
OPT2021: 13th Annual Workshop on Optimization for Machine Learning

On Server-Side Stepsizes in Federated Optimization: Theory
Explaining the Heuristics

Grigory Malinovsky GRIGORII.MALINOVSKII@KAUST.EDU.SA

Konstantin Mishchenko KONSTA.MISH@GMAIL.COM

Peter Richtárik PETER.RICHTARIK@KAUST.EDU.SA

KAUST, Saudi Arabia

Abstract
We present a theoretical study of server-side optimization in federated learning. Our results are the first to show that the widely popular heuristic of scaling the client

updates with an extra parameter is extremely useful in the context of Federated Averaging (FedAvg) with local passes over the client data. In particular, we prove

that whenever the local stepsizes are small and the update direction is given by FedAvg over all clients, one can take a big leap in the obtained direction and improve

rates for convex, strongly convex, and non-convex objectives. Especially, we get enhancement in non-convex rate of convergence fromO(ε−3) toO(ε−2). In

contrast, if the local stepsizes are large, we prove that the noise of client sampling can be controlled by using a small server-side stepsize. Together, our results on the

advantage of large and small server-side stepsizes give a formal justification for the practice of adaptive server-side optimization in federated learning. Moreover, we

consider a variant of algorithm that supports partial client participation where only a subset of devices communicates in each round, which makes the method more

practical.

1. Introduction
The unprecedented industrial success of modern machine learning techniques, tools and models can to a large degree be attributed to the abundance of data available for training.
Indeed, the most popular and best performing deep learning models rely on a very large number of parameters, and in order to generalize well, need to be trained using optimization
algorithms over very large training data sets. Other things equal, the more data we have, the better. A key driving force behind the proliferation of such data is the massive digitization
of society of the last few decades. People have access to increasingly more elaborate personal and home smart devices capable of generating, capturing and processing data such
as text, images and videos. Similarly, in the sphere of governments and corporations, much of what used to be done through a physical exchange (e.g., via paper/fax/letter) is now
performed in a digital form, generating treasure troves of potentially useful data. For example, hospitals collect, store and make us of a variety of patient data, ranging from routine
bodily functions to PET scans and genome sequencing.

1.1. Federated learning
The traditional way of learning from this data is to collect it in a single (and often proprietary) data center, where it is subsequently processed using modern machine learning
algorithms. However, due to several considerations which keep gaining in importance, such as energy efficiency and privacy, it is often desirable to avoid centralized training
altogether, and instead perform the training without the data ever leaving the clients’ secure sites. Introduced in 2016 by Konečný et al. [14], Konečný et al. [15], McMahan et al.
[18], this is precisely the promise and subject of study of federated learning (FL). In other words, federated learning means efficient machine learning over data stored in a distributed
fashion across a network of heterogeneous clients (e.g., mobile phones, smart devices, companies) that captured and own the data, using these clients’ machines/devices not only as
data sources, but also as computers that can contribute to the training.

1.2. Problem formulation
We consider the standard optimization formulation of federated learning

min
x∈Rd

[
f(x)

def
= 1

M

M∑
m=1

fm(x)

]
, (1)

whereM is the total number of clients, x ∈ Rd represents the parameters of the model we wish to train, and fm : Rd → R is the loss of model x on the training data owned by

clientm ∈ [M]
def
= {1, 2, . . . ,M}. Typically,M is very large.

Since the training data set on each client is necessarily finite, we assume that fm has the finite-sum structure

fm(x)
def
= 1

n

n∑
i=1

fim(x), (2)

where fim : Rd → R is the loss of model x on training example i ∈ [n]
def
= {1, 2, . . . , n} stored on client m. We assume that the functions fim are differentiable, and

consider the strongly convex, convex and non-convex regimes.

© G. Malinovsky, K.M. & P.R. .

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Table 1: Conceptual comparison of results for FedAvg from prior work with our re-
sults.

Partial
participation

Local
training

Data
shuffling

Large server
stepsizes help

Small server
stepsizes help

Reference

3 3 7 3 7 [11]
3 3 7 3 7 [27]
7 3 7 7 7 [13]
7 3 7 7 7 [12]
7 3 3 7 7 [20]

3 3 3 3 3 This paper

1.3. Ingredients of successful federated learning methods
Practical considerations of federated learning systems and vast experimental evidence accrued over the last few years point to several design constraints and algorithmic ingredients
which have proved useful in the context of federated learning methods for solving (1)-(2). We now very briefly outline some of them here. More details can be found in the appendix
where we review related work.

Partial participation. In federated learning, training is performed through several communication rounds in each of which an orchestrating server chooses a cohort of clients
that will be participating in the training process in that round. This practice is known as partial participation, and is necessary due to practical considerations and limitations, such
as limited server capacity, and limited client availability [10]. However, partial participation can be useful also due to the diminishing returns one gets as the number of participating
clients grows [5]. Partial participation is a necessity in the cross-device regime where the training is performed over a very large number of clients (i.e., M is very large) most of
which will only participate in the entire training procedure at most once. Sampling of clients to form a cohort can be done adaptively so as to choose the most informative clients [6].

Local training. At the beginning of each communication round, each client in the cohort is provided with the latest model by the orchestrating server, which is used as a
starting point for local training. Local training refers to the common practice in FL of performing several steps of a suitably chosen local optimization procedure, such as one of the
many variants of SGD, using its own local training data. Perhaps the simplest approach is to perform a single local GD iteration. If the model updates are simply just aggregated by
the server, then the resulting method can be seen as Minibatch SGD, where the minibatches correspond to the cohorts. However, it is typically more efficient to perform multiple
local steps [18], and to use local optimizers that rely on incremental data processing, such as SGD.

Data shuffling. Typically, the local training data set is processed once or several times in an incremental fashion, that is, one data point (or one small minibatch) at a time.
However, experimental evidence shows that processing the local data without replacement can lead to substantially better results than processing the data with replacement. In
particular, processing the local training data in an order dictated by a random permutation—a technique known as Random Reshuffling (RR)—is often set as default in modern deep
learning and federated learning software [2, 3, 26]. This is in sharp contrast with the with-replacement sampling of data employed by SGD. With replacement sampling ensures that
the gradient updates are unbiased, and this simplified the analysis. For this reason, SGD is significantly better understood in theory than its better performing but much more poorly
understood cousin RR. However, recent results of Mishchenko et al. [19], and extensions of Mishchenko et al. [20] and Yun et al. [28] to distributed training, show that RR can have
clear theoretical advantages over SGD.

Server stepsizes. Once local training is finished, the clients in the cohort send their models or model updates to the orchestrating server, which typically aggregates them via
averaging. This information is then used to perform server side optimization. The simplest approach is to do nothing - that is, to treat the aggregated models as the next global model
that is broadcast to the new cohort in the next communication round. However, empirical evidence suggests that it is better to aggregate model updates, and treat them as gradient-type
information which can be injected into a suitably chosen server side optimization routine [11]. For example, the server may run one step of GD using the aggregated model update
as a proxy for the gradient which is not available, with its own server-side stepsize.

Further useful tricks. Additional tricks that are often employed in the context of federated learning include the use of compressed communication [1, 8], drift reduction
[7, 11], error compensation [23, 25], server side momentum [9], and adaptive stepsize selection [22]. These techniques are beyond the scope of this paper.

2. Summary of Contributions
Despite the fact that partial participation, local training, data shuffling and server stepsizes have all been empirically found to be very useful building blocks of FL methods, most
of these techniques are not very well understood in theory even in isolation. Informally speaking, and at the risk of oversimplifying the current state of affairs, we know virtually
nothing about server stepsizes, very little about data shuffling, relatively much more about local training, and quite a bit but still “not enough” about partial participation.

The key focus of this paper is to make a substantial advance in the current theoretical understanding of server stepsizes in the context of realistic federated
learning.

In order to theoretically understand the server stepsize phenomenon in a realistic context of techniques commonly used in FL, we study this phenomenon together with data
shuffling, local training and partial participation. While this makes the analysis substantially harder and different from all1 existing analyses of FedAvg, we believe it is important to
fo so as this will highlight the interplay between these algorithmic techniques and their combined impact on training.

A brief visual summary of this in the context of selected existing methods is provided in Table 3. We summarize our contributions as follows:
• New algorithm. We design a new algorithm, for which we coin the name Nastya (Algorithm 1; see Section 4), which combines all the of the aforementioned practical

tricks and techniques in a single method: partial participation, local training, data shuffling and, most importantly, server stepsizes. In our method, in each communication round t,
the cohort is chosen as a random subset St of the set {1, 2, . . . ,M} of clients of cardinality 1 ≤ C ≤ M , chosen uniformly from all subsets of cardinality C. Each device
performs local training via a single pass of incremental GD with client stepsize γ > 0 over the local training data points in an order dictated by a random permutation. We allow
for two options: i) either the random permutation for all clients is sampled just once and used in all communication rounds (Shuffle-Once option), or ii) the random permutation is
sampled afresh at the start of each communication round (Random-Reshuffling option). At the end of local training, the updated models are communicated back to the server, which
uses these updates to form a gradient estimator, and applies one step of GD using a server stepsize η > 0 with this estimator in lieu of the true gradient. The new model is then
broadcast to a new cohort in the next communication round, and the process is repeated.

1. Except for the recent work of Mishchenko et al. [20] which we used as an inspiration.

2

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Table 2: The main convergence results obtained in this paper (also see Thm 20).

Regime Stepsizes Result(1)

µ-Convex
(Thm 6)

γn ≤ η ≤ 1
16L

E‖xT − x∗‖2 ≤
(
1− ηµ

2

)T ‖x0 − x∗‖2 + 5γ2nL
µ

Σ2
∗ + 8η

µ
M−C

Cmax{1,M−1}σ
2
∗

Convex
(Thm 15)

γn ≤ η ≤ 1
16L

E [f(x̂T)− f(x∗)] ≤ 5‖x0−x∗‖2
2ηT

+ 7γ2nLΣ2
∗ + 10η M−C

C(max{1,M−1}σ
2
∗

Non-convex
(Thm 19)

γ ≤ 1
2nL

& η ≤ 1
L

min
t=0,...,T−1

E ‖∇f (xt)‖2 ≤
2(1+4ηγ2n2L3)T

ηT
δ0 + 2γ2nL3D2

∗ + 4L2η M−C
Cmax{1,M−1}∆∗

(1) γ = client stepsize; η = server stepsize; M = total # of clients; C = # of participating clients (cohort size); n = # of training data points per

client; L = Lipschitz constant of the gradient of f ; µ = strong convexity constant of f ; T = total # of communication rounds; x0 = initial model;

x∗ = optimal model; δ0 = f(x0) − f∗; Σ2
∗ =

(
1
M

M∑
m=1

σ2
∗,m + nσ2

∗

)
; σ2
∗ = 1

M

M∑
m=1

‖∇fm (x∗)‖2; σ2
∗,m = 1

n

n∑
i=1

∥∥∇f im (x∗)
∥∥2;

D2
∗ =

(
1
M

M∑
m=1

∆∗,m + n∆∗

)
; ∆∗ = 1

M

M∑
m=1

(f∗,m − f∗) ≥ 0; ∆∗,m = 1
n

n∑
i=1

(f∗ − f i∗,m) ≥ 0, where f∗ = inf f , f∗,m = inf fm

and f i∗,m = inf f im are all assumed to be finite (i.e., not −∞).

• Complexity analysis. We provide strong complexity analysis of our new algorithm for strongly convex (Theorem 6), convex (Theorem 15) and non-convex (Theorem 19)
functions; see Table 2. This is the first theory for a variant of FedAvg that combines the benefits of partial participation, data shuffling, local training and, most importantly, also
server stepsizes. Most importantly, with a couple exceptions only [11, 27], there are no prior theoretical works analyzing the effect of server stepsizes in FL. The methods in the
aforementioned works use local training and partial participation, but do not use data shuffling, and are significantly different from ours.

• Small client stepsizes, large server stepsizes, and no need for drift reduction. In particular, Theorems 6, 15 and 19, covering the strongly convex, convex and non-convex
regimes, respectively, suggest that the server can use the largeO(1/L) stepsize, whereL is the Lipschitz constant of the gradient of f . In the strongly convex and convex regimes,
based on our theory, it is optimal for the client stepsize γ to be small, which completely eliminates the second of the three terms in the complexity bounds (see the third column of
Table 2) which controls the price one pays due to data heterogeneity. Indeed, our theory allows for the client stepsize γ to be small while the server stepsize η can be large (see the
second column of Table 2). Note that in all three regimes, and thanks to the fact that we employ a data shuffling strategy, this second term depends on the square γ2 of the client
stepsize, which means that we can make this term small without making the client stepsizes infinitesimal. So, thanks to Nastya’s use of data shuffling strategies, it does not require
any explicit drift reduction technique such as SCAFFOLD to handle data heterogeneity [11].

• Small server stepsizes can be beneficial. To the best of our knowledge, no prior theoretical work suggests that it might be beneficial to use small server stepsizes. Our
results (see Theorem 20) suggests that this can be the case when each fim is strongly convex and smooth, and when the strong convexity parameter is very small.

• Experimental validation of our theoretical predictions. We provide experimental examination of Nastya and compare it with selected benchmarks. Our goal is not to
perform large scale experiments and claim empirical superiority because the algorithmic ingredients embedded in Nastya already are being used in practical FL methods precisely
because they have already been empirically found to be useful. This allows us to focus on simple experiments which test the theoretical predictions of our theory. Our experimental
results confirm our theory, and illustrate the behavior of the methods we test in various settings. Moreover, we go beyond the theory and conduct additional experiments with the
adaptive stepsize strategy introduced by Malitsky and Mishchenko [17]. Inspired by Reddi et al. [22], we additionally utilize several server-side optimization subroutines on top of
the local updates.

<latexit sha1_base64="mAdXtGdUAROlwkM6meulDleT+Po=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMgImFXgnoMevEYwTwgWcLsZJIMmZ1dZnrFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwup36zUeujYjUA45j7od0oERfMIpWaj5107Nzb9ItltyyOwNZJl5GSpCh1i1+dXoRS0KukElqTNtzY/RTqlEwySeFTmJ4TNmIDnjbUkVDbvx0du6EnFilR/qRtqWQzNTfEykNjRmHge0MKQ7NojcV//PaCfav/VSoOEGu2HxRP5EEIzL9nfSE5gzl2BLKtLC3EjakmjK0CRVsCN7iy8ukcVH2LsuV+0qpepPFkYcjOIZT8OAKqnAHNagDgxE8wyu8ObHz4rw7H/PWnJPNHMIfOJ8/ou+PHw==</latexit>x⇤,1

<latexit sha1_base64="2emISaW/CQEHgj0J43X21thQ6Yg=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSKIh5JIUY9FLx4rmLbQhrLZbtqlm03YnYgl9Dd48aCIV3+QN/+N24+Dtj4YeLw3w8y8MJXCoOt+Oyura+sbm4Wt4vbO7t5+6eCwYZJMM+6zRCa6FVLDpVDcR4GSt1LNaRxK3gyHtxO/+ci1EYl6wFHKg5j2lYgEo2gl/6mbn4+7pbJbcacgy8SbkzLMUe+Wvjq9hGUxV8gkNabtuSkGOdUomOTjYiczPKVsSPu8bamiMTdBPj12TE6t0iNRom0pJFP190ROY2NGcWg7Y4oDs+hNxP+8dobRdZALlWbIFZstijJJMCGTz0lPaM5QjiyhTAt7K2EDqilDm0/RhuAtvrxMGhcV77JSva+WazfzOApwDCdwBh5cQQ3uoA4+MBDwDK/w5ijnxXl3PmatK8585gj+wPn8AciRjq4=</latexit>x⇤

<latexit sha1_base64="EQ8iTjmMRSCHMxVEXgA32NvivOQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBBEJOyGoB6DXjxGMA9IljA7mSRDZmeXmV4xLPkILx4U8er3ePNvnCR70MSChqKqm+6uIJbCoOt+Oyura+sbm7mt/PbO7t5+4eCwYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U795iPXRkTqAccx90M6UKIvGEUrNZ+66flFedItFN2SOwNZJl5GipCh1i18dXoRS0KukElqTNtzY/RTqlEwySf5TmJ4TNmIDnjbUkVDbvx0du6EnFqlR/qRtqWQzNTfEykNjRmHge0MKQ7NojcV//PaCfav/VSoOEGu2HxRP5EEIzL9nfSE5gzl2BLKtLC3EjakmjK0CeVtCN7iy8ukUS55l6XKfaVYvcniyMExnMAZeHAFVbiDGtSBwQie4RXenNh5cd6dj3nripPNHMEfOJ8/pHSPIA==</latexit>x⇤,2
<latexit sha1_base64="ewhU9ifNOjXpn7qKffvO7JosrDM=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmkqMeiF48V7Ae0oWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+65FrI2L1gOOE+xEdKBEKRtFKradehufepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmleVLzLSvW+Wq7d5HEU4BhO4Aw8uIIa3EEdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx8Sfo9o</latexit>xt+1

<latexit sha1_base64="Au2xLtyDmvqxY8EWgsjaXekD6lM=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhA8SNiVoB6DXjxGMA9J1jA7mU2GzMwuM71iWPIVXjwo4tXP8ebfOHkcNLGgoajqprsrTAQ36HnfztLyyuraem4jv7m1vbNb2NuvmzjVlNVoLGLdDIlhgitWQ46CNRPNiAwFa4SD67HfeGTa8Fjd4TBhgSQ9xSNOCVrp/umBdzI89UedQtEreRO4i8SfkSLMUO0UvtrdmKaSKaSCGNPyvQSDjGjkVLBRvp0alhA6ID3WslQRyUyQTQ4eucdW6bpRrG0pdCfq74mMSGOGMrSdkmDfzHtj8T+vlWJ0GWRcJSkyRaeLolS4GLvj790u14yiGFpCqOb2Vpf2iSYUbUZ5G4I///IiqZ+V/PNS+bZcrFzN4sjBIRzBCfhwARW4gSrUgIKEZ3iFN0c7L8678zFtXXJmMwfwB87nD5GJkEQ=</latexit>

xi
t,1

<latexit sha1_base64="czMkueQq50Qm9OImCgvAggnZre8=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhA8SNiVoB6DXjxGMA9J1jA7mU2GzMwuM71iWPIVXjwo4tXP8ebfOHkcNLGgoajqprsrTAQ36HnfztLyyuraem4jv7m1vbNb2NuvmzjVlNVoLGLdDIlhgitWQ46CNRPNiAwFa4SD67HfeGTa8Fjd4TBhgSQ9xSNOCVrp/ulBdTI89UedQtEreRO4i8SfkSLMUO0UvtrdmKaSKaSCGNPyvQSDjGjkVLBRvp0alhA6ID3WslQRyUyQTQ4eucdW6bpRrG0pdCfq74mMSGOGMrSdkmDfzHtj8T+vlWJ0GWRcJSkyRaeLolS4GLvj790u14yiGFpCqOb2Vpf2iSYUbUZ5G4I///IiqZ+V/PNS+bZcrFzN4sjBIRzBCfhwARW4gSrUgIKEZ3iFN0c7L8678zFtXXJmMwfwB87nD5k7kEk=</latexit>

xn
t,1

<latexit sha1_base64="1GDqqVMaNhvpA6K19ljjfbv/6CQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtRj0YvHCvZD2rVk02wbmmSXJCuWpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3srq2vpHfLGxt7+zuFfcPmjpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0Fo+up33qkSrNI3plxTH2BB5KFjGBjpfunB9lLzVll0iuW3LI7A1omXkZKkKHeK351+xFJBJWGcKx1x3Nj46dYGUY4nRS6iaYxJiM8oB1LJRZU++ns4Ak6sUofhZGyJQ2aqb8nUiy0HovAdgpshnrRm4r/eZ3EhJd+ymScGCrJfFGYcGQiNP0e9ZmixPCxJZgoZm9FZIgVJsZmVLAheIsvL5Nmpeydl6u31VLtKosjD0dwDKfgwQXU4Abq0AACAp7hFd4c5bw4787HvDXnZDOH8AfO5w+awJBK</latexit>

xn
t,2

<latexit sha1_base64="oChkztDXF+qAVvlTzazROgI9kuI=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgQcpuKeqx6MVjBfsh7VqyabYNTbJLMiuWpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LBDbjut5NbWV1b38hvFra2d3b3ivsHTRMlmrIGjUSk2wExTHDFGsBBsHasGZGBYK1gdD31W49MGx6pOxjHzJdkoHjIKQEr3T898F4KZ5VJr1hyy+4MeJl4GSmhDPVe8avbj2gimQIqiDEdz43BT4kGTgWbFLqJYTGhIzJgHUsVkcz46ezgCT6xSh+HkbalAM/U3xMpkcaMZWA7JYGhWfSm4n9eJ4Hw0k+5ihNgis4XhYnAEOHp97jPNaMgxpYQqrm9FdMh0YSCzahgQ/AWX14mzUrZOy9Xb6ul2lUWRx4doWN0ijx0gWroBtVRA1Ek0TN6RW+Odl6cd+dj3ppzsplD9AfO5w+TDpBF</latexit>

xi
t,2

<latexit sha1_base64="hOzgex4CF4f0btGUS3l3nsXz84M=">AAACBHicbZC7SgNBFIZnvcZ4W7VMMxgECwm7IahNIGhjGcFcIFmX2ckkGTJ7YeasJCxb2PgqNhaK2PoQdr6Nk2QLTfxh4OM/53Dm/F4kuALL+jZWVtfWNzZzW/ntnd29ffPgsKnCWFLWoKEIZdsjigkesAZwEKwdSUZ8T7CWN7qe1lsPTCoeBncwiZjjk0HA+5wS0JZrFsZuAimu4vG9penMTqsZlVPXLFolaya8DHYGRZSp7ppf3V5IY58FQAVRqmNbETgJkcCpYGm+GysWEToiA9bRGBCfKSeZHZHiE+30cD+U+gWAZ+7viYT4Sk18T3f6BIZqsTY1/6t1YuhfOgkPohhYQOeL+rHAEOJpIrjHJaMgJhoIlVz/FdMhkYSCzi2vQ7AXT16GZrlkn5cqt5Vi7SqLI4cK6BidIhtdoBq6QXXUQBQ9omf0it6MJ+PFeDc+5q0rRjZzhP7I+PwBF8KXHA==</latexit>

xt = x0
t,1 = x0

t,2

<latexit sha1_base64="2emISaW/CQEHgj0J43X21thQ6Yg=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSKIh5JIUY9FLx4rmLbQhrLZbtqlm03YnYgl9Dd48aCIV3+QN/+N24+Dtj4YeLw3w8y8MJXCoOt+Oyura+sbm4Wt4vbO7t5+6eCwYZJMM+6zRCa6FVLDpVDcR4GSt1LNaRxK3gyHtxO/+ci1EYl6wFHKg5j2lYgEo2gl/6mbn4+7pbJbcacgy8SbkzLMUe+Wvjq9hGUxV8gkNabtuSkGOdUomOTjYiczPKVsSPu8bamiMTdBPj12TE6t0iNRom0pJFP190ROY2NGcWg7Y4oDs+hNxP+8dobRdZALlWbIFZstijJJMCGTz0lPaM5QjiyhTAt7K2EDqilDm0/RhuAtvrxMGhcV77JSva+WazfzOApwDCdwBh5cQQ3uoA4+MBDwDK/w5ijnxXl3PmatK8585gj+wPn8AciRjq4=</latexit>x⇤

<latexit sha1_base64="mAdXtGdUAROlwkM6meulDleT+Po=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMgImFXgnoMevEYwTwgWcLsZJIMmZ1dZnrFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwup36zUeujYjUA45j7od0oERfMIpWaj5107Nzb9ItltyyOwNZJl5GSpCh1i1+dXoRS0KukElqTNtzY/RTqlEwySeFTmJ4TNmIDnjbUkVDbvx0du6EnFilR/qRtqWQzNTfEykNjRmHge0MKQ7NojcV//PaCfav/VSoOEGu2HxRP5EEIzL9nfSE5gzl2BLKtLC3EjakmjK0CRVsCN7iy8ukcVH2LsuV+0qpepPFkYcjOIZT8OAKqnAHNagDgxE8wyu8ObHz4rw7H/PWnJPNHMIfOJ8/ou+PHw==</latexit>x⇤,1

<latexit sha1_base64="EQ8iTjmMRSCHMxVEXgA32NvivOQ=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBBEJOyGoB6DXjxGMA9IljA7mSRDZmeXmV4xLPkILx4U8er3ePNvnCR70MSChqKqm+6uIJbCoOt+Oyura+sbm7mt/PbO7t5+4eCwYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U795iPXRkTqAccx90M6UKIvGEUrNZ+66flFedItFN2SOwNZJl5GipCh1i18dXoRS0KukElqTNtzY/RTqlEwySf5TmJ4TNmIDnjbUkVDbvx0du6EnFqlR/qRtqWQzNTfEykNjRmHge0MKQ7NojcV//PaCfav/VSoOEGu2HxRP5EEIzL9nfSE5gzl2BLKtLC3EjakmjK0CeVtCN7iy8ukUS55l6XKfaVYvcniyMExnMAZeHAFVbiDGtSBwQie4RXenNh5cd6dj3nripPNHMEfOJ8/pHSPIA==</latexit>x⇤,2

<latexit sha1_base64="1GDqqVMaNhvpA6K19ljjfbv/6CQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtRj0YvHCvZD2rVk02wbmmSXJCuWpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3srq2vpHfLGxt7+zuFfcPmjpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0Fo+up33qkSrNI3plxTH2BB5KFjGBjpfunB9lLzVll0iuW3LI7A1omXkZKkKHeK351+xFJBJWGcKx1x3Nj46dYGUY4nRS6iaYxJiM8oB1LJRZU++ns4Ak6sUofhZGyJQ2aqb8nUiy0HovAdgpshnrRm4r/eZ3EhJd+ymScGCrJfFGYcGQiNP0e9ZmixPCxJZgoZm9FZIgVJsZmVLAheIsvL5Nmpeydl6u31VLtKosjD0dwDKfgwQXU4Abq0AACAp7hFd4c5bw4787HvDXnZDOH8AfO5w+awJBK</latexit>

xn
t,2

<latexit sha1_base64="czMkueQq50Qm9OImCgvAggnZre8=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhA8SNiVoB6DXjxGMA9J1jA7mU2GzMwuM71iWPIVXjwo4tXP8ebfOHkcNLGgoajqprsrTAQ36HnfztLyyuraem4jv7m1vbNb2NuvmzjVlNVoLGLdDIlhgitWQ46CNRPNiAwFa4SD67HfeGTa8Fjd4TBhgSQ9xSNOCVrp/ulBdTI89UedQtEreRO4i8SfkSLMUO0UvtrdmKaSKaSCGNPyvQSDjGjkVLBRvp0alhA6ID3WslQRyUyQTQ4eucdW6bpRrG0pdCfq74mMSGOGMrSdkmDfzHtj8T+vlWJ0GWRcJSkyRaeLolS4GLvj790u14yiGFpCqOb2Vpf2iSYUbUZ5G4I///IiqZ+V/PNS+bZcrFzN4sjBIRzBCfhwARW4gSrUgIKEZ3iFN0c7L8678zFtXXJmMwfwB87nD5k7kEk=</latexit>

xn
t,1

<latexit sha1_base64="Au2xLtyDmvqxY8EWgsjaXekD6lM=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhA8SNiVoB6DXjxGMA9J1jA7mU2GzMwuM71iWPIVXjwo4tXP8ebfOHkcNLGgoajqprsrTAQ36HnfztLyyuraem4jv7m1vbNb2NuvmzjVlNVoLGLdDIlhgitWQ46CNRPNiAwFa4SD67HfeGTa8Fjd4TBhgSQ9xSNOCVrp/umBdzI89UedQtEreRO4i8SfkSLMUO0UvtrdmKaSKaSCGNPyvQSDjGjkVLBRvp0alhA6ID3WslQRyUyQTQ4eucdW6bpRrG0pdCfq74mMSGOGMrSdkmDfzHtj8T+vlWJ0GWRcJSkyRaeLolS4GLvj790u14yiGFpCqOb2Vpf2iSYUbUZ5G4I///IiqZ+V/PNS+bZcrFzN4sjBIRzBCfhwARW4gSrUgIKEZ3iFN0c7L8678zFtXXJmMwfwB87nD5GJkEQ=</latexit>

xi
t,1

<latexit sha1_base64="oChkztDXF+qAVvlTzazROgI9kuI=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgQcpuKeqx6MVjBfsh7VqyabYNTbJLMiuWpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LBDbjut5NbWV1b38hvFra2d3b3ivsHTRMlmrIGjUSk2wExTHDFGsBBsHasGZGBYK1gdD31W49MGx6pOxjHzJdkoHjIKQEr3T898F4KZ5VJr1hyy+4MeJl4GSmhDPVe8avbj2gimQIqiDEdz43BT4kGTgWbFLqJYTGhIzJgHUsVkcz46ezgCT6xSh+HkbalAM/U3xMpkcaMZWA7JYGhWfSm4n9eJ4Hw0k+5ihNgis4XhYnAEOHp97jPNaMgxpYQqrm9FdMh0YSCzahgQ/AWX14mzUrZOy9Xb6ul2lUWRx4doWN0ijx0gWroBtVRA1Ek0TN6RW+Odl6cd+dj3ppzsplD9AfO5w+TDpBF</latexit>

xi
t,2

<latexit sha1_base64="ewhU9ifNOjXpn7qKffvO7JosrDM=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmkqMeiF48V7Ae0oWy2m3bpZhN2J2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+65FrI2L1gOOE+xEdKBEKRtFKradehufepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmleVLzLSvW+Wq7d5HEU4BhO4Aw8uIIa3EEdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx8Sfo9o</latexit>xt+1

<latexit sha1_base64="hOzgex4CF4f0btGUS3l3nsXz84M=">AAACBHicbZC7SgNBFIZnvcZ4W7VMMxgECwm7IahNIGhjGcFcIFmX2ckkGTJ7YeasJCxb2PgqNhaK2PoQdr6Nk2QLTfxh4OM/53Dm/F4kuALL+jZWVtfWNzZzW/ntnd29ffPgsKnCWFLWoKEIZdsjigkesAZwEKwdSUZ8T7CWN7qe1lsPTCoeBncwiZjjk0HA+5wS0JZrFsZuAimu4vG9penMTqsZlVPXLFolaya8DHYGRZSp7ppf3V5IY58FQAVRqmNbETgJkcCpYGm+GysWEToiA9bRGBCfKSeZHZHiE+30cD+U+gWAZ+7viYT4Sk18T3f6BIZqsTY1/6t1YuhfOgkPohhYQOeL+rHAEOJpIrjHJaMgJhoIlVz/FdMhkYSCzi2vQ7AXT16GZrlkn5cqt5Vi7SqLI4cK6BidIhtdoBq6QXXUQBQ9omf0it6MJ+PFeDc+5q0rRjZzhP7I+PwBF8KXHA==</latexit>

xt = x0
t,1 = x0

t,2

(a) (b)

Figure 1: Illustration of the dependence between server and client stepsizes on a simple example with M = 2 clients. x∗,1 and x∗,2 are the minimizers of the local
functions f1 and f2 , respectively, and x∗ is the minimizer of the global function f = 1

2
f1 + 1

2
f2 . (a) In the case of small client stepsizes γ, the average of

local steps is not large, but at the same time the variance is small and the direction is close to direction of the full gradient, which allows us to go further towards
this direction by employing a large server stepsize η. (b) In the case of large client stepsizes γ, each client step contributes to the global step, but the variance
grows as well, so it is useful to use smaller server stepsize η to reduce this variance. These intuitions are confirmed by our theory.

3

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

3. Preliminaries
In this section we introduce several key concepts that will help us to formulate our theoretical results.

3.1. Convexity and smoothness
In all our theoretical results we rely on smoothness, and in some we require convexity or strong convexity.

Definition 1 (L-smoothness) Function φ : Rd → R isL-smooth if it hasL-Lipschitz continuous gradient for someL > 0

‖∇φ(x)−∇φ(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rd. (3)

Definition 2 (Convexity and strong convexity) Function φ : Rd → R is convex if ∀x, y ∈ Rd

φ(y) ≥ φ(x) + 〈∇φ(x), y − x〉, (4)

and µ-strongly convex if ∀x, y ∈ Rd

φ(y) ≥ φ(x) + 〈∇φ(x), y − x〉 + µ
2
‖y − x‖2. (5)

In our analysis we use the following assumption.

Assumption 1 The objective f and the individual losses f1m, . . . , f
n
m are all L-smooth. Further, for all i and m ∈ {1, 2, . . . ,M} and i ∈ {1, 2, . . . , n}, (i)

f∗
def
= infx f(x) > −∞, (ii) f∗,m

def
= infx fm(x) > −∞, and (iii) fi∗,m

def
= infx f

i
m(x) > −∞. If fim is convex, we further assume the existence of minimizers

x∗ = arg min
x∈Rd f(x) and xi∗,m = arg min

x∈Rd f
i
m(x).

3.2. Measures of data heterogeneity
While our theory does not require any assumptions on data homogeneity, our results will reflect the degree to which the data is heterogeneous, and are better for data that is “more”
homogeneous. In particular, in the strongly convex and convex regimes we rely on the following notions.

Definition 3 (Variance at the optimum) The variance of the gradients {∇fm}Mm=1 at x∗ is defined as

σ2
∗

def
= 1

M

M∑
m=1

‖∇fm (x∗)‖2 ,

where x∗ is a minimizer of f . The variance of the gradients {∇fim}
n
i=1 at x∗ is

σ2
∗,m

def
= 1

n

n∑
i=1

∥∥∥∇fim (x∗)
∥∥∥2 .

An important lemma that allows us to obtain a strong upper bound for variance in the case of sampling without replacement, which our data shuffling methods rely on, was
formulated by Mishchenko et al. [19]. We include it here for completeness.

Lemma 4 (Sampling without replacement) Let X1, . . . , Xn ∈ Rd be fixed vectors, X
def
= 1

n

∑n
i=1Xi be their average and σ2 def

= 1
n

n∑
i=1

∥∥∥Xi −X∥∥∥2 be the

population variance. Fix any k ∈ {1, . . . , n}, letXπ1 , . . . Xπk be sampled uniformly without replacement from {X1, . . . , Xn} andXπ be their average. Then, it holds

E
[
Xπ

]
= X, E

[∥∥∥Xπ −X∥∥∥2] = n−k
k(n−1)

σ2. (6)

For non-convex functions, we use a different notion of data heterogeneity.

Definition 5 (Functional dissimilarity) The variance at the optimum in the non-convex regime is defined as

∆∗
def
= 1
M

M∑
m=1

f∗,m − f∗,

where f∗,m = infx fm(x) and f∗ = infx f(x). For each devicem, the variance at the optimum is defined as

∆∗,m
def
= 1
n

n∑
i=1

fi∗,m − f∗,

where fi∗,m = infx f
i
m(x).

Again, the above is a definition and not an assumption. The concepts are well defined as long as Assumption 1 is satisfied.

4

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Algorithm 1 Nastya: Federated optimization with server stepsize, random shuffling and partial
participation

1: Input: client stepsize γ > 0; server stepsize η ≥ 0; cohort size C ∈ {1, 2, . . . ,M}; initial
iterate/model x0 ∈ Rd; number of communication rounds T ≥ 1

2: Shuffle-Once option: For each client m, sample a permutation πm = (π0
m, π

1
m, . . . , π

n−1
m) of

{1, 2, . . . , n}
for communication round t = 0, 1, . . . , T − 1 do

3: Sample a cohort St of C clients (server chooses a random set St ⊆ {1, 2, . . . ,M} of size |St| = C, uniformly at

random)

4: Send model xt to all participating clients m ∈ St (server broadcasts xt to all clients m ∈ St) for all
clients m ∈ St, locally in parallel do
5: x0

t,m = xt (client m initializes local training using the latest global model xt)

6: Random-Reshuffling option: Sample a permutation πm = (π0
m, π

1
m, . . . , π

n−1
m) of

{1, 2, . . . , n} for all local training data points i = 0, 1, . . . , n− 1 do
7: xi+1

t,m = xit,m − γ∇f
πim
m (xit,m) (client m makes one pass over its local training data in the order dictated by

πm)
end

8: gt,m = 1
γn(xt − x

n
t,m) (client m computes local update direction gt,m)

end
9: gt =

1
C

∑
m∈St

gt,m (server aggregates the local update directions gt,m discovered by the cohort St of clients)

10: xt+1 = xt − ηgt (server updates the model using the aggregated direction gt and applying server stepsize η)

end

4. The Nastya Algorithm
We now formally describe our Nastya algorithm (see Algorithm 1). Nastya combines several techniques that were empirically found to be useful in FL: partial participation, local
training, data shuffling and server stepsizes.

In each communication round t ≥ 0 of Nastya, the cohort St is chosen as a random subset of the set {1, 2, . . . ,M} of all clients. In particular, we choose a random
subset of cardinality C (the cohort size), where 1 ≤ C ≤ M , uniformly at random. The server then sends the global model xt to all clients in the cohort. Setting C = M
models the full participation regime.

Each participating client m ∈ St then performs local training using a single pass of incremental GD with client stepsize γ > 0 over the local training data points in an
order dictated by a random permutation

πm = (π
1
m, π

2
m, . . . , π

n
m)

of the local training data set {1, 2, . . . , n}. In particular, the following update is iterated for i = 0, . . . , n− 1:

x
i+1
t,m = x

i
t,m − γ∇f

πim
m (x

i
t,m),

where x0t,m is initialized to xt , and γ > 0 is the client stepsize. That is, we run one pass over the local data using the RR method Mishchenko et al. [19]. This differs from one
pass over the data via SGD in that each data point is sampled exactly once.

Note that we allow for two options for how the permutation is formed: i) either the random permutation is sampled just once for all clients, and used in all communication
rounds (Shuffle-Once option), or ii) the random permutation is sampled afresh at the start of each communication round (Random-Reshuffling option). Both have the same theoretical
properties in our analysis.

At the end of local training, the updated models xnt,m are communicated back to the server, which uses these updates to form a gradient-type estimator gt , and applies one
step of GD using a server stepsize η > 0 with this estimator in lieu of the true gradient. Equivalently and this is how we decided to formally state the method, each clientm ∈ St
sends the following scaled model difference to the server:

gt,m = 1
γn

(xt − xnt,m),

where xnt,m is the model found by the client after one pass over the data via RR. The server then aggregates these vectors from all clients in the cohort to form gt =
1
C

∑
m∈St gt,m, and then takes a gradient-type step using this quantity in lieu of the gradient, using server stepsize η > 0:

xt+1 = xt − ηgt.

The new model is then broadcast to a new cohort in the next communication round, and the process is repeated.

5

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Table 3: Comparison of convergence results for FedAvg from prior work with our re-
sults.

Method Strongly convex Non-convex Reference

SCAFFOLD (1) Õ
(

σ2

µMnε
+ 1

µ

)
O
(

σ2

Mnε2
+ 1

ε

)
[11]

Local SGD (1) Õ

(
L
µ

+ σ2

Mµε
+

√
Ln(σ2+nζ2)

µ2ε

)
7 [27]

Local SGD Õ
(

σ2
∗

Mµε
+
√
L(nζ+

√
nσ)

µ
√
ε

+ κn
)

O
(
Lσ2
∗

Mε2
+ L(nζ+

√
nσ)

ε3/2
+ Ln

ε

)
[13]

FedRR Õ
(
L
µ

+
√
κn(σ∗+

√
nζ)

µ
√
ε

)
7 [20]

Nastya Õ
(
Ln
µ

)
O
(
Ln
ε

)
This paper

(1) The analysis is done under the bounded variance assumption: gi(x) := ∇fi (x; ζi) is unbiased stochastic gradient

of fi with bounded variance Eζi
[
‖gi(x)−∇fi(x)‖2

]
≤ σ2, for any i, x.

Here we use ζ2 def
= 1

M

∑M
m=1 ‖∇fm(x∗)‖2.

5. Theory
We now formulate our three main results.

Theorem 6 (Strongly convex regime) Let Assumption 1 hold, each fim be convex and f be µ-strongly convex. Let γn ≤ η ≤ 1
16L

. Then for iterates xt generated by
Algorithm 1, we have

E‖xT − x∗‖2 ≤
(
1− ηµ

2

)T
‖x0 − x∗‖2 + 5γ2nL

µ

(
1
M

M∑
m=1

σ2
∗,m + nσ2

∗

)
+ 8η

µ
M−C

Cmax{M−1,1}σ
2
∗.

In the full participation regime, the server stepsize restriction can be relaxed to η ≤ 1
8L

.

5.1. Convex regime
Next, we we cover the convex regime.

Theorem 7 Let Assumption 1 hold, each fim be convex function. Let γn ≤ η ≤ 1
16L

. Let x̂T
def
= 1
T

∑T
t=1 xt . Then for iterates xt of Algorithm 1, we have

E[f(x̂T)− f(x∗)] ≤
5‖x0−x∗‖

2

2ηT
+ 7γ2nL

(
1
M

M∑
m=1

σ2
∗,m + nσ2

∗

)
+ 10η M−C

Cmax{M−1,1}σ
2
∗.

As it can be seen, we get additional source of variance which is proportional to η and σ2
∗ . This term means variance of client sampling. Since this sampling of clients have

SGD-type structure, we have that variance is proportional to the first order of server-side stepsize.

5.2. Non-convex regime
Finally, we provide guarantees in the non-convex case.

Theorem 8 Let Assumption of smoothness hold. Let δ0 = f(x0) − f∗ and ∆∗,m = 1
n

n∑
i=1

(f∗ − fi∗,m). Let γ ≤ 1
2nL

and η ≤ 1
L

. Then for iterates xt of

Algorithm 1, we have

min
t=0,...,T−1

E ‖∇f (xt)‖2 ≤
2
(
1+4ηγ2n2L3

)T
ηT

δ0 + 2γ2nL3

(
1
M

M∑
m=1

∆∗,m + n∆∗

)
+ 4L2η M−C

Cmax{M−1,1}∆∗.

Similarly to analysis in full participation case, we use ∆∗,m and ∆∗ instead of σ2
∗,m and σ2

∗ , since point of minimizer cannot be defined.
Client and server stepsizes. Theorems 6, 15 and 19 suggest that the server can use the largeO(1/L) stepsize, whereL is the Lipschitz constant of the gradient of f . In all

regimes, it is optimal for the client stepsize γ to be small, which completely eliminates the second of the three terms in the complexity bounds, which controls the price one pays due
to data heterogeneity.

Partial participation. Notice that if the cohort size is equal to M , then M−C
Cmax{1,M−1} is equal to 0, and this means that the last (third) term in all our complexity

results disappears. The last term can thus be interpreted as the price we pay for partial participation. While we can reduce the variance of RR and the client drift by decreasing γ, we
cannot make the variance due to client sampling arbitrary small, since it depends on η.

Comparison with existing rates. In Table 3 we compare our results in the strongly convex and non-convex regimes with selected existing results.

6

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

0 50 100 150 200 250 300
Data passes

10-7

10-5

10-3

10-1
f(
x
)
¡
f
¤

RR
RR (two stepsizes)
Adaptive GD

0 50 100 150 200 250 300
Data passes

10-2

10-1

100

St
ep

siz
e

°

´ (adaptive)

0 50 100 150 200 250
Data passes

50

55

60

65

70

75

Te
st

 a
cc

ur
ac

y

SGD optimally tuned
SGD °= 1

5+ 0:5t

°= 1
5+ 0:5t

, ´ from Adam

Figure 2: Left and middle: We compare running standard Random Reshuffling (RR), adaptive gradient descent (Adaptive GD), and the combination of RR with outer

adaptive stepsize (Nastya) (RR (two stepsizes)) on logistic regression. As one can see, the variant with two stepsizes outperforms both of them and does not

require more hyper-parameters than RR, and the middle plot shows the exact values of γ and η. Right: The right plot shows the training curves of LeNet on

CIFAR-10 with minibatch size 1024, where we compare carefully tuned SGD (blue) to poorly tuned SGD (orange) and show that using Adam optimizer with

stepsize 10−2 after each data pass can significantly improve the poorly tuned version.

6. Benefits of Small Server Stepsize
Our analysis shows that small client stepsizes can control variance. However, the goal of learning is not obtaining the best value of the loss function, but the performance of the
model. In recent papers it was shown that small stepsizes are not the best option in term of generalization [24]. Moreover, in some cases we can show that using small server stepsize
and large client stepsizes can be beneficial.

Theorem 9 Assume that all losses fm,i areL-smooth and µ-strongly convex. Define α = η
γn

. Let γ ≤ 1
L

and 0 ≤ α < 1. Then for iterates xt generated by Algorithm 1
we have

E ‖xT − x∗‖
2 ≤ (1− α + α(1− γµ)n)T ‖x0 − x∗‖2 + α

(1−α)(1−(1−γµ)n)
γ2

σ2∗
C

+ 2γ3σ2
rad

1
1−(1−γµ)n

n−1∑
i=0

(1− γµ)i.

The upper bound depends on α in a nonlinear way, so the optimal value of α would often lie somewhere in the interval (0, 1). Furthermore, the last term does not change
with α, so the optimal value α∗ of α is completely determined by the first two terms.

Let us derive optimal α∗ under some approximations. In particular, when for ill-conditioned problems where µ is sufficiently small, it holds (1 − γµ)n ≈ 1 − γµn.
Ignoring the last term in the upper bound of Theorem 20, which does not affect the value α∗ , and using 1

1−α ≤ 2 for α ≤ 1
2

, we simplify the upper bound to

(1− α + α(1− γµn))T ‖x0 − x∗‖2 + 2αγ2

1−(1−γµn)

σ2∗
C

= (1− αγµn)T ‖x0 − x∗‖2 + 2αγ
µn

σ2∗
C
.

To have this upper bound smaller than some ε ≥ 0, we need to use α = O
(
nε
γ

)
and T = O(1

αγµn
log 1

ε
), where we ignore constants unrelated to α, γ, ε, µ and n.

Thus, the larger local γ, the smaller global α.

7. Experiments
To showcase the speed-up that can be obtained from the server-side stepsizes, we run a toy experiment in the single-node setup, i.e., we consider standard minimization of a finite-
sum. We combine the local passes over the data with the adaptive estimation of smoothness proposed by [17]. We run our experiment on `2-regularized logistic regression with the
‘mushrooms’ dataset from LibSVM [4]. The results are reported in Figure 2.

We use standard LeNet architecture, which is a 5-layer convolutional neural network, implemented in PyTorch [21] and train them to classify images from the CIFAR-10
dataset [16] with cross-entropy loss. At each iteration, we use a minibatch of size 1024. For the tuned SGD, we start with stepsize 0.2 and divide by 10 at epochs 150 and 200. For
the other version, we take SGD with stepsize 0.2 and decrease asO(1

t
), where t is the epoch number.

For our method, we treat the full sum of gradients over epoch as an approximation of full gradient and use Adam with stepsize 0.01 to improve this update. We can see that by
applying Adam, we can improve the performance of SGD with decreasing stepsize. At the same time, applying it to the tuned stepsize schedule only made the results much worse,
so we do not report that line. This highlights that adaptive outer stepsizes are helpful when the base stepsize γ is not chosen well, which is in line with our theory.

References
[1] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric Renggli. The convergence of sparsified gradient methods. In Advances in

Neural Information Processing Systems, 2018.

[2] Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In Neural Networks: Tricks of the trade, pages 437–478. Springer, 2012.

[3] Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. Unpublished open problem offered to the attendance of the SLDS 2009 conference,
2009.

[4] Chih-Chung Chang and Chih-Jen Lin. LibSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3):27, 2011.

7

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

[5] Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. On large-cohort training for federated learning. arXiv preprint arXiv:2106.07820,
2021.

[6] Wenlin Chen, Samuel Horvath, and Peter Richtárik. Optimal client sampling for federated learning. arXiv preprint arXiv:2010.13723, 2020.

[7] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local SGD: unified theory and new efficient methods. In NeurIPS, 2020.

[8] Eduard Gorbunov, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. Marina: Faster non-convex distributed learning with compression. 139:3788–3798, 18–24 Jul 2021.

[9] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution for federated visual classification. arXiv preprint
arXiv:1909.06335, 2019.

[10] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1), 2021.

[11] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian U. Stich, and Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for
federated learning. In International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

[12] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local SGD on identical and heterogeneous data. In Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics, pages 4519–4529. PMLR, 2020.

[13] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U. Stich. A unified theory of decentralized SGD with changing topology and local updates.
In International Conference on Machine Learning, pages 5381–5393. PMLR, 2020.

[14] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization: Distributed machine learning for on-device intelligence. arXiv preprint
arXiv:1610.02527, 2016.

[15] Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. Federated learning: strategies for improving communication
efficiency. In NIPS Private Multi-Party Machine Learning Workshop, 2016.

[16] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[17] Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. In Proceedings of the 37th International Conference on Machine Learning, volume
119, pages 6702–6712. PMLR, 2020.

[18] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

[19] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random Reshuffling: Simple analysis with vast improvements. Advances in Neural Information Processing
Systems, 33:17309–17320, 2020.

[20] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Proximal and federated random reshuffling. arXiv preprint arXiv:2102.06704, 2021.

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. 2017.

[22] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and H. Brendan McMahan. Adaptive federated optimization.
In International Conference on Learning Representations, 2020.

[23] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically better, and practically faster error feedback. arXiv preprint arXiv:2106.05203, 2021.

[24] Samuel L. Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of implicit regularization in stochastic gradient descent. In International Conference on Learning
Representations, 2020.

[25] Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for SGD with delayed gradients and compressed communication. arXiv preprint
arXiv:1909.05350, 2019.

[26] Ruo-Yu Sun. Optimization for deep learning: An overview. Journal of the Operations Research Society of China, 8:1–46, 06 2020. doi: 10.1007/s40305-020-00309-6.

[27] Blake E. Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local SGD for heterogeneous distributed learning. In Advances in Neural Information Processing
Systems, volume 33, pages 6281–6292. Curran Associates, Inc., 2020.

[28] Chulhee Yun, Shashank Rajput, and Suvrit Sra. Minibatch vs local SGD with shuffling: Tight convergence bounds and beyond. arXiv preprint arXiv:2110.10342, 2021.

8

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Appendix A. Basic Facts and Notation

A.1. Basic facts
For any two vectors a, b ∈ Rd and any ζ > 0,

2a, b ≤
a

ζ
+ ζb. (7)

A consequence of (7) is that for any a, b ∈ Rd, we have

a+ b ≤ 1 + ζa+ 1 + ζ−1b. (8)

Using ζ = 1 specifically yields,
a+ b ≤ 2a+ 2b. (9)

A function h : Rd → R is called µ-convex if for some µ ≥ 0 and for all x, y ∈ Rd, we have

h(x) +∇h(x), y − x+
µ

2
y − x ≤ h(y). (10)

Function h : Rd → R is called L-smooth if for some L ≥ 0 and for all x, y ∈ Rd, we have

‖∇h(x)−∇h(y)‖ ≤ L ‖x− y‖ . (11)

A useful consequence of L-smoothness is the inequality

h(x) ≤ h(y) +∇h(y), x− y +
L

2
x− y, (12)

holding for all x, y ∈ Rd. If h is L-smooth and lower bounded by h∗, then

∇h(x) ≤ 2Lh(x)− h∗. (13)

For any convex and L-smooth function h it holds

‖∇h(x)−∇h(y)‖2 ≤ 2LDh(x, y). (14)

For a convex function h : Rd → R and any vectors y1, . . . , yn ∈ Rd, Jensen’s inequality states that

h
1

n

n∑
i=1

yi ≤
1

n

n∑
i=1

h(yi). (15)

Applying this to the squared norm, h(y) = y, we get

1

n

n∑
i=1

yi ≤
1

n

n∑
i=1

yi. (16)

Simple multiplication on both sides of (16) also yields,

n∑
i=1

yi ≤ n
n∑
i=1

yi. (17)

We use the following decomposition that holds for any random variable X with E
[
‖X‖2

]
< +∞,

E
[
‖X‖2

]
= ‖E [X]‖2 + E

[
‖X − E [X]‖2

]
. (18)

We will make use of the particularization of (18) to the discrete case: let y1, . . . , ym ∈ Rd be given vectors and let ȳ = 1
m

m∑
i=1

yi be

their average. Then,
1

m

m∑
i=1

yi = ȳ +
1

m

m∑
i=1

yi − ȳ. (19)

9

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Table 4: Summary of notation used.

Symbol Description

xt The iterate used at the start of epoch t.

π
A permutation πm = π0

m, π
1
m, . . . , π

n−1
m of {1, 2, . . . , n},

which is resampled every epoch for Random Reshuffling.

γ The stepsize used when taking descent steps in an epoch.

xit,m The current iterate after i steps in epoch t, for 0 ≤ i ≤ n.

gt The sum of gradients used over epoch t such that xt+1 = xt − ηgt.

β The epoch jumping parameter.

η The effective epoch stepsize, defined as η def
= γ1 + β.

σ2
t The variance of the individual loss gradients from the average loss at point xt.

L The smoothness constant of f and f1, f2, . . . , fn.

δt Functional suboptimality, δt = f(xt)− f∗, where f∗ = infx f(x).

A.2. Notation
We define the variance of the local gradients from their average at a point xt as

σ2
t

def
=

1

n

n∑
j=1

∇fj(xt)−∇f(xt).

A summary of the notation used is given in Table 4.

A.3. Sampling without replacement
First, let us provide some basic properties of sampling without replacement.

Lemma 10 LetX1, . . . , Xn ∈ Rd be fixed vectors,X
def
= 1

n

n∑
i=1

Xi be their average and σ2 def
= 1

n

n∑
i=1

∥∥Xi −X∥∥2
be the population

variance. Fix any k ∈ {1, . . . , n}, let Xπ1 , . . . Xπk be sampled uniformly without replacement from {X1, . . . , Xn} and Xπ be their
average. Then, it holds

E
[
Xπ
]

= X, E
[∥∥Xπ −X

∥∥2
]

=
n− k
k(n− 1)

σ2. (20)

Proof The first claim follows by linearity of the expectation and uniformity of the sampling,

E
[
Xπ
]

=
1

k

k∑
i=1

E [Xπi] =
1

k

k∑
i=1

X = X.

10

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

To show the second claim, let us first establish that for any i 6= j it holds cov(Xπi , Xπj) = − σ2

n−1
. Indeed,

cov(Xπi , Xπj) = E
[
Xπi −X,Xπj −X

]
=

1

n(n− 1)

n∑
l=1

∑
m 6=l

Xl −X,Xm −X

=
1

n(n− 1)

n∑
l=1

n∑
m=1

Xl −X,Xm −X −
1

n(n− 1)

n∑
l=1

∥∥Xl −X∥∥2

=
1

n(n− 1)

n∑
l=1

Xl −X,
n∑

m=1

(Xm −X)−
σ2

n− 1

= −
σ2

n− 1
.

Therefore,

Xπ −X =
1

k2

k∑
i=1

k∑
j=1

cov(Xπi , Xπj)

=
1

k2
E

[
k∑
i=1

Xπi −X
]

+

k∑
i=1

n∑
j=1,j 6=i

cov(Xπi , Xπj)

=
1

k2

(
kσ2 − k(k − 1)

σ2

n− 1

)
=

n− k
k(n− 1)

σ2.

Appendix B. Large Server Stepsize

B.1. Strongly convex and general convex case
Lemma 11 Let Assumption 1 holds and further assume f is µ-strongly convex and each f im is convex. Then

−
1

Mn

M∑
m=1

n−1∑
i=0

〈
f
πim
m

(
xit,m

)
, xt − x∗

〉
≤ −

µ

4
‖xt − x∗‖2 −

1

2
(f (xt)− f (x∗)) +

L

2Mn

M∑
m=1

n−1∑
i=0

∥∥xt − xit,m∥∥2
.

Proof We start with the inner product and decompose it using the three-point identity:〈
∇fπ

i
m

m

(
xit,m

)
, xt − x∗

〉
= f

πim
m (xt)− f

πim
m (x∗) + f

πim
m (x∗)− f

πim
m

(
xit,m

)
+

〈
∇fπ

i
m

m

(
xit,m

)
, xit,m − x∗

〉
− fπ

i
m

m (xt) + f
πim
m

(
xit,m

)
+

〈
∇fπ

i
m

m

(
xit,m

)
, xt − xit,m

〉
= f

πim
m (xt)− f

πim
m (x∗) +D

f
πim
m

(
x∗, x

i
t,m

)
−D

f
πim
m

(
xt, x

i
t,m

)
. (21)

Using the representation (21), L-smoothness and µ-strong convexity we have a bound:

−
1

Mn

M∑
m=1

n−1∑
i=0

〈
f
πim
m

(
xit,m

)
, xt − x∗

〉

≤ −
1

Mn

M∑
m=1

n−1∑
i=0

(
f
πim
m (xt)− f

πim
m (x∗) +D

f
πim
m

(
x∗, x

i
t,m

)
−D

f
πim
m

(
xt, x

i
t,m

))
(12)
≤ − (f (xt)− f (x∗))−

1

Mn

M∑
m=1

n−1∑
i=0

Dfm,πi

(
x∗, x

i
t,m

)
+

L

2Mn

M∑
m=1

n−1∑
i=0

∥∥xt − xit,m∥∥2

(10)
≤ −

µ

4
‖xt − x∗‖2 −

1

2
(f (xt)− f (x∗)) +

L

2Mn

M∑
m=1

n−1∑
i=0

∥∥xt − xit,m∥∥2
.

11

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Lemma 12 Assume that Assumption 1 holds, then

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
i=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥∥
2

≤ 2
L2

Cn

∑
m∈St

n−1∑
i=0

‖xit,m − xt‖2 + 4

∥∥∥∥∥∥ 1

C

∑
m∈St

∇fm(x∗)

∥∥∥∥∥∥
2

+ 8L(fm(xt)− fm(x∗)).

Proof We start with Young’s inequality:

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
i=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥∥
2

(9)
≤ 2

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
i=0

(
∇fπ

i
m

m

(
xit,m

)
−∇fπ

i
m

m (xt)

)∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥ 1

C

∑
m∈St

∇fm(xt)

∥∥∥∥∥∥
2

(14)
≤ 2L2 1

Cn

∑
m∈St

n−1∑
i=0

‖xit,m − xt‖2 + 2

∥∥∥∥∥∥ 1

C

∑
m∈St

∇fm(xt)

∥∥∥∥∥∥
2

.

We use Young’s inequality and L-smoothness again:

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
i=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥∥
2

(15),(9)
≤ 2L2 1

Cn

∑
m∈St

n−1∑
i=0

‖xit,m − xt‖2 + 4

∥∥∥∥∥∥ 1

C

∑
m∈St

∇fm(x∗)

∥∥∥∥∥∥
2

+ 4
1

C

∑
m∈St

‖∇fm(xt)−∇fm(x∗)‖2

(14)
≤ 2L2 1

Cn

∑
m∈St

n−1∑
i=0

‖xim,t − xt‖2 + 4

∥∥∥∥∥∥ 1

C

∑
m∈St

∇fm(x∗)

∥∥∥∥∥∥
2

+ 8L
1

C

∑
m∈St

(fm(xt)− fm(x∗)).

Lemma 13 Suppose that Algorithm 1 is used and Assumption 1 holds. If γ ≤ 1
2Ln

, then

1

Mn

M∑
m=1

n−1∑
i=0

E
[∥∥xt − xit,m∥∥2 |xt

]
≤ 8γ2n2L (f(xt)− f(x∗)) + 2γ2n2 1

M

M∑
m=1

‖∇fm(x∗)‖2 + 2γ2n
1

M

M∑
m=1

σ2
∗,m.

Proof We start from the definition of xit,m:

E
[∥∥xit,m − xt∥∥2 |xt

]
= E

∥∥∥∥∥∥γ
i−1∑
j=0

∇fπ
j
m

m

(
xjt,m

)∥∥∥∥∥∥
2

|xt

(9)
≤ 2γ2E

∥∥∥∥∥∥
i−1∑
j=0

(
∇fπ

j
m

m

(
xjt,m

)
−∇fπ

j
m

m (xt)

)∥∥∥∥∥∥
2

|xt

+ 2γ2E

∥∥∥∥∥∥
i−1∑
j=0

∇fπ
j
m

m (xt)

∥∥∥∥∥∥
2

|xt

(15)
≤ 2γ2i

i−1∑
j=0

E

[∥∥∥∥∇fπjmm (
xjt,m

)
−∇fπ

j
m

m (xt)

∥∥∥∥2

|xt

]
+ 2γ2E

∥∥∥∥∥∥
i−1∑
j=0

∇fπ
j
m

m (xt)

∥∥∥∥∥∥
2

|xt

(11)
≤ 2γ2L2i

i−1∑
j=0

E
[∥∥∥xjt,m − xt∥∥∥2

|xt
]

+ 2γ2E

∥∥∥∥∥∥
i−1∑
j=0

∇fπ
j
m

m (xt)

∥∥∥∥∥∥
2

|xt

 .

12

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Now let us look at the last term. We can apply Lemma 10 and get

E

∥∥∥∥∥∥
i−1∑
j=0

∇fπ
j
m

m (xt)

∥∥∥∥∥∥
2

|xt

 = i2 ‖∇fm(xt)‖2 + i2E

∥∥∥∥∥∥1

i

i−1∑
j=0

(
∇fπ

j
m

m (xt)−∇fm(xt)

)∥∥∥∥∥∥
2

|xt

= i2 ‖∇fm(xt)‖2 +

i(n− i)
n− 1

σ2
t,m,

where σ2
t,m

def
= 1

n

∑n
i=1

∥∥∇f im (xt)−∇fm(xt)
∥∥2.

Let us go back:

E
[∥∥xit,m − xt∥∥2 |xt

]
≤ 2γ2L2i

i−1∑
j=0

E
[∥∥∥xjt,m − xt∥∥∥2

|xt
]

+ 2γ2

(
i2 ‖∇fm(xt)‖2 +

i(n− i)
n− 1

σ2
t,m

)
.

Summing the terms leads to

1

Mn

M∑
m=1

n−1∑
i=0

E
[∥∥xit,m − xt∥∥2 |xt

]
≤ 2γ2L2 1

Mn

M∑
m=1

n−1∑
i=0

i

i−1∑
j=0

E
[∥∥∥xjt,m − xt∥∥∥2

|xt
]

+
2γ2

Mn

M∑
m=1

n−1∑
i=0

i2 ‖∇fm(xt)‖2 +
2γ2

Mn

M∑
m=1

n−1∑
i=0

i(n− i)σ2
t,m

n− 1

≤ 2γ2L2 1

Mn

M∑
m=1

n−1∑
i=0

E
[∥∥xit,m − xt∥∥2 |xt

]
·
n(n− 1)

2

+
2γ2

Mn

M∑
m=1

‖∇fm(xt)‖2 ·
n(n− 1)(2n− 1)

6
+
γ2n(n+ 1)

3

1

Mn

M∑
m=1

σ2
t,m.

Choosing γ ≤ 1
2Ln

, we verify

1

Mn

M∑
m=1

n−1∑
i=0

E
[∥∥xit,m − xt∥∥2 |xt

]
≤

4

3

(
1− γ2L2n(n− 1)

) 1

Mn

M∑
m=1

n−1∑
i=0

E
[∥∥xit,m − xt∥∥2 |xt

]

≤
4γ2

9

1

M

M∑
m=1

‖∇fm(xt)‖2 · (n− 1)(2n− 1) +
4γ2(n+ 1)

9

1

M

M∑
m=1

σ2
t,m

≤ γ2n2 1

M

M∑
m=1

‖∇fm(xt)‖2 + γ2n
1

M

M∑
m=1

σ2
t,m. (22)

Using Young’s inequality, we get

1

Mn

M∑
m=1

n−1∑
i=0

E
[∥∥xit,m − xt∥∥2 |xt

] (9),(19)
≤ 2γ2n2 1

M

M∑
m=1

‖∇fm(xt)−∇fm(x∗)‖2

+ 2γ2n2 1

M

M∑
m=1

‖∇fm(x∗)‖2 −
γ2n

M

M∑
m=1

‖∇fm(xt)‖2

+ 2γ2n
1

M

M∑
m=1

1

n

n−1∑
i=0

E
∥∥∥∥∇fπimm (xt)−∇f

πim
m (x∗)

∥∥∥∥2

+ 2γ2n
1

M

M∑
m=1

1

n

n−1∑
i=0

E
∥∥∥∥∇fπimm (x∗)

∥∥∥∥2

.

Using L-smoothness, we obtain

1

Mn

M∑
m=1

n−1∑
i=0

E
∥∥xit,m − xt∥∥2 ≤ 4γ2n2L

1

M

M∑
m=1

Dfm (xt, x∗) + 2γ2n
1

M

M∑
m=1

σ2
∗,m

+ 4γ2nL
1

M

M∑
m=1

1

n

n−1∑
i=0

D
f
πim
m

(xt, x∗) + 2γ2n2 1

M

M∑
m=1

‖∇fm(x∗)‖2

(12)
≤ 8γ2n2L (f(xt)− f(x∗)) + 2γ2n2 1

M

M∑
m=1

‖∇fm(x∗)‖2 + 2γ2n
1

M

M∑
m=1

σ2
∗,m.

13

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Theorem 14 Assume that Assumption 1 holds and f is µ-strongly convex function. Let γn ≤ η ≤ 1
16L

. Then for iterates xt generated
by Algorithm 1 we have

E‖xT − x∗‖2 ≤
(

1−
ηµ

2

)T
‖x0 − x∗‖2 +

5γ2nL

µ

1

M

M∑
m=1

(
σ2
∗,m + n‖∇fm(x∗)‖2

)
+

8η

µ

M∑
m=1

‖∇fm(x∗)‖2.

Proof We start from conditional expected value over distribution of client sampling,

‖xt+1 − x∗‖2 =

∥∥∥∥∥∥xt − η 1

Cn

∑
m∈St

n−1∑
i=0

∇fπ
i
m

m

(
xit,m

)
− x∗

∥∥∥∥∥∥
2

= ‖xt − x∗‖2 − 2η

〈
1

Cn

∑
m∈St

n−1∑
i=0

∇fm,πi
(
xit,m

)
, xt − x∗

〉
+ η2

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
i=0

∇fm,πi
(
xit,m

)∥∥∥∥∥∥
2

.

Using Lemma 12, we get

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2η

〈
1

Cn

∑
m∈St

n−1∑
i=0

∇fm,πi
(
xit,m

)
, xt − x∗

〉

+ η2

2L2 1

Cn

∑
m∈St

n−1∑
i=0

‖xim,t − xt‖2 + 4

∥∥∥∥∥∥ 1

C

∑
m∈St

∇fm(x∗)

∥∥∥∥∥∥
2

+ 8L
1

C

∑
m∈St

(fm(xt)− fm(x∗))

 .

Taking conditional expectation over sampling St, we get

ESt‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − ESt2η

〈
1

Cn

∑
m∈St

n−1∑
i=0

∇fm,πi
(
xit,m

)
, xt − x∗

〉

+ η2ESt

2L2 1

Cn

∑
m∈St

n−1∑
i=0

‖xit,m − xt‖2 + 4

∥∥∥∥∥∥ 1

C

∑
m∈St

∇fm(x∗)

∥∥∥∥∥∥
2

+ 8L
1

C

∑
m∈St

(fm(xt)− fm(x∗))

≤ ‖xt − x∗‖2 − 2η

〈
1

Mn

M∑
m=1

n−1∑
i=0

∇fm,πi
(
xit,m

)
, xt − x∗

〉

+ η2

2L2 1

Mn

M∑
m=1

n−1∑
i=0

‖xit,m − xt‖2 + 4ESt

∥∥∥∥∥∥ 1

C

∑
m∈St

∇fm(x∗)

∥∥∥∥∥∥
2

+ 8L(f(xt)− f(x∗))

(10)
≤ ‖xt − x∗‖2 − 2η

〈
1

Mn

M∑
m=1

n−1∑
i=0

∇fm,πi
(
xit,m

)
, xt − x∗

〉

+ η2

(
2L2 1

Mn

M∑
m=1

n−1∑
i=0

‖xit,m − xt‖2 + 4
M − C

C max {M − 1, 1}
σ2
∗ + 8L(f(xt)− f(x∗))

)
.

Using Lemma 11, we obtain

ESt‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2η

(
−
µ

4
‖xt − x∗‖2 −

1

2
(f (xt)− f (x∗)) +

L

2Mn

M∑
m=1

n−1∑
i=0

∥∥xt − xit,m∥∥2

)

+ η2

(
2L2 1

Mn

M∑
m=1

n−1∑
i=0

‖xit,m − xt‖2 + 4
M − C

C max {M − 1, 1}
σ2
∗ + 8L(f(xt)− f(x∗))

)
.

Rearranging the terms, we obtain:

ESt‖xt+1 − x∗‖2 = ‖xt − x∗‖2
(

1−
ηµ

2

)
− η (1− 8ηL) (f(xt)− f(x∗))

+ ηL (1 + 2ηL)
1

Mn

M∑
m=1

n−1∑
i=0

‖xim,t − xt‖2 + 4η2 M − C
C max {M − 1, 1}

σ2
∗.

14

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Using the tower property of conditional expectation and Lemma 13, we get

E
[
‖xt+1 − x∗‖2|xt

]
= ‖xt − x∗‖2

(
1−

ηµ

2

)
+ 4η2 M − C

C max {M − 1, 1}
σ2
∗

− η
(
1− 8ηL− (1 + 2ηL) 8γ2n2L2

)
(f(xt)− f(x∗)) (23)

+ 2η (1 + 2ηL) γ2nL
1

M

M∑
m=1

(
σ2
∗,m + n‖∇fm(x∗)‖2

)
.

Taking γ ≤ 1
16nL

and η ≤ 1
16L

, we derive

η
(
1− 8ηL− (1 + 2ηL) 8γ2n2L2

)
(f(xt)− f(x∗)) ≥ 0.

Taking full expectation yields

E
[
‖xt+1 − x∗‖2

]
≤ E ‖xt − x∗‖2

(
1−

ηµ

2

)
+

5

2
ηγ2nL

1

M

M∑
m=1

(
σ2
∗,m + n‖∇fm(x∗)‖2

)
+ 4

M − C
C max {M − 1, 1}

σ2
∗.

Unrolling this recursion, we have

E‖xT − x∗‖2 ≤
(

1−
ηµ

2

)T
‖x0 − x∗‖2 +

5γ2nL

µ

1

M

M∑
m=1

(
σ2
∗,m + n‖∇fm(x∗)‖2

)
+

8η

µ

M∑
m=1

‖∇fm(x∗)‖2.

Theorem 15 Let Assumption 1 hold, each f im be convex function. Let γn ≤ η ≤ 1
16L

. Let x̂T
def
= 1

T

∑T
t=1 xt. Then for iterates xt

of Algorithm 1, we have

E[f(x̂T)− f(x∗)] ≤
5 ‖x0 − x∗‖2

2ηT
+ 7γ2nL

(
1

M

M∑
m=1

σ2
∗,m + nσ2

∗

)
+ 10η

M − C
C max{M − 1, 1}

σ2
∗.

B.2. General convex case

Proof We start from equation (23) with µ = 0:

E
[
‖xt+1 − x∗‖2|xt

]
= ‖xt − x∗‖2 + 4η2 M − C

C max {M − 1, 1}
σ2
∗

− η
(
1− 8ηL− (1 + 2ηL) 8γ2n2L2

)
(f(xt)− f(x∗))

+ 2η (1 + 2ηL) γ2nL
1

M

M∑
m=1

(
σ2
∗,m + n‖∇fm(x∗)‖2

)
.

Using γn ≤ η ≤ 1
16L

, we obtain −
(
1− 8ηL− (1 + 2ηL) 8γ2n2L2

)
≤ − 4

10

E
[
‖xt+1 − x∗‖2|xt

]
= ‖xt − x∗‖2 + 4η2 M − C

C max {M − 1, 1}
σ2
∗ −

4η

10
(f(xt)− f(x∗))

+
5

2
ηγ2nL

1

M

M∑
m=1

(
σ2
∗,m + n‖∇fm(x∗)‖2

)
.

Taking full expectation, we get

E‖xt+1 − x∗‖2 = E ‖xt − x∗‖2 + 4η2 M − C
C max {M − 1, 1}

σ2
∗ −

4η

10
E (f(xt)− f(x∗))

+
5

2
ηγ2nL

1

M

M∑
m=1

(
σ2
∗,m + n‖∇fm(x∗)‖2

)
.

15

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Rearranging the terms leads us to

4η

10
E (f(xt)− f(x∗)) = E ‖xt − x∗‖2 − E‖xt+1 − x∗‖2 + 4η2 M − C

C max {M − 1, 1}
σ2
∗

+
5

2
ηγ2nL

1

M

M∑
m=1

(
σ2
∗,m + n‖∇fm(x∗)‖2

)
.

Averaging from 0 to T − 1, we get

4η

10

1

T

T−1∑
t=0

E (f(xt)− f(x∗)) =
1

T

T−1∑
t=0

(
E ‖xt − x∗‖2 − E‖xt+1 − x∗‖2

)
+ 4η2 M − C

C max {M − 1, 1}
σ2
∗

+
5

2
ηγ2nL

1

M

M∑
m=1

(
σ2
∗,m + n‖∇fm(x∗)‖2

)
=

1

T

(
E ‖x0 − x∗‖2 − E‖xT − x∗‖2

)
+ 4η2 M − C

C max {M − 1, 1}
σ2
∗

+
5

2
ηγ2nL

1

M

M∑
m=1

(
σ2
∗,m + n‖∇fm(x∗)‖2

)
.

Using Jensen inequality (15), we have

E[f(x̂T)− f(x∗)] ≤
5 ‖x0 − x∗‖2

2ηT
+ 7γ2nL

(
1

M

M∑
m=1

σ2
∗,m + nσ2

∗

)
+ 10η

M − C
C max{M − 1, 1}

σ2
∗.

B.3. General non-convex case
Finally, we provide guarantees in the non-convex case.

Lemma 16 Assume that Assumption 1. For uniform sampling of cohort St we have

EStη
2

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
n=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥∥
2

≤ 2L(f(x)− f∗) + 2
M − C
C(M − 1)

∆∗.

Proof We start with Proposition 3 in ?]:

E
[
‖g‖2

]
≤ 2A (f(x)− f∗) +B · ‖∇f(x)‖2 + C,

where A = M−C
C(M−1)

L, B =
M(C−1)
C(M−1)

, C = 2A∆∗ and

g =
1

Cn

∑
m∈St

n−1∑
n=0

∇fπ
i
m

m

(
xit,m

)
. (24)

Using L-smoothness, we have

‖∇f(x)‖2 ≤ 2L (f(x)− f∗) .

Note that

M − C
C(M − 1)

+
M(C − 1)

C(M − 1)
= 1.

Combining all things together, we obtain

EStη
2

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
n=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥∥
2

≤ 2L(f(x)− f∗) + 2
M − C
C(M − 1)

∆∗.

16

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Lemma 17 Suppose that Algorithm 1 is used and Assumption 1 holds. If γ ≤ 1
2Ln

, then

1

Mn

M∑
m=1

n−1∑
i=0

E
[∥∥xt − xit,m∥∥2 |xt

]
≤ 4γ2n2L (f(xt)− f∗) + 2γ2n2L∆∗ + 2γ2nL

1

M

M∑
m=1

∆∗,m.

Proof We start from equation (22):

1

Mn

M∑
m=1

n−1∑
i=0

E
[∥∥xit,m − xt∥∥2 |xt

]
≤ γ2n2 1

M

M∑
m=1

‖∇fm(xt)‖2 + γ2n
1

M

M∑
m=1

σ2
t,m.

Using L-smoothness, we get

1

Mn

M∑
m=1

n−1∑
i=0

E
[∥∥xit,m − xt∥∥2 |xt

]
≤ 2γ2n2L

1

M

M∑
m=1

(fm(xt)− f∗,m) + 2γ2nL
1

M

M∑
m=1

1

n

n−1∑
i=0

(f im(xt)− f i∗,m)

≤ 2γ2n2L
1

M

M∑
m=1

(fm(xt)− f∗) + 2γ2n2L
1

M

M∑
m=1

(f∗ − f∗,m)

+ 2γ2nL
1

M

M∑
m=1

1

n

n−1∑
i=0

(f im(xt)− f∗) + 2γ2nL
1

M

M∑
m=1

1

n

n−1∑
i=0

(f∗ − f i∗,m)

≤ 4Lγ2n2(f(xt)− f∗) + 2γ2n2L∆∗ + 2γ2nL
1

M

M∑
m=1

∆∗,m.

Lemma 18 Suppose that there exists constants a, b, c ≥ 0 and nonnegative sequences (st)Tt=0, (qt)
T
t=0 such that for any t ∈

{0, 1, . . . , T}
st+1 ≤ 1 + ast − bqt + c. (25)

Then if a > 0 we have,

min
t=0,...,T−1

qt ≤
1 + aT

bT
s0 +

c

b
. (26)

And if a = 0 we have,

1

T

T−1∑
t=0

qt ≤
s0

bT
+
c

b
. (27)

Proof The first part of the proof (for a > 0) is a distillation of the recursion solution in Lemma 2 of [?] and we closely follow their
proof. Let w−1 = w0 > 0 be arbitrary. Define

wt
def
=

w0

1 + at
.

Note that wt1 + a = wt−1. Multiplying both sides of (25) by wt,

wtst+1 ≤ 1 + awtst − bwtqt + cwt

= wt−1st − bwtqt + cwt.

Rearranging,

bwtqt ≤ wt−1st − wtst+1 + cwt.

Summing up as t varies from 0 to T − 1 and noting that the sum telescopes,

T−1∑
t=0

bwtqt ≤
T−1∑
t=0

wt−1st − wtst+1 + c

T−1∑
t=0

wt = w0s0 − wT−1sT + c

T−1∑
t=0

wt ≤ w0s0 + c

T−1∑
t=0

wt.

17

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Let WT =
T−1∑
t=0

wt. Dividing both sides by WT we have,

1

WT

T−1∑
t=0

bwtqt ≤
w0s0

WT
+ c. (28)

We now separate the proof into two cases:

[leftmargin=0.2in,itemsep=0.01in]If a > 0: Note that the left-hand side of (28) satisfies

b min
t=0,...,T−1

qt ≤
1

WT

T−1∑
t=0

bwtqt. (29)

And for the right hand-side of (28) we have,

WT =

T−1∑
t=0

wt ≥ T min
t=0,...,T−1

wt = TwT−1 ≥ TwT =
Tw0

1 + aT
. (30)

Substituting with (30) in (29) and dividing both sides by b we get,

min
t=0,...,T−1

qt ≤
1 + aT

bT
s0 +

c

b
.

If a = 0: then wt = w0 for all t and hence wT = T , then (29) is equivalent to

1

T

T−1∑
t=0

bqt ≤
s0

T
+ c.

Dividing both sides by b yields the lemma’s claim.

•• Theorem 19 Let Assumption 1 hold. Let δ0 = f(x0) − f∗ and ∆∗,m = 1
n

n∑
i=1

(f∗ − f i∗,m). Let γ ≤ 1
2nL

and η ≤ 1
L

. Then for

iterates xt of Algorithm 1, we have

min
t=0,...,T−1

E ‖∇f (xt)‖2 ≤
2
(
1 + 4ηγ2n2L3

)T
ηT

δ0 + 2γ2nL3

(
1

M

M∑
m=1

∆∗,m + n∆∗

)
+ 4L2η

M − C
C max{M − 1, 1}

∆∗.

Proof We start from L-smoothness (12):

f(xt+1)
(12)
≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+

L

2
‖xt+1 − xt‖2

= f(xt)−
〈
∇f(xt), η

1

Cn

∑
m∈St

n−1∑
i=0

∇fπ
i
m

m

(
xit,m

)〉
+
L

2

∥∥∥∥∥∥η 1

Cn

∑
m∈St

n−1∑
n=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥∥
2

= f(xt)− η
〈
∇f(xt),

1

Cn

∑
m∈St

n−1∑
i=0

∇fπ
i
m

m

(
xit,m

)〉
+
L

2
η2

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
n=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥∥
2

.

Taking conditional expectation over cohort St, we get

EStf(xt+1) ≤ f(xt)− EStη

〈
∇f(xt),

1

Cn

∑
m∈St

n−1∑
i=0

∇fπ
i
m

m

(
xit,m

)〉
+ ESt

L

2
η2

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
n=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥∥
2

≤ f(xt)− η
〈
∇f(xt),

1

Mn

M∑
m=1

n−1∑
i=0

∇fπ
i
m

m

(
xit,m

)〉
+ ESt

L

2
η2

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
n=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥∥
2

.

18

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Using 2 〈a, b〉 = ‖a+ b‖2 − ‖a‖2 − ‖b‖2, we have

EStf(xt+1) = f(xt) + ESt
L

2
η2

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
n=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥∥
2

−

η

2
‖∇f(xt)‖2 +

η

2

∥∥∥∥∥ 1

Mn

M∑
m=1

n−1∑
i=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥
2
+

η

2

∥∥∥∥∥∇f(xt)−
1

Mn

M∑
m=1

n−1∑
i=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥
2

≤ f(xt) +
L

2
η2ESt

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
n=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥∥
2

−

η

2
‖∇f(xt)‖2 +

η

2

∥∥∥∥∥ 1

Mn

M∑
m=1

n−1∑
i=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥
2
+

η

2

∥∥∥∥∥ 1

Mn

M∑
m=1

n−1∑
i=0

(
∇fπ

i
m

m

(
xit,m

)
−∇fπ

i
m

m (xt)

)∥∥∥∥∥
2

.

Using L-smoothness, we get

EStf(xt+1) ≤ f(xt) +
L

2
η2ESt

∥∥∥∥∥∥ 1

Cn

∑
m∈St

n−1∑
n=0

∇fπ
i
m

m

(
xit,m

)∥∥∥∥∥∥
2

−
η

2
‖∇f(xt)‖2 +

η

2
L2 1

Mn

M∑
m=1

n−1∑
i=0

∥∥xit,m − xt∥∥2
.

Utilizing Lemma 16 and taking conditional expectation using tower property, we get

E [f(xt+1)|xt] ≤ f(xt) +
L

2
η2

(
2L(f(x)− f∗) + 2

M − C
C(M − 1)

∆∗

)

−
η

2
‖∇f(xt)‖2 +

η

2
L2 1

Mn

M∑
m=1

n−1∑
i=0

E
[∥∥xit,m − xt∥∥2 |xt

]
.

Applying Lemma 17 we get

E [f(xt+1)|xt] ≤ f(xt) +
L

2
η2

(
2L(f(x)− f∗) + 2

M − C
C(M − 1)

∆∗

)

−
η

2
‖∇f(xt)‖2 +

η

2
L24Lγ2n2(f(xt)− f∗) + 2γ2n2L∆∗ + 2γ2nL

1

M

M∑
m=1

∆∗,m.

Using η ≤ 1
L

and taking full expectation, we have

E [f(xt+1)] ≤ E [f(xt)]−
η

2
E‖∇f(xt)‖2

+
L

2
η2

(
2
M − C
C(M − 1)

∆∗

)
+
(
1 + 4ηγ2n2L3

)
E(f(xt)− f∗) + 2γ2n2L∆∗ + 2γ2nL

1

M

M∑
m=1

∆∗,m.

Applying Lemma 18 from Mishchenko et al. [19], we get

min
t=0,...,T−1

E ‖∇f (xt)‖2 ≤
2
(
1 + 4ηγ2n2L3

)T
ηT

δ0 + 2γ2nL3

(
1

M

M∑
m=1

∆∗,m + n∆∗

)
+ 4L2η

M − C
C max{M − 1, 1}

∆∗.

19

ON SERVER-SIDE STEPSIZES IN FEDERATED OPTIMIZATION: THEORY EXPLAINING THE HEURISTICS

Appendix C. Small Server Stepsize
In this section, we present a result when it is useful to pull back the last iterates of local passes. In particular, we show that one can
reduce the variance of FedAvg with uniform partial participation.

Theorem 20 Assume that all losses fm,i are L-smooth and µ-strongly convex. Define α = η
γn

. Let γ ≤ 1
L

and 0 ≤ α < 1. Then
for iterates xt generated by Algorithm 1 we have

E ‖xT − x∗‖2 ≤ (1− α+ α(1− γµ)n)T ‖x0 − x∗‖2

+
α

(1− α) (1− (1− γµ)n)
γ2 σ

2
∗
C

+ 2γ3σ2
rad

1

1− (1− γµ)n

n−1∑
i=0

(1− γµ)i.

Proof Let us denote fSt = 1
|St|

∑
m∈St

fm. We start by rewriting the distance to the optimum in the following way:

xt+1 − x∗ = (1− α)xt + αxnt − x∗

= (1− α)xt + αxnt − (1− α)(x∗ +
α

1− α
γn∇fSt (x∗))− α(x∗ − γn∇fSt (x∗)).

Therefore, by convexity of the squared norm,

‖xt+1 − x∗‖2 ≤ (1− α)‖xt − (x∗ +
α

1− α
γn∇fSt (x∗))‖

2 + α‖xnt − (x∗ − γn∇fSt (x∗))‖
2.

We bound the two terms in the right-hand side separately. For the first term, it suffices to take expectation over the sampling of client
cohort St,

St‖xt − (x∗ +
α

1− α
γn∇fSt (x∗))‖

2 (18)
= ‖xt − x∗‖2 +

α2

(1− α)2
γ2n2

St
‖∇fSt (x∗)‖

2

= ‖xt − x∗‖2 +
α2

(1− α)2
γ2n2 σ

2
∗
|St|

.

For the second term, we use the results of prior work on convergence of RR that gives

‖xnt − (x∗ − γ∇fSt (x∗))‖
2 ≤ (1− γµ)n‖xt − x∗‖2 + 2γ3σ2

rad

n−1∑
i=0

(1− γµ)i,

where, as shown by [20], σrad ≥ 0 is some constant satisfying

σ2
rad ≤ L

M∑
m=1

(n2‖∇fm(x∗)‖2 +
n

4
σ2
∗,m).

Notice that the upper bound depends on α in a nonlinear way, so the optimal value of α would often lie somewhere in the interval (0, 1).
Recurrence at+1 ≤ (1− ρ)at + c implies by induction at ≤ (1− ρ)ta0 + c

ρ
, so by propagating the bound above to x0, we obtain

‖xt − x∗‖2 ≤ (1− α+ α(1− γµ)n)t‖x0 − x∗‖2 +
α

(1− α)(1− (1− γµ)n)
γ2 σ

2
∗
|St|

+ 2γ3σ2
rad

1

1− (1− γµ)n

n−1∑
i=0

(1− γµ)i.

Notice that the last term does not change with α, so its optimal value is completely determined by the first two terms.

20

	Introduction
	Federated learning
	Problem formulation
	Ingredients of successful federated learning methods

	Summary of Contributions
	Preliminaries
	Convexity and smoothness
	Measures of data heterogeneity

	The algcolorNastya Algorithm
	Theory
	Convex regime
	Non-convex regime

	Benefits of Small Server Stepsize
	Experiments
	Basic Facts and Notation
	Basic facts
	Notation
	Sampling without replacement

	Large Server Stepsize
	Strongly convex and general convex case
	General convex case
	General non-convex case

	Small Server Stepsize

