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Abstract

Several classical adaptive optimization algorithms, such as line search and trust region methods,
have been recently extended to stochastic settings. Unlike the stochastic gradient method and its
many variants, these algorithms do not use a pre-specified sequence of step sizes, but increase
or decrease the step size adaptively according to the estimated progress of the algorithm. These
algorithms rely on stochastic oracles that estimate function values, gradients, and Hessians in some
cases. The accuracy requirement of these oracles is also adaptive and depends on the step size. In
the deterministic setting, a lower bound on the step size is easily derived, however, in the stochastic
setting, due to possible oracle failures, bounds on the step size have not been previously derived.
In this paper we give a lower bound on the step size that holds with high probability. This bound is
dependent on the probability of the oracle failures, recovering the deterministic result as an extreme
case when this probability is zero.

1. Introduction

Widespread use of stochastic optimization algorithms for problems arising in machine learning and
signal processing have made stochastic gradient method and its variants become overwhelmingly
popular despite their theoretical and practical shortcomings. Adaptive stochastic optimization algo-
rithms, on the other hand, borrow from decades of advances in deterministic optimization research,
and offer new paths forward for stochastic optimization to be more effective and even more appli-
cable. Adaptive algorithms can avoid many of the practical deficiencies of contemporary methods
(such as the tremendous costs of tuning the step sizes of an algorithm for each individual appli-
cation) while possessing strong convergence and worst-case complexity guarantees in incredibly
diverse settings. In this work, we resolve one of the open problems underlying a class of adap-
tive stochastic optimization algorithms: Provide a high probability lower bound on the step size
parameter.

We consider a class of adaptive stochastic algorithms for continuous optimization problems of the
form

min
x∈Rd

φ(x), (1)

where φ is possibly non-convex. We make the standard assumption of that φ is (twice-)continuously
differentiable with Lipschitz continuous derivatives, but knowledge of Lipschitz constants is not
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assumed by the algorithms. The goal of these algorithms is to find an ε-optimal point xε for φ, for
which φ(xε) − infx φ(x) ≤ ε if φ is convex and ‖∇φ(xε)‖ ≤ ε if φ is nonconvex. We consider
a setting where neither the function value φ(x), nor the gradient ∇φ(x) are directly computable.
Instead, given any x ∈ Rd, it is assumed that stochastic approximations of φ(x), ∇φ(x), and
possibly ∇2φ(x) can be computed, although these approximations may possess different levels of
accuracy and reliability depending on the particular setting of interest.

We now introduce the algorithmic framework for adaptive stochastic optimization in Algorithm 1.
Several recent algorithms fall under this framework: for example, the adaptive line search algo-
rithms in [3], [6], [1] and [5]; the adaptive trust region methods in [2] and [4], and the adaptive
cubic regularization method in [3].

The framework is iterative, where in each iteration a stochastic modelmk : Rd → R of the objective
function is constructed based on function, gradient and (possibly) Hessian approximations obtained
via stochastic oracles. We refer to the zeroth-order approximation as f(x, ξ0), the first-order ap-
proximation as g(x, ξ1), and the second-order approximation as H(x, ξ2). A jth-order oracle is
defined over a set of valid inputs Sj . In the definition below, ϕ(x, ξj) is used to denote the estimate
computed by a general jth-order oracle.

Stochastic jth-order oracle over Sj: Given a pair of real numbers (Mj , δj) ∈ Sj and x ∈ Rd, the
oracle computes ϕ(x, ξj) satisfying

Pξj [‖ϕ(x, ξj)−∇jφ(x)‖ ≤Mj ] ≥ 1− δj ,

Here Mj is the accuracy, and 1 − δj is the reliability. ξj is a random variable whose distribution
depends on (Mj , δj) and x, and Pξj denotes the probability w.r.t. that distribution.

Algorithm 1: Algorithmic Framework for Adaptive Stochastic Optimization
0. Initialization

Choose η ∈ (0, 1), γ ∈ (0, 1), αmax ∈ (0,∞), x0 ∈ Rd, and α0 ∈ (0, αmax]. Set k ← 0.
1. Determine model and compute step

Construct a stochastic model mk of φ at xk using f(xk, ξ0,k), g(xk, ξ1,k), and (optionally)
H(xk, ξ2,k) from probabilistic zeroth-, first-, and (optionally) second-order oracles. Compute
sk(αk) such that the model reduction mk(xk)−mk(xk + sk(αk)) ≥ 0 is sufficiently large.
2. Check for sufficient reduction

Set x+k ← xk + sk(αk) and compute f(x+k , ξ
+
0,k) as a stochastic approximation of φ(x+k ) using

a probabilistic zeroth-order oracle. Check if f(xk, ξ0,k) − f(x+k , ξ
+
0,k) is sufficiently large (e.g.,

relative to the model reduction mk(xk)−mk(x
+
k )) using a condition parameterized by η.

3. Successful iteration
If sufficient reduction has been attained (along with other potential requirements), then set

xk+1 ← x+k and αk+1 ← min{γ−1αk, αmax}.
4. Unsuccessful iteration

Otherwise, set xk+1 ← xk and αk+1 ← γαk.
5. Next iteration

Set k ← k + 1 and go to Step 1.
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Using the model mk, a step sk(αk) that improves the value of the model mk is computed, where
αk represents a step size parameter that influences the length of the step. The trial point x+k ←
xk + sk(αk) is evaluated using the estimate f(x+k , ξ

+
0,k). If this estimate suggests that sufficient

improvement is attained, then the step is deemed successful, x+k is accepted as the next iterate, and
the step size parameter is increased up to a multiplicative factor; otherwise, the step is deemed
unsuccessful, the iterate does not change, and αk is decreased by a multiplicative factor. Unlike in
the deterministic case, new calls to all oracles are made in the next iteration even when the iterate
does not change.

For all prior adaptive algorithms in the literature [1–6], convergence and expected complexity are
derived based on specific requirements of the stochastic oracles. In particular, δ is assumed to be
sufficiently small, but fixed (often δj < 1

2 is sufficient), while Mj is chosen differently at each
iteration, dependent on αk. For example, in the first order trust region framework, M0 = κα2

k and
M1 = καk, for some fixed constant κ. In many settings (e.g. expected risk minimization), the
oracle works by computing a sample average over a batch of data points, and it can satisfy different
accuracy requirements by using an appropriately sized batch of samples; in this case, ξj represents
the randomness in the selection of the batch.

Under appropriate conditions on the oracles, previous works derive the expected iteration complex-
ities of the adaptive algorithms, which are comparable to the iteration complexities of the respective
deterministic algorithms. In the deterministic case, one of the key steps in the analysis is deriving a
lower bound on αk, which in turn guarantees consistent progress of the algorithm. In the stochastic
case, a lower bound on αk that holds with probability 1 does not exist, but it can be shown that there
exists a threshold value ᾱ for αk such that once the step size falls below ᾱ, it tends to increase.
This is sufficient to derive the expected iteration complexity. However, in the stochastic setting,
there remains the question of providing a lower bound on αk that holds with high probability. This
question is important because the number of samples needed to compute an oracle value is dictated
by the accuracy Mj required for the oracle, which in most settings is proportional to αk, the step
size parameter of the algorithm. The smaller the step size parameter, the more samples are needed
for one oracle computation. Providing a lower bound on the step size parameter in turn gives an
upper bound on the number of samples needed for each oracle evaluation. The goal of this paper is
to derive such a lower bound under conditions which are satisfied by the existing algorithms cited
above.

2. Conditions

We consider Algorithm 1 based on stochastic oracles, applied to problem (1). This algorithm gen-
erates a stochastic process (with respect to the randomness underlying the stochastic oracles), for
which we define a stopping time.

Definition 1 (Stopping time) For ε > 0, let Tε be the first time such that a specified condition
is satisfied. For example: Tε = min{k : ‖∇φ(xk)‖ ≤ ε} if φ is nonconvex, or Tε = min{k :
φ(xk)− infx φ(x) ≤ ε} if φ is convex. We will refer to Tε as the stopping time of the algorithm.

We also say that iteration k is a true iteration if all oracles used on that iteration deliver the required
accuracy. The following properties are assumed to hold for Algorithm 1.
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Assumption 1 (Properties of the stochastic process generated by the adaptive stochastic algorithm)
The following hold for all iterations k < Tε:

(i) The probability that iteration k is true, conditioned on the past, is at least p, for some p > 1
2 .

(ii) There exists a constant ᾱ > 0, such that if αk ≤ ᾱ and iteration k is true, then it is successful.

The algorithms in [1–6] satisfy Assumption 1 with various stochastic oracles.

In the next section, under Assumption 1, we derive a high probability lower bound on αk as a
function of the number of iterations n (< Tε), ᾱ, p, and γ.

3. High probability lower bound on the minimum step size

Theorem 1 Let Assumption 1 hold for Algorithm 1, then for any n < Tε, ν > 0, with probability
at least 1− n−ν − cn−

1
2
(1+ν), we have

min
1≤k≤n

αk ≥ ᾱγγ
(1+ν) log p

1−p
n

= ᾱγn
−(1+ν) log p

1−p
1/γ
,

where c = 2p
√
1−p

√
p(1−2

√
p(1−p))2

.

The proof of this theorem involves two steps. First, in Subsection 3.1, we show that for n < Tε, the
step sizes of the algorithm can be coupled with a random walk on the non-negative integers. This
reduces the problem to that of bounding the maximum value of a one-sided random walk in the first
n steps. We then derive a high probability upper bound on this maximum value.

The following are some implications of the theorem.

Remark 2 If we choose ν = 1, then the minimum step size is lower bounded by ᾱγn
−2 log p

1−p
1
γ

with probability at least 1− 1+c
n . Here are some observations:

1. For fixed n, γ, and ᾱ, the lower bound is a function of p. It increases as p increases. Specif-
ically, the exponent of n changes with p, and the exponent goes to 0 as p goes to 1. Hence
as p goes to 1, this lower bound simplifies to ᾱγ, which matches the lower bound in the
deterministic case.

2. When p is close to 1 (i.e. when the stochastic oracles are highly reliable), this lower bound
decreases slowly as a function of n, since the exponent of n is close to 0. Alternatively, when
the stochastic oracles are not highly reliable, increasing the value of γ allows the algorithm
to maintain slow decrease of the step size.

3. Enlarging γ as p decreases makes intuitive sense for the algorithm. When p is large, an
unsuccessful step is more likely to be caused by the step size being too large rather than
the failure of the oracles to deliver desired accuracy. On the other hand, when p is small,
unsuccessful iterations are likely to occur even when the step size parameter is already small.
Thus in the latter case, larger γ values help avoid erroneous rapid decrease of the step size
parameter.
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4. If we choose γ =
(

p
1−p

)− 1
4 then the minimum step size is lower bounded by ᾱγn−

1
2 with

high probability. This coincides with the typical choice of the step size decay schemes for the
stochastic gradient method applied to non-convex functions.

3.1. Reduction to Random Walk

Let {Ak}∞k=0 denote the random sequence of step size parameter values for Algorithm 1. Let us
assume, w.l.o.g, that A0 = γjᾱ, for some j ≤ 0. (Recall here that 0 < γ < 1.) Then we
observe that Ak = γYk ᾱ, where {Yk}∞k=0 is a random sequence of integers, with Y0 = j ≤ 0,
which increases by one on every unsuccessful step, and decreases by one on every successful step.
Moreover, by Assumption (1), whenever Yk ≥ 0, the probability that it decreases by one is at least
p. We now couple {Yk}∞k=0 with a random walk {Zk}∞k=0 which stochastically dominates Yk.

Consider the following one-sided random walk {Zk}∞k=0, defined on the non-negative integers, with
a self-loop at 0.

Z0 = 0 Zk+1 =


Zk + 1, w.p. 1− p,
Zk − 1, w.p. p, if Zk ≥ 1,
0, w.p. p, if Zk = 0.

(2)

Lemma 3 For all k ≤ Tε, Zk stochastically dominates Yk.

This lemma is proved by exhibiting a coupling between the steps of the algorithm and this one-sided
random walk. The full proof is in Appendix A. The lemma shows that under a coupling of Zk and
Yk, γYk ᾱ is always lower bounded by γZk ᾱ for any k ≤ Tε. Hence, to lower-bound the smallest
step size of the algorithm, it suffices to upper-bound the maximum value of the random walk.

3.2. Upper-bounding the maximum value of the random walk

Definition 4 Let N (`, n) be the random variable that denotes the number of times Zk = ` in the
first n steps of the random walk.

By definition of N (`, n), we have N (`, n) > 0 if and only if state ` is visited in the first n steps of
the random walk. The next proposition upper bounds the probability that N (`, n) > 0.

Proposition 1 Let q = 1− p. We have

P(N (`, n) > 0) ≤ (n− `+ 1)
1− (q/p)

1− (q/p)`+1

(
q

p

)`
+

2p

(1− 2
√
pq)2

(
q

p

)(`+1)/2

.

The proof of Proposition 1 is in Appendix B.

Remark 5 The bound for Proposition 1 is essentially tight, as the decay of P(N (`, n) > 0) is not
faster than geometric; q` is a lower bound. Hence, the bound in Theorem 1 is essentially tight.

With the above proposition at hand, Theorem 1 is proved by choosing an appropriate level `, for
which P(N (`, n) = 0) is high. The full proof of Theorem 1 is in Appendix C.
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4. Numerical Illustration

In this section we conduct numerical experiments to illustrate how the step size parameter behaves
in practice for an adaptive stochastic algorithm. One example algorithm that falls under the frame-
work of Algorithm 1 is the “ALOE” algorithm in [5] (described in Appendix D). ALOE stands for
Adaptive Line-search with Oracle Estimations. It is proposed by [1], and is an extension of the line
search algorithm in [3] to the setting of inexact function estimates using a relaxed Armijo condition.
It is shown in [1] that ALOE satisfies Assumption 1. In contrast, the SLS algorithm, introduced in
[7], is a stochastic line search algorithm which does not satisfy Assumption 1.

We present experimental results for the step sizes of ALOE and SLS on two different neural net-
work architectures, using softmax loss function, trained on MNIST Handwritten Digit Classification
Dataset. The experiment settings are the same as those in [5]. The first architecture is a multi-layer
perceptron (MLP) neural network that has four layers: an input layer with 784 nodes, two hidden
layers with 512 and 256 nodes, and an output layer with 10 nodes. All activation functions are
ReLU. This is the same architecture as in [7]. The second network is a small convolutional neural
network (CNN) that in addition to the input and output layers, has two convolutional layers and one
fully connected layer. Each convolutional layer uses a 3× 3 kernel with a stride length of 1, and is
followed by a 2× 2 max pooling. The CNN architecture follows the tutorial at this link.

Figure 1 plots the step size parameters of the following algorithms, on the above two architectures.
1) ALOE 1 is the ALOE algorithm with γ = 0.7, 2) ALOE 2 is the ALOE algorithm with γ = 0.9.
3) SLS algorithm uses the suggested parameters as in the paper [7].

We see that the step sizes for the ALOE algorithms behave similarly to a random walk that is
bounded below. On the other hand, the step sizes for SLS are smaller than those of ALOE. This is
especially apparent on the CNN, where the step sizes for SLS get very small. This resulted in the
SLS algorithm making less progress than ALOE on the CNN architecture with the same number of
iterations. On the CNN, both ALOE algorithms had a final training loss of around 0.3, whereas SLS
had a training loss of 1.4. Also, the final classification accuracies of the ALOE algorithms were
above 99%, whereas that of SLS was around 49%. On the other hand, on the MLP network, both
the ALOE algorithms and SLS had relatively large step sizes, and resulted in similar classification
accuracies (around 98%).

(a) (b)

Figure 1: Step sizes of the ALOE and SLS algorithms, on the MNIST dataset for two NN architec-
tures.
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Appendix A. Proof of Lemma 3

Proof [of Lemma 3] Initially, Z0 = 0 and Y0 ≤ 0. If Yk ≤ −1, we update Zk+1 from Zk according
to Equation (2), independently of how Yk changes to Yk+1. If Yk ≥ 0, then we first check if Yk
increased or decreased. Let p′ be the probability that Yk+1 = Yk − 1 on this sample path. Since
Yk ≥ 0, we know that p′ ≥ p. Now, if Yk+1 = Yk+1, then we setZk+1 = Zk+1. On the other hand,
if Yk+1 = Yk−1, then we set Zk+1 = Zk + 1 with probability 1− p

p′ , and Zk+1 = max{Zk−1, 0}
with probability p

p′ . Note that these probabilities are well-defined because p′ ≥ p.

Observe that under this coupling, Zk ≥ Yk on every sample path. Moreover, {Zk} and {Yk} have
the correct marginal distributions. For Yk, this is easy to see, since it evolves according to its true
distribution and we are constructing Zk from it. For Zk, on any step with Yk ≤ −1, Zk+1 evolves
from Zk correctly according to Equation (2) by construction. On a step with Yk ≥ 0, the update to
Zk+1 also follows Equation (2), since the probability thatZk increases is (1−p′)+p′(1− p

p′ ) = 1−p.

To summarize, we have exhibited a coupling between {Zk} and {Yk}, under which Zk ≥ Yk on any
sample path. Thus,Ak = γYk ᾱ the step size of the algorithm at iteration k, stochastically dominates
γZk ᾱ. Thus, to obtain a lower bound on the step sizes of the algorithm, it suffices to obtain an upper
bound on the random walk {Zk}.

Appendix B. Proof of Proposition 1

Proof [of Proposition 1] Let q = 1 − p. Denote by p`,N the probability that state ` is reached in
the first N steps. Note that p`,N = P(N (`,N) > 0) by definition. First, observe that p`,N remains
unchanged if we change the state space from {0, 1, 2, . . .} to {0, 1, 2, . . . , `} and modify the chain
to hold in state ` with probability q (instead of moving from ` to ` + 1 with that probability). Call
the modified transition kernel P . Noting that Pm0,` is the probability that Xm = `, we see that

p`,N ≤
N∑
m=`

Pm0,`. (3)

The matrix P is explicitly diagonalized in [1, Section XVI.3]. In (3.16) there, take n = m and
j = 0 and k = `. The result is

Pm0,` =
1− (q/p)

1− (q/p)`+1

(
q

p

)`
− 2q

`+ 1

(
q

p

) `−1
2 ∑̀

r=1

[
sin πr

`+1

] [
sin πr`

`+1

] [
2
√
pq cos πr

`+1

]m
1− 2

√
pq cos πr

`+1

(4)

The absolute value of the sum appearing in (4) can of course be bounded above by

∑̀
r=1

(2
√
pq)m

1− 2
√
pq

= `
(2
√
pq)m

1− 2
√
pq

and this readily yields

Pm0,` ≤
1− (q/p)

1− (q/p)`+1

(
q

p

)`
+

2p

1− 2
√
pq

(
q

p

) `+1
2

(2
√
pq)m (5)
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Summing (5) over m = `, . . . , N and using (3) we obtain the bound on p`,N claimed in the propo-
sition.

Appendix C. Proof of Theorem 1

Proof [of Theorem 1] Let q = 1− p. By Proposition 1, we have:

P(N (k, n) > 0) ≤ (n− k + 1)
1− (q/p)

1− (q/p)k+1

(
q

p

)k
+

2p

(1− 2
√
pq)2

(
q

p

)(k+1)/2

.

Or in other words:

P(N (k, n) = 0) ≥ 1− (n− k + 1)
1− (q/p)

1− (q/p)k+1

(
q

p

)k
− 2p

(1− 2
√
pq)2

(
q

p

)(k+1)/2

≥ 1− n
(
q

p

)k
− 2p

(1− 2
√
pq)2

(
q

p

)(k+1)/2

Let a > 1 be a parameter to be set later, and take k = dloga(n)e. Then the above inequality implies:

P(N (k, n) = 0) ≥ 1− n
(
q

p

)loga(n)

− 2p

(1− 2
√
pq)2

(
q

p

)(loga(n)+1)/2

.

Note that
(
q
p

)loga(n)
= n

loga(
q
p
), hence

P(N (k, n) = 0) ≥ 1− n1−loga(
p
q
) −

2p
√
q

√
p(1− 2

√
pq)2

n
− 1

2
loga(

p
q
)
.

Note that when a < p
q , both 1 − loga(

p
q ) and −1

2 loga(
p
q ) are negative, so the event N (k, n) = 0

holds “with high probability”. Suppose a =
(
p
q

)1/(1+ν)
for some ν > 0. Then loga

p
q = 1 + ν, so

that

P(N (k, n) = 0) ≥ 1− n−ν −
2p
√
q

√
p(1− 2

√
pq)2

n−
1
2
(1+ν).

In other words, with probability at least 1− n−ν − cn−
1
2
(1+ν) with c =

2p
√
q√

p(1−2√pq)2 , the algorithm

will not reach any step size smaller or equal to γdloga neᾱ = γd(1+ν) logp/q neᾱ in the first n steps.
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Appendix D. ALOE algorithm

Algorithm 2: ALOE (Adaptive Line-search with Oracle Estimations)
Input: Parameter εf of the zeroth order oracle, starting point x0, max step size αmax > 0, initial
step size α0 < αmax, constants θ, γ ∈ (0, 1).
for k = 0, 1, 2, . . . do

Compute gradient approximation gk:
Generate the direction gk = g(xk, ξ

′
k) using the probabilistic first order oracle,

with α = αk.
Check sufficient decrease:

Let x+k = xk − αkgk. Generate f(xk, ξk) and f(x+k , ξ
+
k ) using the probabilistic

zeroth order oracle. Check the modified Armijo condition:

f(x+k , ξ
+
k ) ≤ f(xk, ξk)− αkθ ‖gk‖2 + 2εf . (6)

Successful step:
If (6) holds, then set xk+1 ← x+k and αk+1 ← min{αmax, γ

−1αk}.
Unsuccessful step:

Otherwise, set xk+1 ← xk and αk+1 ← γαk.
end
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