with respect to the function ξ(h). Note that the above general definition of d covers the
near optimality dimension defined by Grill et al. (2015) by simply letting ξ(h) = ρh and
the coefficient α = 2ν for some constants ν > 0 and ρ ∈ (0, 1).

Notations. At round t, we use H(t) to represent the maximum depth level explored in
the partition by an algorithm. For each node Ph,i, we use Th,i(t) to denote the number of
times it has been pulled and rk(xh,i) to denote the k-th reward observed for the node.

3. Optimum-statistical Collaboration

In this section we first define two quantities that play important roles in our framework.
We then introduce the general optimum-statistical collaboration algorithm and provide its
theoretical analysis.

Definition 1 (Resolution Descriptor) Define OEh to be the resolution for each layer h,
which is a function that upper-bounds the change of f around the optimum and measures
the current optimization error, i.e., for any global optimum x∗

∀h ≥ 0,∀x ∈ Ph,i∗h , f(x) ≥ f(x∗)− OEh (OE)

where Ph,i∗h is the node on layer h in the partition that contain the global optimum x∗.

Definition 2 (Uncertainty Quantifier) Define SEh,i(t) to be the uncertainty estimate
for each node Ph,i at time t, which is a function that upper-bounds the current statistical
error of the average µ̂h,i(t) of the rewards obtained with high probability, i.e., the event

At =
{
∀(h, i), |µ̂h,i(t)− f(xh,i)| ≤ SEh,i(t)

}
(SE)

is a high probability event.

Given the above definitions of the resolution descriptor and the uncertainty quantifier
at each node, we introduce the optimum-statistical collaboration algorithm in Algorithm 1
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Algorithm 1 Optimum-statistical Collaboration

Input: Hierachical partition P, resolution descriptor OEh, Uncertainty quantifier SEh,i(t).

Step 1: Refresh the confidence at some specific time steps to update all SEh,i(t) in the
tree.
Step 2: Find the optimal node Pht,it at time t that satisfies OEht ≤ SEht,it(t) and pull
Pht,it .
Step 3: If OEht ≥ SEht,it(t) after the pull, expand Pht,it and explore deeper.

that guides the design of different tree-based algorithms, with possibly different choices of
OE and SE.

The first step of the collaboration is to update the confidence in the algorithm at the
refresh points so that SEh,i(t) can better measure the statistical uncertainty at each node.
The second step and the third step play the most important roles in different algorithms to
manage the flux of SEh,i(t) and OEh,i(t). The end-goal of the optimum-statistical collabo-
ration is that, after pulling enough number of times, the following relationship holds along
the shortest path from the root to the deepest node that contains the global maximum. If
there are multiple global maximizers, the process only needs to find one of them.

OE1 ≥ SE1 > OE2 ≥ SE2 ≥ · · · ≥ OEh ≥ SEh ≥ · · · (1)

𝒳

Followed path
OE1≥ SE1

OE2≥ SE2

OE3≥ SE3

OE4≥ SE4

OE5≤ SE5

≥
≥

≥
≥

Figure 1: Illustration of the optimum-
statistical collaboration frame-
work. The node on the fifth layer
in the path will be pulled because
its OE ≤ SE

where we have slightly abused the notation of
OEh and SEh to represent the resolution de-
scriptor and the uncertainty quantifier of the
h-th node on the selected path, since the node
is on layer h in the tree and its index relies
on the objective and the algorithm. In other
words, the two terms collaborate on the op-
timization process so that SE is controlled by
OE in each node of the selected path, and they
both become smaller when the exploration al-
gorithm goes deeper. Figure 1 illustrates the
above process more clearly using an example
tree on the standard partition.

We state the following theorem, which is
a general regret upper bound with respect to
any choice of SEh,i(t) and OEh, and any design
of policy that follows the optimum statistical
collaboration framework, with only a mild condition on the result of the choice in each
round.

Theorem 3 (General Regret Bound) Suppose that under a sequence of probability
events {Et}t=1,2,···, at each time t, the designed policy to select the optimal node Pht,it in
Algorithm 1 satisfies f∗ − f(xht,it) ≤ a ·max{SEht,it(t), OEht}, where a > 0 is an absolute
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constant. Then for any H ∈ [1, H(n)) we have the following bound on the expected regret

E[Rn] ≤
√

2n log(4n3) +
1

4n2
+

n∑
t=1

P(Ect ) + 2aC
H∑

h=1

(OEh−1)−d̄
∫ Th(n)

1
max

i
SEh,i(s)ds

+ a

H(n)∑
H+1

∑
i∈Ih(n)

∫ Th,i(n)

1
SEh,i(s)ds

where d̄ := d(a,C, OEh−1) is the near-optimality dimension defined with respect to a,C, and
OEh−1, and Th(n) = maxi Th,i(n)

4. Specific Examples

Provided the optimum-statistical collaboration framework and its analysis, we discuss the
exact formulas of the resolution descriptor and the uncertainty quantifier and elaborate the
roles these definitions play in the optimization process.

4.1. The resolution descriptor (Definition 1)

Local Smoothness. Grill et al. (2015) assumed that there exist two constants ν1 > 0, ρ ∈
(0, 1) s.t.

∀h ≥ 0, ∀x ∈ Ph,i∗h , f(x) ≥ f∗ − ν1ρ
h (2)

The above equation states that the function f is ν1ρ
h-smooth around the maximum at each

level h. It has been considered in many prior works such as Shang et al. (2019); Bartlett
et al. (2019). The resolution descriptor is naturally taken to be OEh = ν1ρ

h.
However, such a choice of local smoothness, despite really useful for many blackbox

objectives, is too restrictive as it serves as a strong requirement on both the objective f
and the partition P. Many functions and partitions do not satisfy Eqn. (2). An simple
example is the function g(x) = 1 + 1/(lnx) defined on the domain (0, 1/e] and with the
standard partition. It can be easily proved that it is impossible for g(x) and the standard
partition to satisfy Eqn. (2) for any given constants ν0 > 0, ρ0 ∈ (0, 1) because the function
decreases too fast around 0. It might be possible to define a particular partition for g(x)
that satisfies Eqn. (2). However, such a partition is defined in hindsight since we do not
have any knowledge of the function before the optimization.

Notice that g(x) is actually monotone and thus very easy to optimize, but previous
analyses that rely on Eqn. (2) cannot be applied to such functions. We therefore introduce
our general φ(h)-local smoothness of the objective to analyze functions that have different
levels of smoothness.

General Local Smoothness. Assume that there exists a function φ(h) ∈ (0, 1) s.t.

∀h ≥ 0,∀x ∈ Ph,i∗h , f(x) ≥ f(x∗)− φ(h) (GLS)

In the same example g(x) = 1+1/(lnx), it can be shown that g(x) satisfies Condition (GLS)
with φ(h) = 2/h. Therefore, if we take OEh = 2/h in our framework and choose SEh,i(t) as
in the next subsection, a valid regret bound can be obtained for g(x), since d(2, C, 1/h) <∞
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in this case. Similarly, we can analyze functions and partitions that satisfy Condition (GLS)
with different φ(h) such as φ(h) = 1/hp, for some p > 0 or φ(h) = 1/ log h, as long as the
corresponding near-optimality dimension d(a,C, φ(h)) is finite. Given such a generalized
definition and the general bound in Theorem 3, we can provide the convergence results for a
much larger class of black-box objectives and partitions, including but not limited to those
that satisfy Eqn. (2).

4.2. The uncertainty quantifier (Definition 2)

Tracking Statistics. We first define the following tracking statistics which are useful in
different choices of SE. The mean estimate µ̂h,i(t) and the variance estimate V̂h,i(t) at round
t are

µ̂h,i(t) ≡
1

Th,i(t)

Th,i(t)∑
k=1

rk(xh,i), V̂h,i(t) ≡
1

Th,i(t)

Th,i(t)∑
k=1

(
rk(xh,i)− µ̂h,i(t)

)2

The variance estimate is defined to be negative infinity when Th,i(t) ≤ 1 since variance
is undefined in such cases. We now discuss two specific choices of SE.

Nonadaptive Quantifier (HCT) Azar et al. (2014) proposed in their High Confidence
Tree (HCT) algorithm to use an uncertainty quantifier of the following form

SEh,i(t) ≡ bc

√
log(1/δ̃(t+))

Th,i(t)

where t+ is the time step to update the confidence, which is a variable related to t (see
step 1 in §A.2) and c is a tuning constant. By Hoeffding’s inequality, the above SE is a
high-probability upper bound for the uncertainty (Event At in Section 3).

Variance Adaptive Quantifier (VHCT) Based on our framework of the statistical
collaboration, a tighter measure of the statistical uncertainty can boost the performance of
the optimization algorithm, as the goal in Eqn. (1) can be reached faster. We therefore
propose the following variance adaptive uncertainty quantifier, which is an adaptive variant
of HCT.

SEh,i(t) ≡ c

√
2V̂h,i(t) log(1/δ̃(t+))

Th,i(t)
+

3bc2 log(1/δ̃(t+))

Th,i(t)
(3)

The uniqueness of the above SEh,i(t) is that it utilizes the variance of each node. There-
fore, when the variance of the stochastic reward is small, the objective SEh,i(t) ≤ OEh is
achieved faster at the node Ph,i. In such a way, the algorithm is able to adapt to differ-
ent noises. None of the prior works have utilized the variance information in each node
when delineating the node uncertainty, and thus the above choice has an advantage over
non-adaptive algorithms. The specific VHCT algorithm is provided in Appendix A

4.3. Regret Bounds

We now provide regret bounds of the algorithm VHCT, which serve as examples of our general
Theorem 3 when OE and SE are specified. The regret bounds depend on the maximum
variance in history across all the nodes Vmax = maxh,i,t V̂h,i(t). We focus on two choices
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(a) Low noise (b) Moderate noise (c) Garland function G(x)

Figure 2: Cumulative regret of different algorithms on the Garland function G(x)

of the local smoothness function in Condition (GLS) and their corresponding near-optimal
dimensions, i.e., φ(h) = νρh that matches previous analyses such as Grill et al. (2015);
Shang et al. (2019), and φ(h) = 1/h. For other choices of φ(h), similar regret upper bounds
can also be derived by following Theorem 3.

Theorem 4 Assume that the objective function f satisfies Condition (GLS) with φ(h) =
νρh for two constants ν > 0, ρ ∈ (0, 1). The expected cumulative regret of Algorithm 2 is
upper bounded by

E[RVHCT
n ] ≤ 2

√
2n log(4n3) + C1V

1
d1+2

max n
d1+1
d1+2 (log n)

1
d1+2 + C2n

2d1+1
2d1+4 log n.

where C1 and C2 are two constants and the near-optimality dimension d1 = d(3ν, C, ρh).

Theorem 5 Assume that the objective function f satisfies Condition (GLS) with φ(h) =
1/h. The expected cumulative regret of Algorithm 2 is upper bounded by

E[RVHCT
n ] ≤ 2

√
2n log(4n3) + C̄1V

1
2d2+3

max n
2d2+2
2d2+3 (log n)

1
2d2+3 + C̄2n

2d2+1
2d2+3 log n.

where C̄1 and C̄2 are two constants and the near-optimality dimension d2 = d(1, C, 1/h).

Remark 6 Note that these regret bounds depend on the maximum variance appeared in the
history, therefore we would expect VHCT to be faster than the HCT algorithms when the noise
is small.

5. Experiments

We empirically compare the proposed VHCT algorithm with the existing anytime blackbox
optimization algorithms, including T-HOO (the truncated version of HOO), HCT, POO, and
PCT (POO + HCT, (Shang et al., 2019)). We use the Garland function and the Double-
sine function as the blackbox objectives. We run the algorithms for two settings, i.e., the
low noise setting where εt ∼ Uniform(−0.05, 0.05), and the moderate noise setting where
εt ∼ Uniform(−0.2, 0.2). For the algorithms that need the smoothness parameters, we follow
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(a) Low noise (b) Moderate noise (c) Double-sine function D(x)

Figure 3: Cumulative regret of different algorithms on the Double-sine function D(x)

Shang et al. (2019) and tune ρ from {0.25, 0.5, 0.75}. We report the best result for each
algorithm. For POO and PCT, we follow Grill et al. (2015) and use ρmax = 0.9. The predefined
bound for the noise is set to be b = 1 for all the algorithms. We run every algorithm for 20
independent trials and plot the average cumulative regret with error bounds.

As shown in Figure 2 and 3, VHCT converges much faster than any other algorithms in
both the low-noise setting and the moderate-noise setting. Note that the local maximums
of D(x) are much closer to its maximum than G(x), therefore the advantage of VHCT is less
conspicuous on D(x), but it still remains the fastest algorithm. All the experiment results
validate our claims in Section 4.
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Appendix A. Proof of the General Bound and the VHCT Algorithm

A.1. Proof of the General Regret Bound in Theorem 3

Proof. We decompose the cumulative regret into two terms that depend on the high
probability event E . Denote the simple regret at each iteration t to be ∆t = f∗ − rt, then
we can perform the following decomposition

Rn =
n∑

t=1

∆t =

(
n∑

t=1

∆tIEt

)
+

(
n∑

t=1

∆tIEct

)
= REn +RE

c

n

= REn +

n∑
t=1

IEct

where the last inequality is because |∆t| ≤ 1. Now note that the instantaneous regret ∆t

can be written as

∆t = f∗ − rt = f∗ − f (xht,it) + f (xht,it)− rt = ∆ht,it + ∆̂t

which means that the regret under the event Et can be decomposed into

REn =
n∑

t=1

∆ht,itIEt +
n∑

t=1

∆̂tIEt ≤
n∑

t=1

∆ht,itIEt +
n∑

t=1

∆̂t = R̃En + R̂En

Note that by the definition of ∆̂t, it is a bounded martingale difference sequence since
E[∆̂t | Ft−1] = 0 and |∆t| ≤ 1, where Ft is defined to be the filtration generated up to time
t. Therefore by Azuma’s inequality on this sequence, we get

R̂En ≤
√

2n log(
4n2

δ
) (4)

with probability 1− δ/(4n2). Now the only term left is R̃En, we bound it as follows.

R̃En =

(
n∑

t=1

∆ht,itIEt

)
≤

H(n)∑
h=1

∑
i∈Ih(n)

n∑
t=1

∆h,iI(ht,it)=(h,i)IEt


≤

H∑
h=1

∑
i∈Ih(n)

n∑
t=1

aSEh,i(t) +

H(n)∑
H+1

∑
i∈Ih(n)

n∑
t=1

aSEh,i(t)

≤ a
H∑

h=1

∑
i∈Ih(n)

∫ Th,i(n)

1
SEh,i(s)ds︸ ︷︷ ︸

(I)

+ a

H(n)∑
H+1

∑
i∈Ih(n)

∫ Th,i(n)

1
SEh,i(s)ds︸ ︷︷ ︸

(II)
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where H̄ is a constant to be tuned later. The second inequality is because under event Et
when we select Pht,it , we have SEht,it(t) ≥ OEht . The first term (I) can be bounded as

(I) ≤ a
H∑

h=1

∑
i∈Ih(n)

∫ Th(n)

1
max

i
SEh,i(s)ds ≤ a

H∑
h=1

|Ih(n)|
∫ Th(n)

1
max

i
SEh,i(s)ds

≤ a
H∑

h=1

2Nh−1 (aOEh−1)

∫ Th(n)

1
max

i
SEh,i(s)ds

≤ 2aC

H∑
h=1

(OEh−1)−d̄
∫ Th(n)

1
max

i
SEh,i(s)ds

where Th(n) = maxi∈Ih(n) Th,i(n) and d̄ := d(a,C, OEh−1) is the near-optimality dimension
with respect to (a,C, OEh−1). The third inequality is because we only expand a node into
two children, so |Ih(n)| ≤ 2|I+

h−1(n)| (Note that we do not have any requirements on the
number of children of each node, so the binary tree here can be easily replaced by a K-nary
tree with K ≥ 2). Also since we only select a node (h, i) when its parent (hp, ip) satisfies
OE ≥ SE, we have Php,ip satisfies f∗− f(xhp,ip) ≤ aOEhp under E . By the definition of Nh(ε)
in the near-optimality dimension, we have

|Ih(n)| ≤ 2|I+
h−1(n)| ≤ 2Nh−1 (aOEh−1)

and thus the final upper bound for (I). Therefore for any H̄ ∈ [1, H(n)], we have the
expectation of the cumulative regret to be upper bounded by

E[Rn] =

n∑
t=1

E[∆t] = E[REn] +

n∑
t=1

P(Ect )

≤
√

2n log(4n3) +
1

4n2
max(R̂En) +

n∑
t=1

P(Ect ) + R̃En

≤
√

2n log(4n3) +
1

4n2
+ 2aC

H∑
h=1

(OEh−1)−d̄
∫ Th(n)

1
max

i
SEh,i(s)ds

+ a

H(n)∑
H+1

∑
i∈Ih(n)

∫ Th,i(n)

1
SEh,i(s)ds+

n∑
t=1

P(Ect )

where the second inequality is by taking δ = 1/n. �

A.2. Algorithm Example - VHCT

Based on the proposed framework and its analysis, we propose a new algorithm VHCT as an
example of Algorithm 1 and reveal its capability to adapt to different noises. Algorithm 2
provides the pseudo-code of VHCT, with two subroutines Algorithm 3 and 4.

Similar to HCT, the proposed VHCT also maintains an upper-bound Uh,i for each node
to decide collaborative optimism. In particular, for any node Ph,i, the upper-bound Uh,i is
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Algorithm 2 VHCT Algorithm

1: Input: functions OEh, SEh,i(t), partition P.
2: Initialize: Tt = {P0,1,P1,1,P1,2}, U1,1(t) = U1,2(t) = +∞
3: for t← 1 to n do
4: if t = t+ then
5: for all nodes Ph,i ∈ Tt do
6: Compute Uh,i(t) from Eqn. (5) B Step 1.
7: end for
8: UpdateBackward(Tt, t)
9: end if

10: (ht, it)← PullUpdate(Tt, t) B Step 2.
11: if Tht,it(t) ≥ τht,it(t) and Pht,it is a leaf then
12: Tt ← Tt ∪ {Pht+1,2it−1,Pht+1,2it} B Step 3.
13: Uh+1,2i(t) = Uh+1,2i−1(t) = +∞
14: end if
15: end for

computed directly from the observed reward for pulling xh,i as

Uh,i(t) ≡ µ̂h,i(t) + OEh + SEh,i(t) (5)

with SEh,i(t) defined as in Eqn. (3) and OEh tuned by the algorithm. We also define the
Bh,i(t) values to be tighter upper bounds to better utilize the tree structure in the algorithm.
Since the maximum upper bound of one node cannot be greater than the maximum of its
children, Bh,i(t) is defined to be

Bh,i(t) = min {Uh,i(t),max{Bh+1,2i(t), Bh+1,2i−1(t)}} (6)

if the node has children and Bh,i(t) = Uh,i(t) if not. Every time Uh,i(t) is changed, we
update all the Bh′,i′(t) of the nodes Ph′,i′ superior to Ph,i in the path backward from the
leaf to the root.

We now elaborate the VHCT algorithm as a three-step process corresponding to the three
steps in the optimum-statistical collaboration framework.

Step 1. Refresh the confidence constant for each node. At the refresh points
t+ = 2blog tc+1, we update the confidence δ̃t = min{1, c1δ/t} for each node, where c1 is a
constant. Therefore, the uncertainty quantifiers SE for all nodes are refreshed. Then we use
the algorithm UpdateBackward to compute the B-values from the leaves to the root.

Step 2. Find the current optimal path and pull the optimal node. The best
node to pull at the moment is found by the helper function PullUpdate, which is the node
Pht,it that has the highest upper bound Bht,it(t) in layer ht and satisfies OEht ≤ SEht,it(t).
That means the node is the best node in terms of the collaborative optimism between OE and
SE, but its uncertainty is too large so that the tree cannot be expanded or further explored.
After the best node is pulled, all statistics concerned with the node and its parents are
updated according to the formulas, using the helper function UpdateBackward.

Step 3. Decide whether to expand the optimal node. After pulling the best node,
the algorithm decides whether it needs to expand the node and explore further. Recall the

11
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Algorithm 3 PullUpdate

1: Input: a tree Tt, round t
2: Initialize: (ht, it)← (0, 1);St ← P0,1;T0,1(t) = τ0(t) = 1 ;
3: while Pht,it is not a leaf, Tht,it(t) ≥ τht,it(t) do
4: j ← argmaxj=0,1{Bht+1,2it−j(t)}
5: (ht, it)← (ht + 1, 2it − j)
6: St ← St ∪ {Pht,it} BFind the optimal node
7: end while
8: Pull xht,it and get reward rt
9: Tht,it(t)← Tht,it(t) + 1

10: Update µ̂ht,it(t), V̂ht,it(t)
11: Uht,it(t)← µ̂ht,it(t) + OEht + SEht,it(t)
12: UpdateBackward(St, t)
13: return (ht, it)

Algorithm 4 UpdateBackward

1: Input: a tree T , round t
2: for Ph,i ∈ T backward from each leaf of T do
3: if Ph,i is a leaf of T then
4: Bh,i(t)← Uh,i(t)
5: else
6: Compute Bh,i(t) from Eqn. (6)
7: end if
8: Update the threshold τh,i(t)
9: end for

interaction between the resolution descriptor OEh and the uncertainty quantifier SEh,i(t) at
depth ht, we know that the optimal node (if it is a leaf) should only be expanded when
SEh,i(t) ≤ OEh. As a consequence, we define the variable τh,i for each node Ph,i as follows.

τh,i(t) = inf
t∈N
{SEh,i(t) ≤ OEh}

Note that given the SEh,i(t) of VHCT in Eqn. (3), the above requirement for τh,i(t) is a
quadratic equation for any OEh and thus can be easily solved. For example, when OEh = 1/h,
we have

τh,i(t) =

⌈(
ch+

√
c2h2 +

6bc2h

V̂h,i(t)

)2

V̂h,i(t) log(1/δ̃(t+))

⌉
We would only expand the node Pht,it into its children when the number of pulls is large
enough so that Tht,it ≥ τht,it . Note that τh,i(t) is smaller when the variance is smaller,
because the relationship SEh,i(t) ≤ OEh is achieved faster. Therefore, VHCT adapts to the
variance through its node-specific threshold and thus explores the parameter space faster
than the non-adaptive algorithms. However, we emphasize that VHCT is only an example
that satisfies our general framework, and many other algorithms that follow the framework
can be proposed.
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