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Abstract
Several widely-used first-order saddle point optimization methods yield the same continuous-time
ordinary differential equation (ODE) as that of the Gradient Descent Ascent (GDA) method when
derived naively. However, their convergence properties are very different even in simple bilinear
games. In this paper, we use a technique from fluid dynamics called High Resolution Differential
Equations (HRDEs) to design ODEs that differentiate between popular saddle point optimizers.
As our main result, we design an ODE that has last iterate convergence for monotone variational
inequalities. To our knowledge, this is the first continuous-time dynamics shown to converge for
such a general setting. We also provide an implicit discretization of our ODE and we show it has
last iterate convergence at a rate O(1/

√
T ), which was previously shown to be optimal [Golowich

et al., 2020], using only first-order smoothness of the monotone operator, in contrast to previous
results that need second-order smoothness as well.

1. Introduction

We are interested in the convergence of optimization methods for zero-sum games, where agents
x ∈ X and y ∈ Y are given a loss f : X × Y → R which the first agent aims to minimize and the
second agent aims to maximize. Training accordingly aims at finding a saddle point (x?,y?) of f :

f(x?,y) ≤ f(x?,y?) ≤ f(x,y?) ∀x ∈ X , ∀y ∈ Y . (SP)

This fundamental problem arises in various domains—such as optimization, economics, and multi-
agent reinforcement learning [34]—and has recently seen renewed interest in the context of training
Generative Adversarial Networks [17]. The difference of two-objective min-max training from
single-objective minimization is that In contrast to minimization, in SP problems the second-order
derivative matrix (defined in § 2.1) is non-symmetric in the general case, resulting in dynamics that
can rotate around a fixed point. For example, on the simple bilinear game (BG)—which is convex
in x and concave in y—the last iterate of the simplest gradient descent ascent (GDA) method is
oscillating around the solution for infinitesimal step size, and diverging away from it otherwise [10]
(see also § 3.1). For this reason designing algorithms with last-iterate convergence has attracted
significant attention [2, 7, 9, 10, 15, 16, 25, 26, 28]. Several works aim to resolve this problem, e.g.,
the extragradient method [EG, 21], the optimistic gradient descent ascent [OGDA, 37], and more
recently the lookahead-minmax [LA, 8]. Despite their different behaviours on BG, all of these
popular first-order min-max optimizaers–GDA, EG, OGDA, and LA–lead to the same system of
ordinary differential equations (ODEs) in the limit when the step size goes to zero [19] (see also § 2.3),
which is surprisingly non convergent on BG. In this paper, we apply a technique from fluid dynamics,
called High Resolution Differential Equations (HRDEs), proposed for single objective optimization
by [39]. Using this technique we derive HRDEs that differ among GDA, EG, and LA and enjoy
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geometric convergence on bilinear games. Our main result shows that our HRDE for OGDA is
guaranteed to converge even for general problems of monotone variational inequalities (MVI, defined
in § 2) that include convex-concave min-max optimization (see §4). To our knowledge, this is the
first system of differential equations that provably converges for all MVI problems.
Related works. The SP optimization problem for a convex-concave f dates to the 1960s [22, 23].
The averaged (ergodic) iterate of both the EG and OGDA methods achieve the optimal rate of O( 1

T )
on general MVI problems [20, 29, 31, 40, 41]. Several papers prove the last-iterate convergence
on bilinear or strongly monotone games: (i) Daskalakis et al. [10] prove last-iterate convergence
of optimistic mirror decent (OMD) on BG, (ii) Azizian et al. [5] establish linear convergence on
bilinear and strongly monotone games, (iii) [1, 24] focus on Hamiltonian gradient descent. Golowich
et al. [15] prove the last-iterate convergence of EG at a rate O( 1√

T
) on the more general problem

of monotone VI, while relaying on the associated operator having a Λ–Lipschitz derivative [see
Assumption 2 in 15]. Lyapunov stability theory is widely used in optimization. These tools are
particularly attractive because they can be used for non-linear systems, and if a Lyapunov function
can be found, the convergence result holds globally. Lastly, HRDEs were introduced in optimization
by [39] in the context of minimization, to distinguish Nesterov’s accelerated [32, 33] from Polyak’s
heavy-ball [36] method. See App. B for more elaborate overview of related works.
Contributions. We derive the HRDEs of GDA, EG, OGDA and LA, summarized in Table 1. Using
these HRDEs, on bilinear games (BG), we then prove: (i) the divergence of GDA, (ii) the geometric
convergence of EG and OGDA, as well as (iii) for the first time the convergence of LA when
combined with the diverging GDA with 2 and 3 steps. Relative to ODE based analyses, these
HRDE based results are more aligned with the methods’ observed performances in practice when
considering such simple games.

Informal Theorem [see Theorem 4 & 7] The HRDE of the OGDA method has last iterate conver-
gence for monotone VI problems. Additionally, there exists an implicit discretization of it that has
O( 1√

T
) last iterate convergence rate on MVI problems satisfying solely first order smoothness.

We show that a simple discretization of the derived HRDE of OGDA, yields the original OGDA
method. Using analogous technique as for the above result, we show the following result for OGDA.

Informal Theorem [see Theorem 6] The best-iterate of the discrete-time OGDA converges with
rate O(1/

√
t) for all MVI problems. Additionally, OGDA admits asymptotic last-iterate convergence

for all MVI.

Finally, we also provide the last-iterate convergence rate of an implicit discretization of our
HRDE of OGDA in Theorem 7. Our results are particularly noteworthy in that they provide: (i) the
first convergence proof in continuous time for general MVI problems, and (ii) more broadly the only
proof that does not rely on second-order smoothness of the associated operator and does not use
averaging; see Table 1.

2. Preliminaries

Problem. We are interested in the unconstrained zero-sum game (see App. A for notation):
min
x∈Rd1

max
y∈Rd2

f(x,y) , (ZS-G)

where f : Rd1 × Rd2 → R is smooth and convex in x and concave in y. We write z , (x,y) ∈ Rd
where d = d1 + d2.
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Method High-Resolution Differential Equation

with ż(t)=ω(t), β=2/(step size), α is a hyperparameter of LA.

GDA ω̇(t)=−β · ω(t)− β · V (z(t))

EG ω̇(t)=−β · ω(t)− β · V (z(t)) + 2 · J(z(t)) · V (z(t))

OGDA ω̇(t)=−β · ω(t)− β · V (z(t))− 2 · J(z(t)) · ω(t)

LA2-GDA ω̇(t)=−β · ω(t)− 2αβ · V (z(t)) + 2α · J(z(t)) · V (z(t))

LA3-GDA ω̇(t)=−β · ω(t)− 2αβ · V (z(t)) + 2α · J(z(t)) · V (z(t))

−αβ · V
[
z(t)−4β · V

(
z(t)

)]

Smoothness
assumptions

Discrete
time

Continuous
time

Last-iterate

1st & 2nd

order
EG
[15]

�

1st–order implicit OGDA,
Thm. 7

OGDA-HRDE,
Thm. 4

Best-iterate

1st–order OGDA,
Thm. 6

�

Table 1: Left. Derived HRDEs for several saddle point optimization methods. LAk-GDA denotes
LA with k steps, and GDA as its base optimizer. The map V (·) denotes the vector field, i.e.,
(−∇xf,∇yf), whereas J is the Jacobian. Right. List of last and best-iterate convergence
results on the general monotone variational inequality problem, with rate O(1/

√
T ).

2.1. Saddle-point optimization methods

Gradient Descent Ascent (GDA). The GDA operator V : Rd → Rd and its Jacobian J are:

V (z) =

 ∇xf(z)

−∇yf(z)

 J(z) =

 ∇2
xf(z) ∇y∇xf(z)

−∇x∇yf(z) −∇2
yf(z)

 .
By denoting the step size with γ ∈ [0, 1], each GDA update at step n is then:

zn+1 = zn − γV (zn) . (GDA)

Extra Gradient (EG [21]). Uses a “prediction” step to obtain an extrapolated point zt+ 1
2
,

(xn+ 1
2
,yn+ 1

2
) using GDA: zn+ 1

2
= zn − γV (zn)–where γ ∈ [0, 1] denotes the step size, and the

gradients at the extrapolated point are then applied to the current iterate zt , (xt,yt) as follows:

zn+1 = zn − γV (zn+ 1
2
) = zn − γV (zn − γV (zn)) . (EG)

Optimistic Gradient Descent Ascent (OGDA). The update rule of OGDA [37] is:

zn+1 = zn − 2γV (zn) + γV (zn−1) . (OGDA)

Lookahead–Minmax (LA [8, 45]). At each step t: (i) a copy of the current iterate z̃n is made:
z̃n ← zn, (ii) z̃n is then updated for k ≥ 1 times yielding ω̃n+k, and finally:

zn+1 ← zn + α(z̃n+k − zn), where α ∈ [0, 1] . (LA)

2.2. Assumptions

Definition 1 An operator V : Rd → Rd is monotone iff: 〈z − z′, V (z)− V (z′)〉 ≥ 0, ∀z, z′ ∈
Rd . Also, V is µ-strongly monotone iff: 〈z − z′, V (z)− V (z′)〉 ≥ µ‖z − z′‖2 for all z, z′ ∈ Rd.
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Assumption 1 (First-order Smoothness) Let V : Rd → Rd be an operator, we say that V satisfies
L-first order smoothness, or just L-smoothness, if V is a L-Lipschitz function.

Assumption 2 (Second-order Smoothness) Let V : Rd → Rd be an operator and J : Rd →
Rd×d be its Jacobian, we say that V satisfies L2-second-order smoothness, if: J is a L2-Lipschitz
function, i.e., ‖J(z)− J(z′)‖F ≤ L2 · ‖z − z′‖2 .

The corresponding variational inequality (VI) problem is:

find a point z? s.t. 〈z − z?, V (z)〉 ≥ 0, ∀z ∈ Rd . (VI)

Throughout the paper we assume without loss of generality that z? = 0, thus: 〈V (z), z〉 ≥ 0,∀z ∈
Rd. Finally, one well known implication of Definition 1 is that: J(z) � 0, ∀z ∈ Rd.

2.3. ODE representations

We introduce the ansatz zn ≈ z(n · δ), for smooth curve z(t) defined for t ≥ 0. Taylor expansion
over time with time-step δ gives: zn+1 ≈ z((n+1)δ) = z(nδ)+ ż(nδ)δ+ 1

2 z̈(nδ)δ2+ . . . , thus:

zn+1 − zn ≈ ż(nδ)δ +
1

2
z̈(nδ)δ2 +O(δ3) . (1)

GDA. Combining GDA and (1) and setting δ = γ → 0 yields the classical dynamics:

ż(t) = −V (z(t)). (GDA-ODE)

EG, OGDA, LA2-GDA, LA3-GDA. Combining the methods’ discrete-time dynamics with (1)
and setting δ = γ → 0, we recover the same (GDA-ODE), and we notice that the final step δ, γ 7→ 0
causes this. This raises the question if HRDEs can model better the differently performing methods.

3. High-resolution differential equations of saddle point optimizers

GDA. Combining (GDA) with (1) we get : ż(n·δ)δ+ 1
2
z̈(nδ)δ2

γ = −V (z(nδ)) . By setting δ = γ and
solely γ2 → 0 we have that: ż(t) + γ

2 z̈(t) = −V (z(t)), and by denoting β = 2/γ:

ż(t) = ω(t) , ω̇(t) = −β · ω(t)− β · V (z(t)). (GDA-HRDE)

EG. Combining (EG) with (1) we have: ż(nδ)δ+ 1
2
z̈(nδ)δ2

γ = −V (z(nδ)) + γJ(z(nδ))V (z(nδ)) +

O(γ2). Setting δ = γ and only γ2 7→ 0 gives: ż(t) + γ
2 z̈(t) = −V (z(t)) + γ · J(z(t)) · V (z(t)):

ż(t) = ω(t) , ω̇(t) = −β · ω(t)− β · V (z(t)) + 2 · J(z(t)) · V (z(t)). (EG-HRDE)

OGDA. Combining (OGDA) with (1) we have: ż(nδ)δ+ 1
2
z̈(nδ)δ2

γ = −V (z(nδ))− δJ
(
z(nδ)

)
ż(nδ).

Then, setting δ = γ and keeping the O(γ) terms we have that: ż(t) + γ
2 z̈(t) = −V (z(t)) −

γJ(z(t))ż(t) , yielding the following first-order system of HRDE in the phase-space representation:

ż(t) = ω(t) , ω̇(t) = −β · ω(t)− β · V (z(t))− 2 · J(z(t)) · ω(t). (OGDA-HRDE)
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LA2-GDA. Combining the equation LA2-GDA with (1) we have: ż(nδ)δ+ 1
2
z̈(nδ)δ2

γ = −2αV (z(nδ))−
αγJ(z(nδ))V (z(nδ)). Similarly, we get: ż(t) + γ

2 z̈(t) = −2αV (z(t))− αγJ(z(t))V (z(t)):

ż(t) = ω(t) , ω̇(t) = −βω − 2αβ · V (z(t)) + 2αJ(z(t))V (z(t)). (LA2-GDA-HRDE)

LA3-GDA. Analogously as above, for LA3-GDA we have ż(t) = ω(t) and:

ω̇(t) = −2

γ
ω(t)− 4α

γ
V (z(t)) + 2α · J(z(t)) · V (z(t))− 2α

γ
V
[
z(t)− 2γV

(
z(t)

)]
(LA3-GDA-HRDE)

Proposition 2 (unique solution of the HRDEs) The derived HRDEs have a unique solution when
applied to bilinear games. Additionally, for any monotone map V : Rd 7→ Rd that satisfies the first
and second-order smoothness as per Assumptions 1 & 2, the HRDE of OGDA has a unique solution.

3.1. Convergence analysis of HRDEs on bilinear games

We consider the following bilinear game, with full rank A ∈ Rd1×Rd2 : minx∈Rd1 maxy∈Rd2 x
ᵀAy .

Thm 9-13 summary. For any γ > 0, the continuous-time dynamics GDA-HRDE diverges on BG.
For sufficiently small step-size, the corresponding HRDEs of EG, OGDA and LA with k = {2, 3}
converge on BG. The proofs use the Routh–Hurwitz [43] stability criteria for linear systems, see D.

4. Last iterate convergence for Monotone Variational Inequalities

To show convergence in continuous and discrete time we use Lyapunov functions, which intuitively
can be seen as an energy function. For our purposes, we can guarantee convergence if we can find
such a function that decreases along all possible trajectories of the described dynamical system. The
corresponding proofs of the results in this section are provided in App. E.

4.1. Equivalent forms of OGDA-HRDE for MVI problems

The system of differential equations (OGDA-HRDE) is known in Physics for the special case when
V (z)=∇φ(z), where φ is a potential function. The solution z(t) in this case describes the position
of a system that is affected by non-elastic shocks described by the potential φ, see [4]. Using the
techniques from [4] we can show that (OGDA-HRDE) has an equivalent formulation that does not
involve the Jacobian J(·) and hence it is more suitable for designing discrete-time algorithms.

Theorem 3 Let V be a continuously differentiable map, and z0,ω0,w0 ∈ Rd, such that w0 =
−β

2ω0 − 4
βV (z0)− z0, then these statements describe the same function z(t):

1. the tuple (z(t),ω(t)) is a solution of the equation (OGDA-HRDE) with initial conditions z(0) =
z0 and ω(0) = ω0,
2. the tuple (z(t),w(t)) is a solution of the following system of equations

ż(t)=−κ · z(t)− κ ·w(t)− 2V (z(t))

ẇ(t)=−κ · z(t)− κ ·w(t)
(OGDA-HRDE-2)

with κ = β/2 and z(0) = z0 and w(0) = w0.

Note that is has to hold that V is continuously differentiable, and otherwise (OGDA-HRDE) and
(OGDA-HRDE-2) are not necessarily equivalent. Thus, in the next section we show that both of
them have last-iterate convergence for any MVI.
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4.2. Last-iterate Convergence of OGDA-HRDE for MVIs

Theorem 4 If we apply OGDA-HRDE to the MVI problem (VI) with initialization z(0) = z0,

ω(0)=0, we have that ‖V (z(t))‖2 ≤ O
(√

β + L2

β

)
· ‖z0‖2√

t
. Moreover, if the variational inequality

(VI) is µ-strongly monotone, as per Definition 1, then ‖z(t)‖2 ≤ O
(√

β2+L2

β3

)
·‖z0‖2·exp (−ρ · t) ,

where 1/ρ= 1
µ + 9

2β .

The strongly monotone guarantee is stronger in two ways: (i) the rate is geometric exp(−ρ · t)
instead of 1/

√
t, (ii) we can bound the ‖Z(t)‖2 which implies a bound on ‖V (Z(t))‖2, due to the

Lipschitzness of V , but not vice versa. We now show the convergence of (OGDA-HRDE-2).

Theorem 5 If we apply (OGDA-HRDE-2) to the MVI problem (VI) with initialization z(0)=z0,

w(0)=−z0 then we have that ‖V (z(t))‖2 ≤ O
(√

κ+ L2

κ

)
· ‖z0‖2√

t
. Moreover, if the variational

inequality (VI) is µ-strongly monotone, as per Definition 1, then ‖z(t)‖2 ≤ O
(√

κ2+L2

κ3

)
· ‖z0‖2 ·

exp (−ρ · t) , where 1/ρ = O( 1
µ + 1

κ).

4.3. Best-iterate convergence of OGDA for MVIs

Primarily, observe that we can identify the original OGDA method as an explicit discretization of the
(OGDA-HRDE-2) system of differential equations, see App. E.1.2. Since (OGDA) is strongly related
with (OGDA-HRDE-2), it is natural to consider that the Lyapunov functions used to prove Thm. 5
would be useful to understand the convergence of (OGDA). Indeed, we can show the following.

Theorem 6 If we apply the (OGDA) dynamics to the monotone variational inequality problem (VI)
with L-Lipschitz map V and with initialization z1 = z0 and step size γ ≤ 1

16·L , then we have that

mini∈[n] ‖V (zi)‖2 ≤ O
(√

1
γ2

+ L2 · ‖z0‖2√
n

)
. We also have that lim

n→∞
‖V (zn)‖2 = 0.

The above theorem establishes that: (i) asymptotically the (OGDA) method converges to the solution
of (VI), and (ii) the best iterate of the (OGDA) has similar behavior with the last-iterate convergence
of EG shown in [15], the latter was shown without using second-order smoothness. Both of these
results are new convergence properties of (OGDA) for the general case of MVIs.

4.4. Last iterate convergence of an implicit discretization of HR-OGDA

We analyze the following implicit discretization of OGDA-HRDE–see App. E.5 for its derivation:

zn+1=zn +
γ

2
· (ωn+1 + ωn)

ωn+1=−V (zn+1)−
1

2
(V (zn+1)− V (zn))

(OGDA-I)

Theorem 7 If we apply the implicit discretized OGDA dynamics (OGDA-I) to the monotone vari-
ational inequality problem (VI) with initialization z0, and ω0 = 0 then we have that ‖V (zn)‖2 ≤
O
(√

β + L
β

)
· ‖z0‖2√

n
.Moreover, if (VI) is µ-strongly monotone, as per Definition 1 and 1/ρ = 1

µ+ 1
β ,

then ‖zn‖2 ≤ O
(√

β2+L
β3

)
· ‖z0‖2 · exp (−O(ρ) · n) .
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5. Discussion

The fact that differently performing saddle point optimizers yield the same ODE on simple examples,
motivated the use of the previously proposed HRDEs. We derived the corresponding HRDE of
extragradient, optimistic gradient descent ascent (OGDA), as well as lookahead-minmax when
combined with gradient descent ascent. Using these HRDEs we then proved the convergence of
these methods in continuous time on bilinear games aligned with their observed performance.

Moreover, such HRDE representation allowed us to derive the first convergence proof in continu-
ous time for the problem of monotone variational inequalities, specifically for the optimistic gradient
descent ascent method. For this general problem, using only first-order smoothness assumptions we
then showed (i) last iterate convergence of an implicit discretization of this HRDE dynamics, as well
as (ii) best iterate convergence of an explicit discretization which corresponds to the original OGDA
method.

There are several potential future directions. While HRDEs allowed for modeling the observed
performance of optimistic gradient descent ascent, deriving HRDEs with an even higher resolution
might allow for proving the analogous result for extragradient and lookahead-minmax. Alternatively,
deriving different discretizations of the presented HRDEs could potentially allow for developing
variants of the starting discrete method that may have good performances.
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Appendix A. Notation & Omitted Definitions

Notation. Vectors are denoted with bold lowercase letters, e.g., v, whereas bold uppercase letters
denote matrices, and with A � 0 we denote that A is a positive semidefinite matrix. We use indices
to refer to a discrete time sequence, e.g., zn, where with z(t) is a continuous time vector valued
function. For any complex number c ∈ C we have that c = R(c) + iI(c). The Euclidean norm of
vector v is denoted with ‖v‖2, and the inner product in Euclidean space with 〈·, ·〉. ‖A‖F denotes

the Frobenius norm of the matrix A, i.e. ‖A‖F =
√∑

i

∑
j a

2
ij .

Lyapunov Functions. We use Lyapunov functions as a main tool to show convergence in both
continuous and the discrete time.

Definition 8 (Lyapunov Function) A scalar function L : Rd 7→ R is a Lyapunov function for a
dynamical system ż = h(z), and a limiting set S ⊆ Rd iff:
(i) L(z) = 0 for all z ∈ S,
(ii) L(z) > 0, ∀z ∈ Rd \ S,
(iii) L̇(z) < 0, ∀z ∈ Rd \ S.

Intuitively, L can be seen as energy function, and the last property ensures that it decreases along
all possible trajectories of the described dynamical system. Such function—if it can be found—
guarantees the convergence of the continuous time dynamics.

Appendix B. Additional Related Works

The lookahead-minmax algorithm [LA, 8] algorithm discussed in the main paper, was proposed
recently and it explicitly exploits the rotational game dynamics by periodically restarting the current
iterate to lie on a line between two k-step separated iterates produced by a given “base” optimizer,
as presented in § 2.1. LA is an attractive min-max optimizer choice due to its performance on
both bilinear games and challenging real-world min-max applications such as GANs, as well as its
negligible computational overhead. In this work, we proved its convergence on bilinear games when
combined with the otherwise non-converging GDA–which result was not shown before. Similarly,
several works provided best-iterate convergence results on convex-concave problems [12, 27, 30]

However, despite the above advances on a specific problem, or when assuming particular structure
of f [e.g., 11], knowledge of min-max optimization on general problems remains very limited relative
to minimization. Moreover, Hsieh et al. [19] showed a negative result that contradicts the celebrated
Sard’s theorem for single-optimization problems and thus emphasizes why min-max optimization is
notably more challenging. In particular, the authors showed that although some of the above methods
converge on specific setups such as bilinear or convex-concave games, there exist a large class of
problems for which all the popular min-max methods almost surely get attracted by a spurious limit
cycle–which consist of points that are not a solution of the problem. The core of the analysis of [19]
is based on the standard (low-resolution) ODE, which for the popular min-max optimizers is identical
to that of GDA, see § 2.3. However, the bilinear game is one counter-example that these min-max
methods differ in practice, whose differing convergence is also evident on many of the toy examples
in [19] where one can show that LA-GDA converges yet gives the same low-resolution ODE as
for GDA, as well as in real-world applications such as GANs where Extragradient and Lookahead
consistently outperform GDA [see e.g. 8]. This indicates a strong need of a more precise ODE that
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more closely captures the method’s convergence behaviour in order to theoretically understand which
properties we would need to avoid such undesirable convergence behavior.

In regard to analysis frameworks, several of the above last-iterate results are established using
the (stationary) canonical linear iterative [CLI, 3] algorithmic framework, originally proposed
for minimization. Another approach relies on the magnitude of spectral radius of the linearization
of the associated operator [6], commonly used to analyze the stability of a method around fixed
points [14, 42]. While the former requires second-order smoothness assumption for monotone VI
analyses, the latter explicitly exploits the linearity of the operator. On the other hand, the well-
established Lyapunov stability theory can be directly used for possibly non-linear dynamical systems,
and if a Lyapunov function can be found, the convergence result holds globally. Several works make
use of Lyapunov theory in the context of games, for example: (i) [18] view the iterate as a particle
in a dynamical system while modelling also its rotational force and adding a compensating force
to guarantee convergence on quadratic games, resulting in second-order update rule, and (ii) [13]
establish local convergence guarantees of GDA when using timescale separation, by combining
Lyapunov stability and guard map [38]. Zhang et al. [44] propose a standardized way of finding the
parameters of a quadratic Lyapunov function of a given first-order saddle point optimizer in discrete
time, using the theory of integral quadratic constraints, but can be applied solely to strongly-monotone
operators.

As we pointed out in the main paper, the use of HRDEs in optimization was introduced by [39] in
the context of single-objective minimization. The motivation for the use of HRDEs in this case was
that the classical ODEs cannot distinguish between Nesterov’s accelerated gradient method [32, 33]
and Polyak’s heavy-ball method [36]. Inspired from analysis used in fluid mechanics where the
physical properties are investigated at different scales using various orders of perturbations [35], Shi
et al., 2018 use the framework of High-Resolution Differential Equations (HRDEs) to distinguish
between these two methods.

Appendix C. Proof of Proposition 2

The uniqueness of the solutions for our HRDEs for the case of bilinear games follows from standard
results on the uniqueness of the solutions in the case linear dynamical systems.

For the more general case of Proposition 2, and for the HRDE of OGDA we follow the proof
of Proposition 2.1 of [39]. The differential equations of OGDA have the form u̇ = G(u), where
u = (z,ω) and G is the vector field defined in (OGDA-HRDE). If we show that G is Lipschitz
then we can apply Theorem 10 of [39] and Proposition 2 follows. Now to show the Lipschitzness of
G we have from our assumptions the following:

‖V (z1)− V (z2)‖2 ≤ L1 ‖z2 − z1‖2 . (L1)

‖J(z1)− J(z2)‖2 ≤ L2 ‖z1 − z2‖2 (L2)

Also, from the two Lyapunov functions L1, L2 that we find in Section E.2 we have that for any initial
condition (z0,ω0) both the norm of ω(t) and the norm of z(t) will be upper bounded for all future
times by a constant C1 that depends only on z0 and ω0. Because of the Lipschitzness of V and J and
the boundness of ω(t) we hence get that the norm of ẇ(t) is also bounded by a constant C2 that also
only depends on z0 and ω0. Therefore we have the following.

sup
0≤t≤∞

||ω(t)|| ≤ C1, (C1)
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sup
0≤t≤∞

||ω̇(t)|| ≤ C2. (C2)

From OGDA we have:

d

dt

zs
ωs

 =

 ωs

− 2
γωs −

2
γV (zs)− 2J(zs)ωs

 .
Thus, for any [z1,ω1]

ᵀ, [z2,ω2]
ᵀ ∈ with the initial condition bounds on the norm of z1, z2, ω1,

ω2, we have:∥∥∥∥∥∥
 ω1

− 2
γω1 − 2

γV (z1)− 2J(z1)ω1

−
 ω2

− 2
γω2 − 2

γV (z2)− 2J(z2)ω2

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ ω1 − ω2

− 2
γ (ω1 − ω2)

∥∥∥∥∥∥+
2

γ

∥∥∥∥∥∥ 0

(V (z1)− V (z2))

∥∥∥∥∥∥+ 2

∥∥∥∥∥∥ 0

J(z1)(ω1 − ω2)

∥∥∥∥∥∥+ 2

∥∥∥∥∥∥ 0

ω2(J(z1)− J(z2))

∥∥∥∥∥∥
≤
√

1 +
4

γ2
||ω1 − ω2||+

2

γ
L1||z1 − z2||+ 2 ||J(z1)||︸ ︷︷ ︸

≤L2||z1||

||ω1 − ω2||+ 2 ||ω2||︸ ︷︷ ︸
≤C1

||J(z1)− J(z2)||︸ ︷︷ ︸
≤L2||z1−z2||

≤ (
2

γ
L1 + 2C1L2)||z1 − z2||+ (

√
1 +

4

γ2
+ (L2||z1||))||ω1 − ω2||

≤ 2 max{2

γ
L1 + 2C1L2,

√
1 +

4

γ2
+ (L2||z1||)}

∥∥∥∥∥∥
z1
ω1

−
z2
ω2

∥∥∥∥∥∥
and finally we can use the initial bounds that we have on the norms of z1, z2, ω1, ω2 and we get that
the vector field G of OGDA is Lipschitz and hence we can apply Theorem 10 of [39] and Proposition
2 follows.
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Appendix D. Analysis on Bilinear Games

In this section, we consider the following bilinear game, with full rank A ∈ Rd1 × Rd2 :

min
x∈Rd1

max
y∈Rd2

xᵀAy . (BG)

The joint vector field of BG and its Jacobian are:

VBG(z) =

 Ay

−Aᵀx

 (BG:JVF) JBG(z) =

 0 A

−Aᵀ 0

 (BG:Jac-JVF)

By replacing Eq. BG:JVF and BG:Jac-JVF in the derived HRDEs we analyze the convergence of
the corresponding method on BG. Moreover, as the obtained system is linear this can be done using
dynamical systems tools, without designing Lyapunov functions, as we describe next. A dynamical
system

[
żᵀ ω̇ᵀ

]ᵀ
= C

[
zᵀ ωᵀ

]ᵀ
is stable iff the real part of the eigenvalues of C is always

negative: R(λi) < 0, ∀λi ∈ Sp(C). The Routh–Hurwitz stability criterion provides a necessary
and sufficient condition for the stability of the linear system, and allows for determining if the system
is stable, without explicitly deriving the eigenvalues of the matrix C. Using the coefficients of its
associated characteristic polynomial, the test is performed on the so called Hurwitz array, or its
generalized form [43] when the coefficients are complex numbers. Proofs are in App. D.1–D.5.

Theorem 9 (divergence of GDA on BG) For any step size γ > 0, there exist an eigenvalue of
CGDA whose real part is non-negative, ∃λi ∈ Sp(CGDA), s.t. R(λi) ≥ 0. Thus the Gradient
Descent Ascent method diverges on the BG problem for any choice of nonzero step-size (and any A).

Theorem 10 (convergence of EG on BG) For sufficiently small γ, the real part of the eigenvalues
of CEG is always negative, R(λi) < 0, ∀λi ∈ Sp(CEG), thus the ExtraGradient method converges
on the BG problem for any such step-size.

Theorem 11 (convergence of OGDA on BG) For sufficiently small γ, the real part of the eigen-
values of COGDA is always negative, R(λi) < 0, ∀λi ∈ Sp(COGDA), thus the Optimistic Gradient
Ascent Descent method converges on the BG problem for any such step-size.

Theorem 12 (convergence of LA2-GDA on BG) For sufficiently small γ, the real part of the eigen-
values of CLA2-GDA is always negative, R(λi) < 0, ∀λi ∈ Sp(CLA2-GDA), thus the LA2-GDA
method converges on the BG problem for any such step-size.

Theorem 13 (convergence of LA3-GDA on BG) For γ, α that satisfy:

(3 + 2γ)2 + 2γ2(3 + 2γ)
|x̄ᵀAAᵀAy|
|x̄ᵀAy|

+ γ4
|x̄ᵀAAᵀAy|2

|x̄ᵀAy|2
≤ 1

α

the real part of the eigenvalues of CLA2-GDA is always negative, R(λi) < 0, ∀λi ∈ Sp(CLA3-GDA)
and the LA3-GDA method converges on the BG problem.
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D.1. Proof of Theorem 9: Divergence of GDA on BG

Recall that for the GDA optimizer we have the following (Eq. GDA-HRDE):

ż(t) = ω(t)

ω̇(t) = −β · ω(t)− β · V (z(t)).

By denoting ẋ(t) = ωx(t), ẏ(t) = ωy(t), and b = 2
γ , for GDA we have the following:

ẋ(t)

ẏ(t)

ω̇x(t)

ω̇y(t)

 =


0 0 I 0

0 0 0 I

0 −βA −βI 0

βAᵀ 0 0 −βI


︸ ︷︷ ︸

,CGDA

·


x(t)

y(t)

ωx(t)

ωy(t)

 .

Proof [Proof of Thm. 9] To obtain the eigenvalues λ ∈ C of CGDA we have:

det(CGDA − λI) = det
(

−λI 0 I 0

0 −λI 0 I

0 −βA −(β + λ)I 0

βAᵀ 0 0 −(β + λ)I


)

= det
(
λ(β + λ)I + β

 0 A

−Aᵀ 0

)

= det
(λ(β + λ)I βA

−βAᵀ λ(β + λ)I

)
= det

( [
λ2(β + λ)2I + β2AAᵀ

] )
= β2n det

( [
λ2

β2 (β + λ)2I + AAᵀ
] )

,

where we successively used det(

B1 B2

B3 B4

) = det(B1B4 −B2B3).

Let κ denote an eigenvalue of −AAᵀ, and since −AAᵀ is symmetric and negative definite and
A is full rank, we have that κ ∈ R, κ < 0. From the last expression we observe that κ = λ2

β2 (β+ λ)2

is the eigenvalue of −AAᵀ. Thus, we have the following polynomial with real coefficients:

λ2(β + λ)2 = κβ2 , or

λ4 + 2βλ3 + β2λ2 + 0λ− κβ2 = 0 .

The Routh Array is then:
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1 β2 −κβ2

2β 0 0

β2 −κβ2 0

2κβ 0 0

−κβ2 0 0

where recall that β = 2
γ > 0 and κ < 0. We observe that the first column of the Routh Array for

GDA has change of signs, indicating that there is an eigenvalue λi ∈ Spec{CGDA} whose real part is
positive R{λi} > 0. Due to the Routh Hurwitz criterion the system is unstable.

Thus, for any choice of step size γ the GDA method diverges on the BG problem.

D.2. Proof of Theorem 10: Convergence of EG on BG

Recall that for the EG optimizer we have the following (Eq. EG-HRDE):

ż(t) = ω(t)

ω̇(t) = −β · ω(t)− β · V (z(t)) + 2 · J(z(t)) · V (z(t)) ,

where β = 2
γ .

By denoting ẋ(t) = ωx(t) and ẏ(t) = ωy(t) for EG we have the following:
ẋ(t)

ẏ(t)

ω̇x(t)

ω̇y(t)

 =


0 0 I 0

0 0 0 I

−2AAᵀ −βA −βI 0

βAᵀ −2AᵀA 0 −βI


︸ ︷︷ ︸

,CEG

·


x(t)

y(t)

ωx(t)

ωy(t)

 .

Proof [Proof of Thm. 10] To obtain the eigenvalues λ ∈ C of CEG we have:

det(CEG − λI) = det
(

−λI 0 I 0

0 −λI 0 I

−2AAᵀ −βA −(β + λ)I 0

βAᵀ −2AᵀA 0 −(β + λ)I


)

= det
(
λ(β + λ)I −

−2AAᵀ −βA
βAᵀ −2AᵀA


︸ ︷︷ ︸

,D

)
,

where we used det(

B1 B2

B3 B4

) = det(B1B4 −B2B3).
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Let µ = µ1 + µ2i ∈ C denote the eigenvalues of D. We have: λ(β + λ) − µ = 0. Using
the generalized Hurwitz theorem for polynomials with complex coefficients [43], we obtain the
following generalized Hurwitz array:

λ2 1 0 µ1

λ1 β µ2 0

−µ2 βµ2 0

λ0 −µ22 − β2µ1 0 0

where the terms whose change of sign determine the stability of the polynomial are highlighted. As
β > 0, it follows that the system is stable iff µ1 < − 1

β2µ
2
2.

Thus, it suffices to show that:

R(µ(z)) < − 1

β2
(
I(µ(z))

)2
. (2)

We have that:

µ(z) = z̄ᵀDz =
[
x̄ᵀ ȳᵀ

]−2AAᵀ −βA
βAᵀ −2AᵀA

x
y


= −2||Aᵀx||22 − 2||Ay||22 + β

(
ȳᵀAᵀx− x̄ᵀAy

)
= −2||Aᵀx||22 − 2||Ay||22︸ ︷︷ ︸

R
(
µ(z)
) + 2β · I(x̄ᵀAy)︸ ︷︷ ︸

I
(
µ(z)
) ·i ,

where the last equality follows from the fact that x̄ᵀAy is a complex conjugate of ȳᵀAᵀx, thus
ȳᵀAᵀx− x̄ᵀAy = 2I

(
x̄ᵀAy

)
· i. By replacing this in Eq. 2, it follows that we need to show:

−2
(
||Aᵀx||22 + ||Ay||22

)
≤ −4I2(x̄ᵀAy) , or:

2
(
||Aᵀx||22 + ||Ay||22

)
≥ 4I2(x̄ᵀAy) .

Thus, it suffices to show that:

||Aᵀx||22 + ||Ay||22 ≥ 2|x̄ᵀAy|2 . (3)

Consider the case ||x||2 ≤ ||y||2 ≤ 1. We have two sub-cases.

1. ||Aᵀx||22 ≤ ||Ay||22. We can set ||Ay||2 = ||y||2, and we have:

||Aᵀx||22 + ||Aᵀy||22 = ||Aᵀx||22 + ||y||22 ≥
1

2
(||Aᵀx||22 + ||y||22)2 ≥ 2||Aᵀx||22||y||22 ≥ 2|x̄ᵀAy|22 ,

(4)

where the last inequality follows from Cauchy–schwarz inequality.

17



LAST-ITERATE CONVERGENCE OF SADDLE POINT OPTIMIZERS VIA HRDES

2. ||Ay||22 ≤ ||Aᵀx||22. We can set ||Aᵀx||2 = ||x||2, and we have:

||Aᵀx||22 + ||Aᵀy||22 = ||x||22 + ||Ay||22 ≥
1

2
(||x||22 + ||Ay||22)2 ≥ 2||x||22||Ay||22 ≥ 2|x̄ᵀAy|22 ,

(5)

where the last inequality follows from Cauchy–schwarz inequality.

The case ||y||2 ≤ ||x||2 ≤ 1 can be shown analogously.

D.3. Proof of Theorem 11: Convergence of OGDA on BG

Recall that for the OGDA optimizer we have the following (Eq. OGDA-HRDE):

ż(t) = ω(t)

ω̇(t) = −β · ω(t)− β · V (z(t))− 2 · J(z(t)) · ω(t) ,

where β = 2
γ .

By denoting ẋ(t) = ωx(t) and ẏ(t) = ωy(t), for OGDA we have the following:
ẋ(t)

ẏ(t)

ω̇x(t)

ω̇y(t)

 =


0 0 I 0

0 0 0 I

0 −βA −βI −2A

βAᵀ 0 2Aᵀ −βI


︸ ︷︷ ︸

,COGDA


x(t)

y(t)

ωx(t)

ωy(t)

 . (6)

Proof [Proof of Thm. 11] To obtain the eigenvalues λ ∈ C of COGDA we have:

det(COGDA − λI) = det
(

−λI 0 I 0

0 −λI 0 I

0 −βA −(β + λ)I −2A

βAᵀ 0 2Aᵀ −(β + λ)I


)

= det
(λ(β + λ)I 2λA

−2λAᵀ λ(β + λ)I

−
 0 −βA
βAᵀ 0

)

= det
( λ(β + λ)I (2λ+ β)A

−(2λ+ β)Aᵀ λ(β + λ)I

) ,

where we used det(

B1 B2

B3 B4

) = det(B1B4 −B2B3).
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Square A. For simplicity, we will first consider the case when A is square matrix. For the
eigenvalues of COGDA we have:

det(COGDA − λI) = det
( [
λ2(β + λ)2I + (2λ+ β)2AAᵀ

] )
= (2λ+ β)2n det

( [
λ2(β+λ)2

(2λ+β)2
I + AAᵀ

] )
,

where we used det(

B1 B2

B3 B4

) = det(B1B4 −B2B3).

Let κ denote the eigenvalue of −AAᵀ, thus κ ∈ R, κ < 0. From the last expression we observe
that κ = λ2(β+λ)2

(2λ+β)2
is the eigenvalue of −AAᵀ. Thus, we have the following polynomial with real

coefficients:

λ2(β + λ)2 = κ(2λ+ β)2 , or

λ4 + 2βλ3 + (β2 − 4κ)λ2 − 4βκλ− κβ2 = 0 .

The Routh Array is then:

1 β2 − 4κ −κβ2

2β −4βκ 0

β2 − 2κ −κβ2 0
(−2βκ)(3β2−4κ)

(β2−2κ) > 0 0 0
(−2βκ)(3β2−4κ)(−κβ2)

(β2−2κ) > 0 0 0

where recall that β = 2
γ > 0 and κ < 0. We observe that the first column of the Routh Array has only

positive elements change of signs, implying that all eigenvalues R{λi} < 0, ∀λi ∈ Sp{COGDA}–
due to the Routh Hurwitz criterion the system is stable.

General A. When A is not necessarily square, using the fact that λ(β + λ)I is invertable—

since COGDA is full rank—and using det(

B1 B2

B3 B4

) = det(B4) det(B1 −B2B
−1
4 B3), for the

eigenvalues of COGDA we have:

det(COGDA − λI) = det
(
λ(β + λ)I

)
det
(
λ(β + λ)I + (2λ+ β)2(λ(β + λ))−1AAᵀ)

= det
(
λ(β + λ)I

)︸ ︷︷ ︸
1◦

det
(λ2(β + λ)2

(2λ+ β)2
I + AAᵀ)︸ ︷︷ ︸

2◦

As 1◦ 6= 0, it has to hold that 2◦ = 0. Let κ ∈ Sp{−AᵀA} (thus κ ∈ R and κ < 0), and thus
we get the same polynomial with real coefficients, as for the case when A is square:

λ2(β + λ)2 = κ(2λ+ β)2 , or

λ4 + 2βλ3 + (β2 − 4κ)λ2 − 4βκλ− κβ2 = 0 .

19



LAST-ITERATE CONVERGENCE OF SADDLE POINT OPTIMIZERS VIA HRDES

Hence, we get the same Routh Array as above, and the same proof follows.

Thus, for any choice of step size γ the OGDA method converges on the BG problem.

D.4. Proof of Theorem 12: Convergence of LA2-GDA on BG

Recall that for the LA2-GDA optimizer we have the following (Eq. LA2-GDA-HRDE):

ż(t) = ω(t)

ω̇(t) = −βω(t)− 2αβ · V (z(t)) + 2αJ(z(t))V (z(t)) ,

where β = 2
γ .

By denoting ẋ(t) = ωx(t) and ẏ(t) = ωy(t) for LA2-GDA we have the following:
ẋ(t)

ẏ(t)

ω̇x(t)

ω̇y(t)

 =


0 0 I 0

0 0 0 I

−2αAAᵀ −4α
γ A − 2

γI 0

4α
γ Aᵀ −2αAᵀA 0 − 2

γI


︸ ︷︷ ︸

,CLA2-GDA


x(t)

y(t)

ωx(t)

ωy(t)

 .

Proof [Proof of Thm. 12] As in § D.2, to obtain the eigenvalues λ ∈ C of CLA2-GDA we have:

det(CLA2-GDA − λI) = det
(

−λI 0 I 0

0 −λI 0 I

−2αAAᵀ −4α
γ A −( 2γ + λ)I 0

4α
γ Aᵀ −2αAᵀA 0 −( 2γ + λ)I


)

= det
(
λ(

2

γ
+ λ)I −

−2AAᵀ − 2
γA

2
γA

ᵀ −2AᵀA


︸ ︷︷ ︸

,D

)
.

We observe that only the lower left block matrix D differs from the proof for EG in § D.2, thus the
inequality Eq. 2 needs to be proven for this optimizer too.

However, due to the different lower left block matrices for LA2-GDA we have:

µ(z) = z̄ᵀDz =
[
x̄ᵀ ȳᵀ

]−2αAAᵀ −4α
γ A

4α
γ Aᵀ −2αAᵀA

x
y


= −2α||Aᵀx||22 − 2α||Ay||22 +

4α

γ

(
ȳᵀAᵀx− x̄ᵀAy

)
= −2α

(
||Aᵀx||22 − ||Ay||22

)︸ ︷︷ ︸
R
(
µ(z)
) +

4α

γ
· I(x̄ᵀAy)︸ ︷︷ ︸
I
(
µ(z)
) ·i ,

20



LAST-ITERATE CONVERGENCE OF SADDLE POINT OPTIMIZERS VIA HRDES

where the last equality follows from the fact that x̄ᵀAy is a complex conjugate of ȳᵀAᵀx, thus
ȳᵀAᵀx− x̄ᵀAy = 2I

(
x̄ᵀAy

)
· i. By replacing this in Eq. 2, we need to show that:

−2α
(
||Aᵀx||22 + ||Ay||22

)
≤ −γ

2

4

42α2

γ2
I2(x̄ᵀAy) , or:

2α
(
||Aᵀx||22 + ||Ay||22

)
≥ 4α2I2(x̄ᵀAy) .

Thus, it suffices to show that (assum. α > 0):

||Aᵀx||22 + ||Ay||22 ≥ 2 α︸︷︷︸
only difference with EG, and α ∈ (0, 1)

|x̄ᵀAy|2 .

As α ∈ (0, 1) and the inequality 3 is tighter, the same proof for EG (§ D.2) follows.

D.5. Proof of Theorem. 13: Convergence of LA3-GDA on BG

Recall that for the LA3-GDA optimizer we have the following HRDE (Eq. LA3-GDA-HRDE):

ż(t) = ω(t)

ω̇(t) = −2

γ
ω(t)− 4α

γ
V (z(t)) + 2α · J(z(t)) · V (z(t))− 2α

γ
V
[
z(t)− 2γV

(
z(t)

)]
.

By denoting ẋ(t) = ωx(t) and ẏ(t) = ωy(t) for LA3-GDA we have the following:
ẋ(t)

ẏ(t)

ω̇x(t)

ω̇y(t)

 =


0 0 I 0

0 0 0 I

−6αAAᵀ −6α
γ A − 2

γI 0

6α
γ Aᵀ −6αAᵀA 0 − 2

γI


︸ ︷︷ ︸

,CLA3-GDA


x(t)

y(t)

ωx(t)

ωy(t)

 .

Proof [Proof of Thm. 13] As in § D.2, to obtain the eigenvalues λ ∈ C of CLA3-GDA we have:

det(CLA2-GDA − λI) = det
(

−λI 0 I 0

0 −λI 0 I

−6αAAᵀ −6α
γ A −( 2γ + λ)I 0

6α
γ Aᵀ −6αAᵀA 0 −( 2γ + λ)I


)

= det
(
λ(

2

γ
+ λ)I −

−6αAAᵀ −6α
γ A

6α
γ Aᵀ −6αAᵀA


︸ ︷︷ ︸

,D

)
.

We observe that only the lower left block matrix D differs from the proof for EG in § D.2, thus the
inequality Eq. 2 needs to be proven for this optimizer too.
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However, due to the different lower left block matrices for LA2-GDA we have:

µ(z) = z̄ᵀDz =
[
x̄ᵀ ȳᵀ

]−6αAAᵀ −6α
γ A

6α
γ Aᵀ −6αAᵀA

x
y


= −6α||Aᵀx||22 − 6α||Ay||22 +

6α

γ

(
ȳᵀAᵀx− x̄ᵀAy

)
= −6α

(
||Aᵀx||22 − ||Ay||22

)︸ ︷︷ ︸
R
(
µ(z)
) +

6α

γ
· I(x̄ᵀAy)︸ ︷︷ ︸
I
(
µ(z)
) ·i ,

where the last equality follows from the fact that x̄ᵀAy is a complex conjugate of ȳᵀAᵀx, thus
ȳᵀAᵀx− x̄ᵀAy = 2I

(
x̄ᵀAy

)
· i. By replacing this in Eq. 2, we need to show that:

−6α
(
||Aᵀx||22 + ||Ay||22

)
≤ −γ

2

4

62α2

γ2
I2(x̄ᵀAy) , or:

6α
(
||Aᵀx||22 + ||Ay||22

)
≥ 62

4
α2I2(x̄ᵀAy) .

Thus, it suffices to show that (assum. α > 0):

||Aᵀx||22 + ||Ay||22 ≥ 2
3

4
· α︸ ︷︷ ︸

only difference with EG, and α∈(0, 1)

|x̄ᵀAy|2 .

As α ∈ (0, 1) and the inequality (3) is tighter, the same proof as for EG (§ D.2) follows.

22



LAST-ITERATE CONVERGENCE OF SADDLE POINT OPTIMIZERS VIA HRDES

Appendix E. Analysis on MVI problems

In this section we show the convergence of the high resolution continuous time dynamics of the
OGDA method for the general problem of solving monotone variational inequalities. Primarily we
show the result that under some assumptions (OGDA-HRDE) and (OGDA-HRDE-2) are equivalent.
We continue with the analysis in continuous time using the derived HRDEs. Using the insights of
these continuous time analysis, we then show convergence of the best iterate of the discrete time
OGDA method. Finally, we present an implicit discretization of OGDA-HRDE for which we prove
that it converges as well.

Our main tool for analyzing the convergence of both the continuous and the discrete time is using
Lyapunov Functions, defined in App. A. Recall that the OGDA-HRDE is:

ż(t) = ω(t)

ω̇(t) = −β · ω(t)− 2J(z(t)) · ω(t)− β · V (z(t))
(HR-OGDA)

where β = 2/γ is a positive real constant.

E.1. Equivalent forms of OGDA-HRDE

In this section, we first prove Thm 3, and then we show that the explicit discretization of (OGDA-HRDE-2)
yields the original OGDA method.

E.1.1. PROOF OF THEOREM 3: EQUIVALENT FORMS OF OGDA-HRDE

Proof [Proof of Thm. 3] We first show that any z(t) that is a solution to (OGDA-HRDE) is also a
solution to (OGDA-HRDE-2). To do this we define the function:

w(t) = − 2

β
ż(t)− 4

β
V (z(t))− z(t)⇒ z̈(t) = −β

2
ẇ(t)− 2J(z(t))ż(t)− β

2
ż(t) .

Observe that w(t) is a continuous differentiable function and using (OGDA-HRDE) we have that

ẇ(t) = ż(t) + 2V (z(t)). (7)

Now if we substitute that to the definition of w then we get that:

w(t) = − 2

β
ẇ(t)− z(t)⇒ ẇ(t) = −β

2
z(t)− β

2
w(t)

Combining the above with (7) we have that

ż(t) = −β
2
z(t)− β

2
w(t)− 2V (z(t))

hence the tuple (z(t),w(t)) also satisfies the system of equations (OGDA-HRDE-2).
Now for the other direction we first differentiate the first equation of (OGDA-HRDE-2) and we

get that

z̈(t) = −β
2
ż(t)− β

2
ẇ(t)− 2J(z(t)) · ż(t)

then observe subtracting the two equations of (OGDA-HRDE-2) it holds that

ẇ(t) = ż(t) + 2V (z(t)).

finally substituting the first equation to the latter one and setting ω(t) = ż(t) we get the equations
(OGDA-HRDE).
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E.1.2. OGDA AS AN EXPLICIT DISCRETIZATION OF OGDA-HRDE-2

We can identify the original OGDA method as an explicit discretization of the (OGDA-HRDE-2)
system of differential equations. It particular, if we apply the Euler method to (OGDA-HRDE-2)
with κ = 1/2γ and γ to be equal to the step size of the Euler discretization then we have that

zn+1 =
1

2
(zn −wn)− 2γV (zn)

wn+1 =
1

2
(wn − zn) (OGDA-S)

where if we eliminate w from the above system we get:

zn+1 = zn − 2γV (zn) + γV (zn−1). (OGDA)

E.2. Proof of Theorem 4: Last-iterate Convergence of OGDA-HRDE for MVIs

We will use the following Lyapunov function:

LOGDA(z,ω) = ‖bz + ω‖22 + ‖ω‖22 + 4bzᵀV (z) + ‖V (z) + ω‖22 + ‖V (z)‖22 . (OGDA-L)

In particular, we are going to split the above Lyapunov function in the following two parts

L1(z,ω) =
1

2

(
‖bz + ω‖22 + ‖ω‖22 + 4bzᵀV (z)

)
(OGDA-L1)

L2(z,ω) =
1

2

(
‖V (z) + ω‖22 + ‖V (z)‖22

)
. (OGDA-L2)

From the definition of the monotone variational inequality problem and from the positivity of the
norms we have that L1(z,ω) ≥ 0 and L2(z,ω) ≥ 0, and also L1(0, 0) = L2(0, 0) = 0. Next we
are going to explore L̇1 and L̇2.

L̇1(z,ω) = 〈bz + ω, bż + ω̇〉︸ ︷︷ ︸
1◦

+ 〈ω, ω̇〉︸ ︷︷ ︸
2◦

+ 2bżᵀV (z)︸ ︷︷ ︸
3◦

+ 2bzᵀ ˙(
V (z)

)︸ ︷︷ ︸
4◦

(8)

L̇2(z,ω) = 〈V (z) + ω, ˙(
V (z)

)
+ ω̇〉︸ ︷︷ ︸

5◦

+ 〈V (z), ˙(
V (z)

)
〉︸ ︷︷ ︸

6◦

(9)

We are now going to analyze each of these terms separately, using the following equality

˙(
V (z)

)
= J(z)ż = J(z) · ω. (10)

1◦) Replacing ω̇ of OGDA-HRDE, we get 〈bz + ω, bż + ω̇〉 = 〈bz + ω,−bV (z)− 2J(z)ω〉.
Simplifying it then gives: −b2zᵀV (z)− bωᵀV (z)− 2bzᵀJ(z)ω − 2ωᵀJ(z)ω;

2◦) Similarly, by replacing ω̇ of OGDA-HRDE, we get 〈ω, ω̇〉 = −b ‖ω‖22 − bωᵀV (z) −
2ωᵀJ(z)ω;

3◦) 2bżᵀV (z) = 2bωᵀV (z);

4◦) Using the fact (10) we get: 2bzᵀ ˙(
V (z)

)
= 2bzᵀJ(z)ω;
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5◦) Using (OGDA-HRDE) and 10 we get: 〈V (z) + ω, ˙(
V (z)

)
+ ω̇〉 = 〈V (z) + ω,−b

(
V (z) +

ω
)
− J(z)ω〉 = −b||V (z) + ω||22 − V ᵀ(z)J(z)ω − ωᵀJ(z)ω; and

6◦) Using Eq. OGDA-HRDE we get: 〈V (z), ˙(
V (z)

)
〉 = V ᵀ(z)J(z)ω.

Using all the above we get that

L̇1(z,ω) = −b ‖ω‖22 − b
2zᵀV (z)− 4ωᵀJ(z)ω. (11)

L̇2(z,ω) = −b ‖V (z) + ω‖22 − ωᵀJ(z)ω. (12)

Using the monotonicity of V and the positive definiteness of J we have that L̇1(z,ω) ≤ 0
and L̇2(z,ω) ≤ 0. Hence, both L1 and L2 are Lyapunov functions for our problem. Therefore by
observing that LOGDA(z,ω) = 2L1(z,ω) + 2L2(z,ω), we have that LOGDA is also a Lyapunov
function of our problem. To prove the convergence rate we start with the following lemma.

Lemma 14 We assume the initial conditions z(0) = z0 and ω(0) = 0. If for all t ∈ [0, T ] it holds
that max{‖ω(t)‖2 , ‖V (z(t)‖2} ≥ ε then we have that

T ≤
(
b+ 8 +

(
8 +

2

b

)
· L
)
·
‖z0‖22
ε2

.

Proof With abuse of notation we use LOGDA(t) , LOGDA(z(t),ω(t)) and we have that

LOGDA(0) = b2 ‖z0‖22 + 4bzᵀ
0V (z0) + 2 ‖V (z0)‖22

≤ (b2 + 8b) ‖z0‖22 + (2 + 8b) ‖V (z0)‖22
≤ (b2 + 8b+ (8b+ 2) · L) ‖z0‖22 (13)

where in the last inequality we used the Lipschitzness of V and the fact that z? = 0 is a solution and
hence V (0) = 0.

Now using (11), (12) together with the monotonicity of V and the positive definiteness of J we
get that

L̇OGDA(t) ≤ −2b
(
‖ω(t)‖22 + ‖V (z(t)) + ω‖22

)
≤ −b

(
‖V (z(t))‖22

)
where we have used the fact that for any vectors x, y it holds that ‖x + y‖22 ≤ 2 ‖x‖22 + 2 ‖y‖22.
Also, we have that

L̇OGDA(t) ≤ −2b
(
‖ω(t)‖22

)
hence overall we have that

L̇OGDA(t) ≤ −b(max{‖ω(t)‖22 , ‖V (z(t))‖22}) (14)

Now if for every t ∈ [0, T ] it holds that max{‖ω(t)‖2 , ‖V (z(t)‖2} ≥ ε then we have that for all
t ∈ [0, T ] it holds

L̇OGDA(t) ≤ −b · ε2.
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Now since LOGDA(t) ≥ 0 and using the above upper bound on the time derivative of L together with
the Mean Value Theorem we have that

(LOGDA(0)− LOGDA(t)) ≥ (b · ε2) · T.

Finally using the bound on the initial conditions (13) the lemma follows.

Lemma 14 shows that after a finite time both ‖ω(t)‖2 and ‖V (z(t))‖2 will become less than ε.
What remains to show the last iterate convergence is to show that this upper bound will remain for
later times. For this we show the following lemma.

Lemma 15 Let t? > 0 a time such that both ‖ω(t?)‖2 ≤ ε and ‖V (z(t?))‖2 ≤ ε, then we have
that for all t > t? it holds that

‖V (z(t))‖2 ≤
√

5ε.

Proof Using the assumptions of the lemma we have the following

1. L2(t?) ≤ 5
2ε

2,

2. L̇2(t) ≤ 0, and

3. ‖V (z(t))‖2 ≤
√

2L2(t)

Combining the first two properties we have that for all t > t? it holds that L2(t) ≤ 5
2ε

2 and if we
apply property 3. to this the lemma follows.

Now if we combine Lemma 14 and Lemma 15, then the first part of Theorem 4 follows.
Strongly Monotone Variational Inequalities. For the second part of Theorem 4 we observe that

LOGDA(t) ≤ 2b2 ‖Z(t)‖22 + 5 ‖W (t)‖22 + 2 ‖V (z(t))‖22 + 4b(z(t))ᵀV (z(t)). (15)

Also, using the strong monotonicity of V and the fact that V (0) = 0, which we have assumed without
loss of generality, then we have that (z(t))ᵀV (z(t)) ≥ µ ‖z(t)‖22. Applying this together with (11)
and (12) we get all the following upper bounds for the time derivative of LOGDA

1

µ
· L̇OGDA(t) ≤ − 2

µ
b2(z(t))ᵀV (z(t)) ≤ −2b2 · ‖z(t)‖22 (16)

5

2b
· L̇OGDA(t) ≤ −5 ‖ω(t)‖22 (17)

2

b
· L̇OGDA(t) ≤ −4 ‖ω(t)‖22 − 4 ‖V (z(t)) + ω(t)‖22 − 4b(z(t))ᵀV (z(t))

≤ −2 ‖V (z(t))‖22 − 4b(z(t))ᵀV (Z(t)) (18)

Combining these with (15) and setting κ = 1
µ + 9

2b we get that

LOGDA(t) ≤ −κ · L̇OGDA(t)

where if we use the fact that LOGDA(t) ≥ 0 we get that

−κ · L̇OGDA(t)

LOGDA(t)
≥ 1
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and hence
−κ d

dt
(ln(LOGDA(t))) ≥ 1

now integrating both parts from 0 to t we get

ln(LOGDA(t)) ≤ ln(LOGDA(0))− 1

κ
t

then applying the exponential function we get

LOGDA(t) ≤ LOGDA(0) · exp

(
−1

κ
· t
)

and using (13) together with the fact that LOGDA(t) ≥ ‖V (z(t)‖22 + 4bµ ‖Z(t)‖22 the second part of
Theorem 4 follows.

E.3. Proof of Theorem 5: Last-iterate Convergence of OGDA-HRDE-2 for MVIs

We are going to use the following Lyapunov function

LOGDA2(z,w) = κ2 ‖z + w‖22+κ2 ‖z −w‖22+‖κ(z + w) + V (z)‖22+‖V (z)‖22 . (OGDA2-L)

In particular, we are going to split the above Lyapunov function in the following two parts

L3(z,w) =
1

2

(
‖z + w‖22 + ‖z −w‖22

)
(OGDA2-L3)

L4(z,ω) =
1

2

(
‖κ(z + w) + V (z)‖22 + ‖V (z)‖22

)
. (OGDA2-L4)

From the definition of the monotone variational inequality problem and from the positivity
of the norms we have that L3(z,w) > 0 and L4(z,ω) > 0 for any (z,w) 6= (0, 0), and also
L3(0, 0) = L4(0, 0) = 0. Next we are going to explore L̇3 and L̇4.

L̇3(z,ω) = 〈βz + w, βż + ẇ〉︸ ︷︷ ︸
1◦

+ 〈βz −w, βż − ẇ〉︸ ︷︷ ︸
2◦

(19)

L̇4(z,ω) = 〈κ(z + w) + V (z), κ(ż + ẇ) + ˙(
V (z)

)
〉︸ ︷︷ ︸

3◦

+ 〈V (z), ˙(
V (z)

)
〉︸ ︷︷ ︸

4◦

(20)

We are now going to analyze each of these terms separately, using the following inequality, which
straightforwardly follows from the monotonicity of V

〈ż, ˙(
V (z)

)
〉 ≥ 0. (21)

1◦) Replacing ż and ẇ from OGDA-HRDE-2, we get 〈βz + w, βż + ẇ〉 = −κ ‖z + w‖22 −
2〈z, V (z)〉 − 2〈w, V (z)〉;

2◦) Replacing ż and ẇ from OGDA-HRDE-2, we get 〈βz − w, βż − ẇ〉 = −2〈z, V (z)〉 +
2〈w, V (z)〉;
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3◦) Similarly we have that the time derivative of the term 3◦ is −2κ ‖κ(z + w) + V (z)‖22 −
2〈ż, ˙(

V (z)
)
〉 − 〈V (z), ˙(

V (z)
)
〉;

4◦) The derivative is directly equal to 〈V (z), ˙(
V (z)

)
〉.

Using all the above we get that

L̇3(z,w) = −κ ‖z + w‖22 − 4〈z, V (z)〉 (22)

L̇4(z,w) = −2κ ‖κ(z + w) + V (z)‖22 − 2〈ż, ˙(
V (z)

)
〉. (23)

We define the set S = {(z,w) ∈ R2d : V (z) = 0}. Using the monotonicity of V and (21) we
have that L̇1(z,ω) ≤ 0, L̇2(z,ω) ≤ 0 for all (z,w) ∈ R2d and also L̇OGDA2 < 0 for all (z,w) 6∈ S.
Hence, both L1 and L2 are Lyapunov functions for our problem. To prove the convergence rate we
start with the following lemma.

Lemma 16 We assume the initial conditions z(0) = z0 and w(0) = −z0. If for all t ∈ [0, T ] it
holds that max{‖κ(z(t) + w(t))‖2 , ‖V (z(t)‖2} ≥ ε then we have that

T ≤ 2

(
2κ+

L2

κ

)
·
‖z0‖22
ε2

.

Proof With abuse of notation we use LOGDA2(t) , LOGDA2(z(t),ω(t)) and we have that

LOGDA2(0) = 4 · κ2 ‖z0‖22 + 2 ‖V (z0)‖22
≤ (4 · κ2 + 2 · L2) ‖z0‖22 (24)

where in the last inequality we used the Lipschitzness of V and the fact that z? = 0 is a solution and
hence V (0) = 0.

Now using (22), (23) together with (21) we have that

L̇OGDA2(t) ≤ −κ
(
‖κ(z(t) + w(t))‖22 + ‖κ(z(t) + w(t)) + V (z(t))‖22

)
≤ −κ

(
‖V (z(t))‖22

)
where we have used the fact that for any vectors x, y it holds that ‖x + y‖22 ≤ 2 ‖x‖22 + 2 ‖y‖22.
Also, we have that

L̇OGDA2(t) ≤ −κ
(
‖κ(z(t) + w(t))‖22

)
hence overall we have that

L̇OGDA2(t) ≤ −κ (max{‖κ(z(t) + w(t))‖2 , ‖V (z(t)‖2}) (25)

Now if for every t ∈ [0, T ] it holds that max{‖κ(z(t) + w(t))‖2 , ‖V (z(t)‖2} ≥ ε then we have
that for all t ∈ [0, T ] it holds

L̇OGDA2(t) ≤ −κ · ε2.
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Now since LOGDA2(t) ≥ 0 and using the above upper bound on the time derivative of L together
with the Mean Value Theorem we have that

(LOGDA2(0)− LOGDA2(t)) ≥ (κ · ε2) · T.

Finally using the bound on the initial conditions (24) the lemma follows.

What remains is to show the last-iterate convergence is to show that this upper bound will remain
for later times. For this we show the following lemma.

Lemma 17 Let t? > 0 a time such that both ‖κ(z(t? + w(t?))‖2 ≤ ε and ‖V (z(t?))‖2 ≤ ε, then
we have that for all t > t? it holds that

‖V (z(t))‖2 ≤
√

3ε.

Proof Using the assumptions of the lemma we have the following

1. L4(t?) ≤ 3
2ε

2,

2. L̇4(t) ≤ 0, and

3. ‖V (z(t))‖2 ≤
√

2L4(t)

Combining the first two properties we have that for all t > t? it holds that L4(t) ≤ 3
2ε

2 and if we
apply property 3. to this the lemma follows.

Now if we combine Lemma 16 and Lemma 17, then the first part of Theorem 5 follows and we
omit the details of the second part because it is almost identical with the corresponding argument for
proving the second part of Theorem 4.

E.4. Proof of Theorem 6: Best-iterate convergence of OGDA for MVIs

Inspired by the analysis of the continuous-time dynamics that we presented in the previous section
we will use the following Lyapunov function

L5(z,w) = ‖z −w‖22 + ‖z + w + 2γV (z)‖22 . (OGDA-L5)

Before analyzing the above Lyapunov function we show the following useful lemma.

Lemma 18 Let z0 = z1 and zn follows the (OGDA) dynamics for n ≥ 2, also assume that V is
L-Lipschitz and that γ ≤ 1/8L then for all n ≥ 0 it holds that

1

2
≤
‖V (zn+1)‖2
‖V (zn)‖2

≤ 3

2
.

Proof Using the Lipschitzness of V we have that

‖V (zn+1)− V (zn)‖2 ≤ L · ‖zn+1 − zn‖2
= L · γ · ‖2V (zn)− V (zn−1)‖2
≤ L · γ · (2 ‖V (zn)‖2 + ‖V (zn−1)‖2) . (26)
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Using the triangle inequality together with the above we have that

‖V (zn+1)‖2 ≤ ‖V (zn+1)− V (zn)‖2 + ‖V (zn)‖2
= (1 + 2 · L · γ) · ‖V (zn)‖2 + L · γ ‖V (zn−1)‖2 (27)

and also that

‖V (zn+1)‖2 ≥ ‖V (zn)‖2 − ‖V (zn+1)− V (zn)‖2
= (1− 2 · L · γ) · ‖V (zn)‖2 − L · γ ‖V (zn−1)‖2 . (28)

Now let bn =
‖V (zn)‖2
‖V (zn−1)‖2

then we can re-write (27) and (28) as follows

bn+1 ≤ (1 + 2 · L · γ) +
L · γ
bn

(29)

bn+1 ≥ (1− 2 · L · γ)− L · γ
bn

(30)

We will use induction to show that bn ∈ [1/2, 3/2]. The base step holds since z0 = z1 and hence
b1 = 1. For the inductive step we assume that bn ∈ [1/2, 3/2] and from (29) we have that

bn+1 ≤ 1 + 4 · L · γ

whereas from (30) we have that
bn+1 ≥ 1− 4 · L · γ

so it suffices to have that γ ≤ 1/(8 · L).

We continue with the analysis of the Lyapunov function L5. It is a matter of algebraic calculations
to verify that

L5(zn+1,wn+1)− L5(zn,wn) = −‖zn + wn‖22 − 8γ〈zn, V (zn)〉
+ 4γ2 ‖V (zn+1)‖22 + 4γ2 ‖V (zn)‖22 − 8γ2〈V (zn), V (zn+1)〉

adding the two equations of (OGDA-S) we can see that zn+1 + wn+1 = 2γV (zn), from which we
can get that

L5(zn+1,wn+1)− L5(zn,wn) = −8γ〈zn, V (zn)〉 − 4γ2
(
‖V (zn−1)‖22 − ‖V (zn+1)‖22 − ‖V (zn)‖22 + 2〈V (zn), V (zn+1)〉

)
= −8γ〈zn, V (zn)〉 − 4γ2

(
‖V (zn−1)‖22 − ‖V (zn+1)− V (zn)‖22

)
= −8γ〈zn, V (zn)〉 − 2γ2 ‖V (zn−1)‖22 − 2γ2

(
‖V (zn−1)‖22 − 2 ‖V (zn+1)− V (zn)‖22

)
now using (26) we have that

‖V (zn−1)‖22 − 2 ‖V (zn+1)− V (zn)‖22 ≥ (1− 2 · L · γ) · ‖V (zn−1)‖22 − 4 · L · γ ‖V (zn)‖22

now assuming that γ ≤ 1/(4 · L) we have that

‖V (zn−1)‖22 − 2 ‖V (zn+1)− V (zn)‖22 ≥
1

2
· ‖V (zn−1)‖22 − 4 · L · γ ‖V (zn)‖22
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now using Lemma 18 we get that

‖V (zn−1)‖22 − 2 ‖V (zn+1)− V (zn)‖22 ≥
(

1

4
− 4 · L · γ

)
· ‖V (zn−1)‖22

and hence since γ ≤ 1/(16 · L) this implies that

‖V (zn−1)‖22 − 2 ‖V (zn+1)− V (zn)‖22 ≥ 0

If we know substitute the latter in the last expression about the difference L5(zn+1,wn+1) −
L5(zn,wn) then we get the following

L5(zn+1,wn+1)− L5(zn,wn) ≤ −8γ〈zn, V (zn)〉 − 2γ2 ‖V (zn−1)‖22

but due to the monotonicity of V we have that 〈zn, V (zn)〉 ≥ 0 and therefore we have that

L5(zn+1,wn+1)− L5(zn,wn) ≤ −2γ2 ‖V (zn−1)‖22 . (31)

We next bound the initial value of L5. The initial conditions that z0 = z1 are equivalent with
w0 = −z0 − 4γV (z0) and hence we have that

L5(z0,w0) = ‖2z0 + 4γV (z0)‖22 + 4γ2 ‖V (z0)‖22
≤ 8 ‖z0‖22 + 36γ2 ‖V (z0)‖22
≤ (8 + 36γ2L2) ‖z0‖22 (32)

Now combining (32) and (31) the Theorem 6 follows.

E.5. Proof of Theorem 7: Last-iterate convergence of an implicitdiscretization
of OGDA-HRDE

In this section, we analyze the implicit discretization of the OGDA continuous-time dynamics that
we presented in the previous section, for with implicit discretization we integrate the (OGDA-HRDE)
from t = n · γ to t′ = (n + 1) · γ, we use zn = z(n · γ) and we make use of the following
approximations:

.
∫ t′
t ω(τ)dτ ≈ γ

2 (ωn+1 + ωn),

.
∫ t′
t J(z(τ))) · ω(τ)dτ =

∫ t′
t

d
dτ (V (z(τ)))dτ = V (zn+1)− V (z(n)),

.
∫ t′
t V (z(τ))dτ ≈ γ

2 (V (zn+1) + V (zn)), and

.
∫ t′
t ż(τ)dτ = zn+1 − zn,

∫ t′
t ω̇(τ)dτ = ωn+1 − ωn, β = 2/γ.

Using all the above we get the following implicit discrete time dynamics:

zn+1=zn +
γ

2
· (ωn+1 + ωn)

ωn+1=−V (zn+1)−
1

2
(V (zn+1)− V (zn))

(OGDA-I)
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We are going to use again two Lyapunov function to complete our last-iterate argument

L1(z,ω) = ‖βz + ω‖22 + ‖ω‖22 + 2βzᵀV (z) (OGDA-I-L1)

L2(z,ω) = ‖V (z) + ω‖22 + ‖V (z)‖22 . (OGDA-I-L2)

We use (L1)n to denote the value L1(zn,ωn) and correspondingly for L2. The discrete time
differences of these functions are :

(L1)n+1 − (L1)n = 〈β(zn+1 + zn) + (ωn + ωn+1), β(zn+1 − zn) + (ωn+1 − ωn)〉︸ ︷︷ ︸
1◦

+ 〈ωn + ωn+1,ωn+1 − ωn〉︸ ︷︷ ︸
2◦

+β · zᵀ
n+1V (zn+1)− β · zᵀ

nV (zn)︸ ︷︷ ︸
3◦

(L2)n+1 − (L2)n = 〈(V (zn+1) + V (zn)) + (ωn+1 + ωn), (V (zn+1)− V (zn)) + (ωn+1 − ωn)〉︸ ︷︷ ︸
4◦

+ 〈V (zn+1) + V (zn), V (zn+1)− V (zn)〉︸ ︷︷ ︸
5◦

Before analyzing each of these terms we observe that we can write the difference

ωn+1 − ωn = −(ωn+1 + ωn)− (V (zn+1) + V (zn))− 2 (V (zn+1)− V (zn)) (33)

Separately for the above terms we get:

1◦) Replacing the difference zn+1 − zn with γ
2 · (ωn+1 + ωn) and using the fact that β = 2

γ we
get that this term 1◦ is equal to

〈β(zn+1 + zn) + (ωn + ωn+1),−(V (zn+1) + V (zn))− 2 (V (zn+1)− V (zn))〉
= − β · 〈zn+1 + zn, V (zn+1) + V (zn)〉 − 2 · β · 〈zn+1 + zn, V (zn+1)− V (zn)〉
− 〈ωn+1 + ωn, V (zn+1) + V (zn)〉 − 2 · 〈ωn+1 + ωn, V (zn+1)− V (zn)〉.

2◦) Using (33) we get that the term 2◦

〈ωn + ωn+1,ωn+1 − ωn〉
= − ‖ωn+1 + ωn‖22 − 〈ωn+1 + ωn, V (zn+1) + V (zn)〉
− 2〈ωn+1 + ωn, V (zn+1)− V (zn)〉.

3◦) For this term we have two different expressions. The first one is

β · zᵀ
n+1V (zn+1)− β · zᵀ

nV (zn) = β · (zn+1 − zn)ᵀV (zn+1)− β · zᵀ
n(V (zn)− V (zn+1))

= 〈ωn+1 + ωn, V (zn+1)〉+ β · zᵀ
n(V (zn+1)− V (zn))

and the other one is

β · zᵀ
n+1V (zn+1)− β · zᵀ

nV (zn) = β · zᵀ
n+1(V (zn+1)− V (zn))− β · (zn − zn+1)

ᵀV (zn)

= β · zᵀ
n+1(V (zn+1)− V (zn)) + 〈ωn+1 + ωn, V (zn)〉.

If we combine the two above expressions then we have then

4β · zᵀ
n+1V (zn+1)− 4β · zᵀ

nV (zn) =

2 · β · 〈zn+1 + zn, V (zn+1)− V (zn)〉+ 2 · 〈ωn+1 + ωn, V (zn+1) + V (zn)〉.
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4◦) Using the dynamics for ωn+1 − ωn we have that fact this fourth term is equal to

〈(V (zn+1) + V (zn)) + (ωn+1 + ωn),

− (ωn+1 + ωn)− (V (zn+1) + V (zn))− (V (zn+1)− V (zn))〉
= −‖V (zn+1) + V (zn) + ωn+1 + ωn‖22 − 〈V (zn+1)− V (zn), V (zn+1) + V (zn)〉
− 〈V (zn+1)− V (zn),ωn+1 + ωn〉.

5◦) For this term we do not make any changes

〈V (zn+1) + V (zn), V (zn+1)− V (zn)〉.

Therefore we have that

(L1)n+1 − (L1)n =− β · 〈zn+1 + zn, V (zn+1) + V (zn)〉 − ‖ωn+1 + ωn‖22
− 8 · β · 〈zn+1 − zn, V (zn+1)− V (zn)〉 (34)

(L2)n+1 − (L2)n =− ‖V (zn+1) + V (zn) + ωn+1 + ωn‖22
− 2 · β · 〈V (zn+1)− V (zn), zn+1 − zn〉. (35)

The differences of L2 are clearly negative. For the differences of L1 the only thing that remains is to
show that

〈zn+1 + zn, V (zn+1) + V (zn)〉+ 〈zn+1 − zn, V (zn+1)− V (zn)〉 ≥ 0

but the left hand side is equal to

2zᵀ
n+1V (zn+1) + 2zᵀ

nV (zn)

which is clearly positive due to the monotonicity of V and the without loss of generality assumption
of the optimality of z = 0 which implies V (0) = 0.

The proofs of the convergence rates are almost identical to the case of continuous time since the
Lyapunov functions are almost the same expect maybe some constants in some of the terms. For this
reason we refer to Appendix E.2 for a proof of the rates in Theorem 7.
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