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Abstract
Gradient-based Neural Architecture Search (NAS) approaches have achieved remarkable

progress in the automated machine learning community. However, previous methods would cause
much search time and huge computation resources in a big search space for seeking an optimal
network structure. In this work, we propose a novel Simulated Annealing algorithm for NAS, namely
SA-NAS, by adding perturbations to the gradient-descent for saving search cost and boosting the
predictive performance of the search architecture. Our proposed algorithm is easy to be adapted
to current state-of-the-art methods in the literature. We conduct extensive experiments on various
benchmarks where the results demonstrate the effectiveness and efficiency of our SA-NAS in reduc-
ing search time and saving computation resources. Compared to previous differentiable methods,
our SA-NAS achieves comparable or better predictive performance under the same setting.

1. Introduction

Recently, Neural Architecture Search (NAS) has gained popularity in the automated machine learning
(AutoML) community. The goal of NAS is that given the constraints of network size and latency,
we need to design an efficient optimization algorithm to explore an optimal network structure in
a large space of architectures. Most early approaches develop this optimal solution by applying
reinforcement learning or evolution methods, but those methods require huge search costs and
computation resources. To avoid searching in a large space of candidate architectures, DARTS [15]
relax the search space to be continuous so that gradient descent can be utilized to optimize the
architecture with respect to its validation set performance. PC-DARTS [20] further reduces the
redundancy in the search space by using partial channel connections in a small part of the super-
network, so that a more efficient architecture search algorithm is applied without a performance
drop.

However, previous methods [3, 4, 13, 15, 20] need to take much search time and huge computation
resources in a big search space for finding the optimal architecture, which tends to fall into saddle
points. In the meanwhile, those gradient-based searching methods with random initialization [6, 8]
can be significantly slowed down by saddle points since it would take exponential time to escape
saddle points. Moreover, gradient descent [7, 9] with perturbations would not be slowed down by
saddle points such that it can find an approximate local minimizer in polynomial time. The reason
why we adopt gradient descent in the deep learning community most of the time is that gradient
descent is an “economic” option when dealing with a large number of parameters. However, in
the neural architecture search problem, the number of architecture parameters α in the normal and
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reduction cell is limited since the layers and blocks are predefined manually, e.g., skip connection,
dilated convolution 5× 5 and average pooling 3× 3. Therefore, a more effective method is urgently
needed to speed up the neural architecture search.

Motivated by commonly-used simulated annealing algorithms [5], we propose a novel simu-
lated annealing optimization algorithm for neural architecture search, termed SA-NAS, to save
computation resources and reduce search time. Specifically, at each optimization iteration k, we
simultaneously search the current architecture αk and a random neighbouring architecture αkn on
the validation set, and compare their separate objective Lval(w

∗(αk), αk) and Lval(w
∗(αkn), αkn). If

Lval(w
∗(αk), αk) > Lval(w

∗(αkn), αkn), the optimum value at current step i is αkn; otherwise, we take
a certain probability p to accept αkn as the optimum architecture parameters for next step k + 1. The
probability p decreases with the iteration k such that the searching process becomes stable if the
objective reaches the optimum value.

To further escape an oversimplified solution collapsing to many skip connections [3, 4, 13], we
propose a simple yet effective regularizer

∑
i α

skip connect
i to the original objective Lval(w

∗(α), α) to
form our new objective. In the meantime, we also apply an early stopping mechanism if more than
one skip connection layer in the normal cell is searched in the space. Extensive experiments on
various benchmarks show that our SA-NAS achieves comparable and even better performance in
terms of downstream tasks. Compared to state-of-the-art methods, the results also demonstrate the
efficiency of our SA-NAS in reducing the optimized architecture’s parameters and search timing
cost.

Overall, our contributions in this work are summarized as follows:

• We propose a Simulated Annealing algorithm for NAS, namely SA-NAS, which can be easily
adapted to previous gradient-based methods for reducing search cost.

• We introduce a simple yet effective regularizer in the objective to avoid an oversimplified
solution collapsing to many skip connections.

• We conduct extensive experiments on various benchmarks where the results show the efficiency
of our SA-NAS in saving computation resources and reducing search time.

• Our SA-NAS achieves comparable or better predictive performance, compared to current
gradient-based approaches.

2. Related Works

2.1. Neural Architecture Search

Neural Architecture Search (NAS) [2, 11, 17–19, 22] has achieved remarkable progress in recent
years. Generally, there are three main directions for methods in the NAS literature: including
Reinforcement Learning based [17, 21, 22], evolutionary learning based [14, 18], and gradient
descent based [3, 4, 13, 15, 20]. In this work, we mainly focus on differentiable approaches for
neural architecture search. DARTS [15] is the first approach that applies gradient descent for
effective architecture search, where the discrete architecture search space is relaxed to continuous
differentiable search space for convolutional and cyclic architectures. Following up on DARTS, Chen
et al. [3] present a progressively differentiable network architecture search, which makes the network
depth in the search situation as close as possible to the network depth in the evaluation. To save
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computational memory and cost, the channel sampling and edge normalization method are proposed
in PC-DARTS [20]. To mitigate the deteriorative effect of many skip connections on the performance,
DARTS+ [13] introduces an early stopping mechanism to reduce the search time and increase the
predictive accuracy. Recently, Fair-DARTS [4], adds an auxiliary loss to the original objective to
solve the discretization discrepancy existing in DARTS. In this work, we focus on ameliorating
gradient-based methods and introducing a novel optimization algorithm that can be easily adapted to
previous gradient-based methods in the NAS literature.

2.2. Simulated Annealing

Simulated annealing (SA) algorithm [5] is a probabilistic method to approach the global optimum for
a given objective. The main idea for SA is that to pick random neighbors of the current best point and
to evaluate their objectives. If the objective is smaller than its current best cost, then the neighboring
point is accepted, and the best cost is updated. If the cost is higher than the best objective, then
the point is accepted based on a predefined probability density of the Bolzman-Gibbs distribution.
Recently, simulated annealing algorithms have been applied to many optimization problems. Particu-
larly, MOSTASA [10] presents a novel state-transition simulated annealing algorithm for constrained
and unconstrained multi-objective optimization problems. HHOBSA [1] combines SA with bitwise
operations to propose a hybrid version of the Harris Hawks optimization algorithm for the feature
selection problem on classification tasks. In this work, we apply the simulated annealing algorithm
to NAS for seeking the optimal architecture to achieve the best predictive performance.

3. Method

In this section, we first introduce preliminaries about gradient-based methods. Then we present a
novel algorithm for neural architecture search, namely SA-NAS, which can be easily adapted to
previous gradient-based work. Finally, we propose a penalty term in the objective to escape an
oversimplified solution collapsing to many skip connections.

3.1. Preliminary

The goal of the gradient-based method for NAS is to find a building block of the final structure,
i.e., cell. A cell is a directed acyclic graph composed of N nodes, where each node x(i) represents
a feature map, and each edge E represents the operation of between x(i) and x(j). Each cell has
two input edges and one output edge. The output of the cell is obtained by performing reduction
operations, e.g., concatenation, on all intermediate nodes. LetO denotes a set of candidate operations,
and each operation is denoted by o(·). To make the search space continuous, the selection of a
specific operation is relaxed as:

ō(i,j)(x(i)) =
∑
o∈O

exp(αo(i,j))∑
o′∈O exp(αo′(i,j))

o(x(i)) (1)

where αo(i,j) represents the score of an operation o(i,j) between node x(i) and x(j). Therefore, the
goal of the neural architecture search is to learn the architecture α and the weights w within all the
mixed operations (e.g. weights of the convolution filters). Then the bilevel optimization problem can
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be defined as
min
α
Lval(w

∗(α), α)

s.t. w∗(α) =w Ltrain(w,α)
(2)

where Ltrain and Lval denote the training and the validation loss, respectively. Thus, the optimization
algorithm is composed of two stage: first, we optimize the weightsw∗ associated with the architecture
by minimizing the training loss w∗(α) =w Ltrain(w,α); second, we minimize the validation loss
Lval(w

∗, α) to find the optimal architecture α∗.

3.2. SA-NAS

Inspired by simulated annealing algorithms [5] for a random search, we propose a novel optimization
algorithm called SA-NAS, for solving the problem defined in Eq. 2. Specifically, at each optimization
iteration k, we search a random architecture αk and a random neighbouring architecture αkn at
the same time on the validation set, and compare their separate objective Lval(w

∗(αk), αk) and
Lval(w

∗(αkn), αkn). If Lval(w
∗(αk), αk) > Lval(w

∗(αkn), αkn), the optimum value at current step i is
αkn; otherwise, we take a certain probability p to accept αkn as the optimum architecture parameters
for next step k + 1. The randomly-sampled neighbouring architecture αkn is defined as

αkn = αk +N (0, I), n ∈ {1, 2, · · · , N} (3)

where N (0, I) is a standard normal distribution of the same shape as αk, and N denote the total
number of randomly neighboring architectures. And the probability p is defined as

p = exp([−(Lval(w
∗(αkn), αkn)− Lval(w

∗(αk), αk)/(b ∗ T )]) (4)

where b, T denote the Boltzmann’s constant and temperature parameter, respectively. Note that the
probability p decreases with the iteration k such that the searching process becomes stable if the
objective reaches the optimum value. This algorithm is easy to be adapted to previous gradient-based
methods. Algorithm 1 shows the overall algorithm for SA-NAS.

3.3. Skip Connection Regularizer and Early Stopping

Previous work [3, 4, 13] have pointed out that solutions to Eq. 2 would collapse to a large number of
skip connections as the searching iteration increases. To escape such an oversimplified solution of α,
we propose a simple yet effective regularizer

∑
i α

skip connect
i , namely Skip Connection Regularizer

(SCR), to the original objective Lval(w
∗(α), α) in Eq. 2 to form a new objective defined as

min
α
Lval (w∗(α), α) + λ

∑
o(i,j)

α
skip connect
o(i,j)

s.t. w∗(α) = arg min
w
Ltrain (w,α).

(5)

where λ is a hyper-parameter to control the punishment scalar of the sum of αs for the skip connection
operator. Thus,∇α, i.e., the gradient of the objective w.r.t. α is updated as

∇α =
∂Lval (w∗(α), α)

∂α
+ λ1o(i,j) (6)
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where 1o(i,j) is an indicator function, i.e., if the operator o(i,j) is skip connection, 1o(i,j) = 1;
otherwise it is 0. In this way, we add a λ penalty term to the original gradient for the skip connection.
With the penalty term, the mode is more ”serious” choosing skip connections and will effectively
lower the number of skip connections in the model. Inspired by DARTS+ [13], we also adopt an
early stopping mechanism if the number of skip connection layers in the normal cell is more than s
in the searched architecture. In this way, soft and hard punishments are imposed on the weights α of
skip connection such that the optimized architecture achieves better performance.

Algorithm 1: Simulated annealing algorithm for SA-NAS

1. Initialize K,N, T, b, c, k = 1;
while k < K do

2. Calculate αk using gradient descent in Eq. 2, n = 1;
while n < N do

3. Calculate αkn in Eq. 3, Lval(w
∗(αk), αk),Lval(w

∗(αkn), αkn) in Eq. 2;
if Lval(w

∗(αk), αk) > Lval(w
∗(αkn), αkn) then

αk+1 = αkn
else

4. Calculate p using Eq. 4, and generate a random number r;
if r < p then

αk+1 = αkn
else

αk+1 = αk

end
end
5. T = c · T , n = n+ 1;

end
6. k = k + 1;

end

4. Experiments

In this section, we conduct extensive experiments by applying our SA-NAS optimization algorithm
based on the following NAS methods: (1) SA-NAS-a: DARTS [15], (2) SA-NAS-b: P-DARTS [3],
(3) SA-NAS-c: PC-DARTS [20], (4) SA-NAS-d: Fair DARTS [4].

4.1. Datasets and Configurations

We use two datasets in the experiments: CIFAR-10 and CIFAR-100. The CIFAR-10 dataset contains
50K training images (a 45K training set and a 5K validation set) and 10K testing images, from 10
classes. The CIFAR-100 dataset contains 50K training images (a 45K training set and a 5K validation
set) and 10K testing images, from 100 classes. Our implementation is built on PyTorch [16]. The
search space for the candidate operations include: 3× 3 and 5× 5 separable convolutions, 3× 3 and
5× 5 dilated separable convolutions, 3× 3 max pooling, 3× 3 average pooling, and skip connection.
During architecture search, the hyper-parameters for the architecture are set in the same way as
DARTS, P-DARTS, PC-DARTS, and Fair DARTS. The architecture weights are optimized using
SGD with a momentum of 0.9 and a weight decay of 3e-4. The initial learning rate is set to 0.005
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with a cosine decay scheduler. The architecture is optimized with the Adam [12] optimizer with
a learning rate of 3e-4 and a weight decay of 1e-3. The searched architecture is a stack of 8 cells,
with the initial channel number set to 16. The search is performed for K = 50 epochs, with a total
number of neighbouring architectures of N = 1. In Algorithm 1, we set T=1e5, b=1, c=0.98 for
searching the best architecture. The batch size is 96 in this stage. During architecture evaluation, we
set the initial channel number of the architecture to 36. The searched network is trained from scratch
for 600 epochs with a batch size of 96. The experiments are conducted on one Tesla V100 GPU.

4.2. Comparison with State-of-the-art Methods

Table 1 shows the results on CIFAR-10 and CIFAR-100, where we include the classification accuracy
(%) on the test set, number of parameters (millions) in the searched architecture, and the search cost
in terms of GPU hours.
CIFAR-10. As can be seen, all SA-NAS series models achieve comparable or better performance
than the baselines in terms of top-1 accuracy. Typically, our SA-NAS-b with fewer parameters
achieves the best top-1 accuracy on the CIFAR-10 dataset while our search cost is 1.4 GPU hours
less than P-DARTS [3]. Moreover, our SA-NAS-a outperforms the baseline DARTS [15] by a large
margin, i.e., 0.19%. These results demonstrate the advantage of our SA-NAS optimization algorithm
over state-of-the-art methods using gradient descent.
CIFAR-100. For the CIFAR-100 dataset, our SA-NAS-a and SA-NAS-b with fewer parameters and
less search time also achieve better results in terms of top-1 accuracy compared against baselines.
Specifically, our SA-NAS-a outperforms the corresponding baseline, DARTS [15], by 0.21% in terms
of top-1 accuracy. After easily adapted to the baselines, our SA-NAS shows its advantage in reducing
search time and saving computation resources compared to previous gradient-based methods.

Table 1: Results on CIFAR-10 and CIFAR-100, including classification accuracy (%) on the test set,
number of parameters (millions) in the searched architecture, and search cost (GPU hours).
Bold and underline denote the first and second place.

Method N
CIFAR-10 CIFAR-100

Top-1(%) ↑ Param.(M) ↓ Cost ↓ Top-1(%) ↑ Param.(M) ↓ Cost ↓

DARTS 0 97.06 3.3 9.6 79.48 1.8 9.6
P-DARTS 0 97.49 3.4 7.2 82.51 3.6 7.2
PC-DARTS 0 97.43 3.6 2.4 83.54 3.7 2.4
Fair DARTS 0 97.46 3.1 9.6 83.62 3.2 9.6
SA-NAS-a 1 97.25 3.2 9.2 79.69 1.7 9.2
SA-NAS-b 1 97.53 3.1 5.8 82.58 3.1 5.8
SA-NAS-c 1 97.47 3.2 2.4 83.56 3.2 2.4
SA-NAS-d 1 97.51 2.7 8.2 83.61 2.8 8.2

5. Conclusion

In this work, we present a new optimization algorithm based on simulated annealing, called SA-
NAS, for neural architecture search to boost search speed and save search computation resources.
Specifically, we generate random architectures in the neighborhood of the current best architecture
and evaluate their objectives on the validation set. If the objective value is smaller than its current
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best value, then the neighboring architecture is accepted; otherwise, the architecture is accepted
based on the designed probability density inspired by the Bolzman-Gibbs distribution. Extensive
experiments on various benchmarks demonstrate the effectiveness and efficiency of our SA-NAS in
achieving comparable or better predictive performance while reducing search costs.
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Appendix A. Ablation Study

In this part, we perform an ablation study on N , i.e. the total number of neighboring architectures
and Skip Connection Regularizer (SCR) using SA-NAS-b. We set N =1, 2, 3, 4 and report the mean
results on CIFAR-10 and CIFAR-100 in Table 1 using 5 random seeds.
Total number of neighboring architectures. We can observe that with the increase of N , the
number of parameters in the searched architecture decreases, but the top-1 accuracy decreases and
the search cost increases a lot. This is because more random neighboring architectures deteriorate
the best choice of the current best architecture, which demonstrates the importance of having a right
choice of N . In order to save computation resources and reduce search cost, we set N = 1 in our
experiments.
Skip Connection Regularizer. We also explore the importance of the proposed Skip Connection
Regularizer (SCR) in our SA-NAS. With the incorporation of SCR, our SA-NAS-b (SCR) achieves
slightly better performance than SA-NAS-b while having fewer parameters. This is consistent with
our idea to mitigate the negative effect of many skip connections on the oversimplified searched
architecture. This also implies the effectiveness of our SA-NAS optimization algorithm in neural
architecture search.

Table 2: Ablation Study on N and SCR, where SCR denotes Skip Connection Regularizer.

Method N
CIFAR-10 CIFAR-100

Top-1(%) ↑ Param.(M) ↓ Cost ↓ Top-1(%) ↑ Param.(M) ↓ Cost ↓

SA-NAS-b 1 97.53 3.1 5.8 82.58 3.1 5.8
SA-NAS-b 2 97.52 (↓ 0.01) 2.8 (↓ 0.3) 7.2 (↑ 1.4) 82.61 (↑ 0.03) 3.0 (↓ 0.1) 7.2 (↑ 1.4)
SA-NAS-b 3 97.43 (↓ 0.10) 2.7 (↓ 0.4) 8.5 (↑ 2.7) 82.46 (↓ 0.12) 2.9 (↓ 0.2) 8.5 (↑ 2.7)
SA-NAS-b 4 97.26 (↓ 0.27) 2.6 (↓ 0.5) 9.8 (↑ 4.0) 82.39 (↓ 0.19) 2.9 (↓ 0.2) 9.8 (↑ 4.0)
SA-NAS-b (w. SCR) 1 97.55 (↑ 0.02) 2.9 (↓ 0.2) 5.6 (↓ 0.2) 82.66 (↑ 0.08) 3.0 (↓ 0.1) 5.6 (↓ 0.2)
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Figure 1: Visualization results of the architecture searched by P-DARTS (Left) and SA-NAS-b
(Right). Top Row: reduction cell; Bottom Row: normal cell.

Appendix B. Visualization

For better comparison, we also visualize the searched architecture using P-DARTS [3] and SA-NAS-b
in Figure 1. Specifically, we plot the reduction cell and normal cell searched on the CIFAR-10
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benchmark under the same setting for a fair comparison. Note that our SA-NAS-b is based on
P-DARTS by applying the proposed SA-NAS optimization algorithm on their gradient descent
methods.

As can be seen in Figure 1, our SA-NAS-b achieves fewer skip connection operators in the
normal cell, which can avoid the oversimplified solutions of many skip connections for boosting the
predictive performance. The depth in our SA-NAS-b is larger than P-DARTS [3] in terms of both
reduction and normal cell, which validates the rationality of our SA-NAS in boosting the predictive
performance with less search cost and parameters. These visualization results also provide much
solid evidence for the comparison results of predictive performance reported in Table 1, where
all SA-NAS series models achieve competitive performance than the baselines in terms of top-1
accuracy.
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