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Abstract
Non-convex optimization problems are ubiquitous in machine learning, especially in Deep Learn-
ing. While such complex problems can often be successfully optimized in practice by using
stochastic gradient descent (SGD), theoretical analysis cannot adequately explain this success.
In particular, the standard analyses don’t show global convergence of SGD on non-convex func-
tions, and instead show convergence to stationary points (which can also be local minima or saddle
points). In this work, we identify a broad class of nonconvex functions for which we can show that
perturbed SGD (gradient descent perturbed by stochastic noise—covering SGD as a special case)
converges to a global minimum, in contrast to gradient descent without noise that can get stuck
in local minima. In particular, for non-convex functions that are relative close to a convex-like
(strongly convex or PŁ) function we prove that SGD converges linearly to a global optimum.

1. Introduction

Non-convex optimization problems are ubiquitous in deep learning and computer vision [10]. The
training of a neural network amounts to minimizing a non-convex loss function f : Rd → R,

f? = min
x∈Rd

[
f(x) = Eξ∼D f(x, ξ)

]
, (1)

where stochastic gradients ∇f(x, ξ) can be evaluated on samples ξ ∼ D of the data distribution
(this formulation covers both the online setting or training on a finite set of samples). Stochastic
gradient descent methods, like SGD [67] or ADAM [41], are core components for training neural
networks. In addition to their simplicity, and almost universal applicability, the solutions obtained
by stochastic methods often generalize remarkably well [see e.g. 40].

In the field of convex optimization, the convergence of SGD is very well understood [10, 25].
The convergence proofs all exploit the property that stochastic gradients are approximations of the
true gradient, Eξ∇f(x, ξ) = ∇f(x) and that SGD updates can be viewed as gradient descent
steps perturbed by noise. From this point of view, stochastic noise is an undesirable influence
which is not conducive to optimization and must therefore be tamed: For instance by averaging
techniques [7, 69], decreasing stepsizes [43] or variance reduction [38, 50, 71, 77].

In stark contrast, stochastic noise has been observed to have beneficial effects in non-convex
optimization: For instance, it has been proven that stochastic noise can allow SGD to escape saddle
points [15, 24, 34], and under certain conditions noise allows SGD to escape local minima [30,
42]. While many important insights have been developed in such past works, none of these prove
global convergence results on non-convex functions. This is because finding a global solution on
smooth optimization problems is NP hard in general [59]. We can break this complexity barrier by
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considering a new function class that can more closely model the difficulty of non-convex problems
encountered in practice.

In this work, we characterize a new class of non-convex functions for which stochastic gradient
methods can provably escape local minima. In particular, we characterize non-convex functions
on which stochastic methods converge linearly to a global solution (in contrast, only sublinear
convergence rates to local minima are known on general non-convex functions, 23, 47).1 The main
difference to prior work is that we assume that the objective function f has a hidden structure,
namely that f is the composition of two components g, h : Rd → R:

f(x) = g(x) + h(x) . (2)

We study algorithms can only query ∇f(x, ξ) (such as SGD) and do not have access to g or h
separately. This structural assumption allows us to derive much finer convergence guarantees than
are possible with the standard black box model. For instance under the assumption that g satisfies the
Polyak-Łojasiewicz (PŁ) condition (we consider other cases too) and that the perturbations induced
by h are not too strong relative to g, we show that the SGD trajectory follows the gradient flow of g
and converges linearly to a neighborhood of the global solution.

Such hidden structures appear in many common ML optimization problems. As an example,
consider the training of a classifier in the presence of random label noise. A common solution
approach is to modify the surrogate loss function to attain unbiased estimators—however this new
optimization target might not be convex, even when starting from a convex loss function (such as
least square regression). Natarajan et al. [53, Theorem 6] prove that this non-convex optimization
target f is uniformly close to a convex function g, i.e. h is bounded. The function classes we
consider contains this class of problems, yet we also cover more general cases where h is not
uniformly bounded.
Contributions. Our contributions can be summarized as:
• We introduce a new class of structured non-convex functions. By studying convergence on this

function class, we can circumvent the lower complexity bounds that constrain the SGD analyses
on general non-convex smooth functions [6] and we are able to derive improved complexity
estimates for perturbed SGD methods—a class of algorithms that perturb iterates by stochastic
perturbations and that contains SGD as a special case.

• We characterize settings where perturbed SGD methods converge linearly to a neighborhood
of the global solution, while traditional analyses can only show sublinear convergence to local
minma or stationary points (which can be arbitrary far from the global minima).

• Utilizing the insights developed in [42], we are able to link our convergence results to the behavior
of SGD.

2. Perturbed SGD

Our main goal is to study the convergence of SGD on problem (1). The SGD algorithm is defined
as

xt+1 := xt − γ∇f(xt, ξt) , (SGD)

for a constant stepsize γ and a uniform stochastic sample ξt ∼ D. This update can equivalently be
written as

1. Concretely, O(1/ε3.5) complexity to find an
√
ε-approximate local minima with ‖∇f(x)‖ ≤ ε [23, 47].

2



ESCAPING LOCAL MINIMA WITH STOCHASTIC NOISE

xt+1 = xt − γ∇f(xt) + γwt , (SGD)

by defining wt := ∇f(xt)−∇f(xt, ξt). Let wt ∼ W(xt), whereW(xt) denotes the distribution
of wt, which can depend on the iterate xt.

Standard approach. Standard analyses of SGD on non-convex L-smooth functions typically
derive an upper bound on the expected one step progress [e.g. Thm. 4.8 in 10]. This gives

E f(xt+1) ≤ f(xt)− γ ‖∇f(xt)‖2 + (γ2L/2)Var(wt) .

However, following this methodology, stochastic updates can always only guarantee a smaller ex-
pected one step progress than the gradient method, as the variance is always positive.

Our approach. To circumvent the aforementioned limitation, we adopt two key changes. First,
by utilizing the structure (2) we study the one step progress on g and secondly, we formulate the
algorithm slightly differently. Concretely, we study perturbed SGD (Algorithm 1) that we formally
define as

xt+1 = xt − γ∇f(xt − ut, ξt) , (perturbed SGD)

for a random perturbation ut ∼ U(xt). For this method, the expected one step progress can be
estimated as,

E g(xt+1) ≤ g(xt)− γ∇g(xt)
ᵀ Eut,ξt [∇f(xt − ut, ξt)]︸ ︷︷ ︸

¬

+
γ2L

2
Varut,ξt(∇f(xt − ut, ξt))︸ ︷︷ ︸



(3)

The above formulation allows us to obtain larger progress than standard analysis, by the virtue of
considering g and by using an appropriate smoothing distribution U . To establish convergence, we
will impose appropriate conditions on terms and in (3), which forms the basis for our Assumptions
in Section 3.2.

It is easy to see that perturbed SGD comprises SGD, for instance when ut ≡ 0 a.s. However,
there are more possibilities to trade-off the randomness in ξt and ut. In Appendix 5 below we
derive more general connections between perturbed SGD and vanilla SGD.

To summarize, we introduce perturbed SGD with the purpose to study the impact of smoothing
u ∼ U and stochastic gradient noise ξ ∼ D separately. Perturbed SGD is illustrated in Algorithm 1
and implements a stochastic smoothing oracle by only accessing stochastic gradients of f . For
simplicity, we assume constant step length γ.

Algorithm 1 Perturbed SGD

Require: γ, f(x), T,U(x),x0

for t = 0 to T − 1 do
sample ut ∼ U(xt) . smoothing distribution
sample ξt ∼ D . (mini-batch) data sample
xt+1 = xt − γ∇f(xt − ut, ξt) . SGD update

end for (or ADAM/momentum)
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3. Setting and Assumptions

We will now introduce the main assumption on the objective function f with structure (2) and give
an illustrative example.

3.1. Smoothing

To formalize the notion of perturbations (i.e. the ut’s in Algorithm 1), we utilize the framework of
smoothing [21]. Convolution-based smoothing of a function f : Rd → R is defined as2

fU (x) := Eu∼Uf(x− u) , ∀x ∈ Rd , (4)

for a probability distribution U (sometimes we will allow U(x) to depend on x).
Smoothing is a linear operator (g+ h)U = gU + hU and when f is convex, then fU is convex as

well.
The smoothing (4) cannot be computed exactly without having access to f , but one can resort to

a stochastic approximation in practice. For a given f , we can query stochastic gradients of ∇fU by
sampling u ∼ U and evaluating∇f(x−u). Many works that analyze smoothing need to formulate
concrete assumptions on the smoothing distribution U , for instance that variance Eu∼U(x) ‖u‖2 ≤
ζ2 is bounded by a parameter ζ2 > 0. This is for instance satisfied for for smoothing distributions
with bounded support [see 21] or subgaussian noise, in particular for the normalized Gaussian kernel
u ∼ N (0, ζ2/d Id). In our case, we do not need to formulate such an assumption on U directly,
instead we formulate a new assumption that jointly governs and smoothing and stochastic noise in
the next section.

3.2. Main Assumptions

As mentioned earlier, these assumptions seek to improve the one step progress for perturbed SGD
(Algorithm 1) by exploiting the key terms of u, and in (3)—in Assumptions 1 and 2 respectively.

We now list the main assumptions for the paper.

Assumption 1 (Stochastic noise) The stochastic noise is unbiased, Eξ∼D f(x, ξ) = f(x), the
smoothing distribution is zero-mean and Eu∼U(x)[u] = 0, there exists parameters σ′2 ≥ 0, M ′ ≥ 0,
such that after smoothing with U(x), ∀x ∈ Rd:

Eu,ξ

∥∥∇f(x− u, ξ)−∇fU(x)(x)
∥∥2 ≤ σ′2 +M ′

∥∥∇fU(x)(x)
∥∥2

. (5)

Note that Eu,ξ∇f(x − u, ξ) = ∇fU(x)(x). Therefore (5) allows to bound the variance term 

in (3). This extends the standard noise assumption in SGD settings [10, 69] which are of the form
σ2 + M ‖∇f(x)‖2 (we recover this assumption when u ≡ 0, a.s.). While in non-convex settings
this prior assumption is could be restrictive (as ‖∇f(x)‖2 is small for stationary points, enforcing
large σ′), in contrast, ‖∇fU(x)(x))‖2 will still be positive large at saddles or sharp local minima,
and thus in general σ′ in (5) can be chosen much smaller.

Additionally, if the stochastic and smoothing noise are bounded and independent, we can re-
cover the above assumption. We discuss this in detail in Appendix C.

We shift our attention on how to control the term ¬ in (3). Through the next assumption, we
neatly tie this to the structure of the objective function in (2).

2. If U is symmetric, this is equivalent to the more standard definition EU [f(x+ u)].
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(a) fU (x) and g(x) = x2 (b) ∇fU (x) and ∇gU (x)

Figure 1: Illustration of the effect of smoothing f(x) = x2 + 10x sin(x) (blue) with the Gaussian kernel
N (0, ζ2) for different ζ ∈ {0, 1, 2}. fU (x) does not become convex even for arbitrarily large ζ2 > 0.

Assumption 2 (Structural properties of g and h) The objective function f : Rd → R can be
written in the form (2), with g being Lg-smooth, and there exists parameters 0 ≤ m < 1 and
∆ ≥ 0, such that, ∀x ∈ Rd:∥∥∇fU(x)(x)−∇g(x)

∥∥2 ≤ ∆ +m ‖∇g(x)‖2 . (6)

While this function does not explicitly clarify the role of h, to illustrate we can split the term
on LHS as ∇hU(x)(x) + (∇gU(x)(x) − ∇g(x)). The difference term (gU(x)(x) − ∇g(x)) can be
bounded if U(x) has bounded variance and g is smooth. The purpose of this assumption then be-
comes controlling ∇hU(x)(x), which essentially is the non-convex perturbation in f . Note that this
assumption allows possibly unbounded h, however after smoothing,∇hU(x)(x) must be dominated
by∇g(x). This assumption is an extension of biased gradient oracles of Ajalloeian and Stich [2].

3.3. Illustrative Example

We now provide an illustrative example which satisfies our assumptions while displaying a high
degree of non-convexity. Consider the following 1-dimensional function,

f(x) = x2 + ax sin(bx) , (7)

for parameters a, b > 0. We can chose g(x) = x2 as the convex part, while h(x) = ax sin(bx)
denotes the possibly unbounded non-convex perturbation. For ab ≥ 2, this function can have
infinitely many local minima, arbitrarily far away from its global minima.

Even after smoothing with a Gaussian distribution N (0, ζ2), the non-convex perturbations do
not disappear, and it cannot be convex for any ζ (for more details see Appendix F.3). However, these
perturbations become smaller with respect to g for larger ζ, as shown in Fig. 1. This (provably)
allows the function to satisfy Assumption 2 for some m and ∆.

4. Convergence Analysis

The convergence analysis in this sections partially follows the biased gradient framework [2]. We
provide convergence results when g is PŁ, and defer the proofs and additional extensions to Ap-
pendix D.
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4.1. Convergence under PŁ Conditions

Theorem 1 Let f satisfy Assumptions 1 and 2, and assume g to be µg-PŁ. Then there exists a
stepsize γ such that for any ε > 0,

T = Õ
(

(M ′ + 1) log
1

ε
+

σ′2

ε(1−m)µ+ ∆

)
κ

1−m

iterations are sufficient to obtain GT = O(ε + ∆
µ(1−m)), where κ :=

Lg
µ , Gt = E[g(xt)] −

minx∈Rd g(x) and Õ hides only log terms.

If σ′2 = 0 then this theorem shows linear convergence in O
(

κ
1−m log 1

ε

)
steps to a neighborhood of

the global solution. When σ′2 is large, the rate is dominated by the second term, O
(

σ′2

ε(1−m)2

)
. This

matches the O
(
σ2

ε

)
convergence rate of vanilla SGD on PŁ functions. However, note that in our

case f does not need to be PŁ to enjoy these convergence guarantees.

4.2. Insights

In this section we have derived convergence results under our novel structural assumption (2) for
Perturbed SGD (Alg. 1). Our results depict the impact of the smoothing U and the stochastic noise
D, and when U ≡ 0 a.s. (no smoothing), we recover the known convergence results for SGD.

All convergence results depend on the joint effect of smoothing and stochastic noise, σ′2 =
σ2 + L2ζ2 (see Remark 4). This means, that any smoothing with ζ2 ≤ 1

L2σ
2 does not worsen the

convergence estimates one would get by analyzing vanilla SGD alone. Moreover, smoothing allows
convergence to the minima of g, and to avoid local minima of f at a linear rate. Note that this
is much faster and simpler than existing methods [35, 78] which can only converge to approximate
local minima. In particular, smoothing f with the scaled gradient noise 1

LD we get for free a method
that enjoys much more favorable convergence guarantees than SGD [24]. But is it even necessary
to implement Pertubed SGD, or does vanilla SGD suffice? We argue in the next section that this
might indeed be the case.

5. Connection to SGD

We now explain how the analysis from the previous section is connected to the standard SGD
algorithm. (that does not implement the smoothing perturbation u ∼ U(x) explicitly).

This follows directly from insights in [42]. Let xt be the SGD iterates as defined in (SGD), with
noise wt ∼ W(xt), whereW(xt) is the gradient noise distribution. Kleinberg et al. [42] propose to
study the alternate sequence yt defined as

yt+1 = xt − γ∇f(xt) .

Let zt define the iterates of Algorithm 1 as defined in (perturbed SGD), with only smoothing, ut,
and no gradient noise, ξt. Let ut ∼ U(xt), where U(xt) is the smoothing distribution.

Lemma 2 (Equality in Expectation, [adopted from 42]) For xt,yt and zt defined as above, if
z0 = y0 and U(xt) = γW(xt) for all t ≥ 0, then

E[zt] = E[yt] .

6



ESCAPING LOCAL MINIMA WITH STOCHASTIC NOISE

We refer the reader to [42] for the proof.
This Lemma establishes the intuition, that SGD is performing approximately gradient descent

on a smooth version of f . Note that we establish only a weak equivalence in expectation. However,
even this weak equivalence is sufficient to use our main results from Theorem 10 for SGD analysis.
We refer the reader to Appendix E for additional analysis and experiments.

6. Numerical Illustrations

In this section we provide numerical illustrations to demonstrate that Perturbed SGD is able to
escape local minima in contrast to gradient descent (GD). We compare the performance of our Al-
gorithm 1 with GD on our toy example f(x) = x2 +10x sin(x) with U = N (0, ζ2) smoothing. The
results (averaged over 1000 independent runs) are illustrate in Figure 2. For this function there are
two global minima located near ±4.7. We observe that while GD gets stuck at poor local minima
most of the time, our algorithm is able to escape these local minima. Further, increasing smoothing
by increasing ζ helps in escaping local minima, and allows convergence to the minima of g(x) = x2,
which is close to the global minima of f .

Figure 2: Distribution of the last iterates from GD and Algorithm 1 on the toy example (7). We run Perturbed
SGD and SGD for 1000 random initializations between [−400, 400] and for T = 100 iterations. Here
σ = 0,M = 0 and ζ ∈ {0.5, 1} with Gaussian smoothing. We select the step size form a grid search over
a grid of 4 step sizes from [10−5, 1], which are exponentially separated. For better visualization, we plot the
locations and histogram of the last iterate from these runs, restricted to the interval [−50, 50].

7. Discussion and Outlook

There is a growing discrepancy between the theoretical complexity results for SGD and its much
better good empirical performance, which is often observed in practice. This is because the theoreti-
cal modeling of the functional class—typically smooth non-convex losses—does not reflect well the
practical challenges. To break this complexity barrier, we propose a new class of functions that al-
low us to justify why stochastic methods (SGD or Perturbed SGD) can provably avoid local minima
and can converge (at a linear rate) to a global optimal solution. However, it remains an interesting
open question to prove that our structural assumption holds for real DL tasks.

We believe that it possible to develop more advanced versions of Perturbed SGD, such as coun-
terparts of momentum SGD, ADAM, or variance reduced methods that are specifically designed
for (hidden) composite functions. Another direction could aim at proving convergence results for
SGD on targets with hidden structure in a more direct way, without the detour via Perturbed SGD.
Research in this direction may for example shed new light on why variance reduced methods strug-
gle on non-convex tasks [16] and can lead to more efficient training methods for neural networks in
general.
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Appendix A. Additional Discussion of Related Work

In this section, we provide a more comprehensive overview of the literature for our problem. We
have two major directions of research with which we can compare our work. The major direction
deals with convergence to stationary points of the a general non-convex function. We compare
with existing works in this direction in Table 1. The second direction deals with approximately
convex functions, where the convexity condition is gradually relaxed. We also cover existing liter-
ature on smoothing and optimization of composite functions. Benefits of Injecting Noise: It has
been observed that the noise in the gradient can help SGD to escape saddle points [24] or achieve
better generalization [28, 52]. This is often explained by arguing that SGD finds ‘flat’ minima
with favorable generalization properties [32, 33, 40], though also ‘sharp’ minima can generalize
well [17]. These advantageous properties of SGD decrease as the batch size is increased [40] or
with variance reduction techniques [16]. Several authors proposed to artificially inject noise into
the SGD process for improved generalization [13, 55, 63], in particular in the context of large batch
training [29, 48, 72].

Approximate Minima in Non-Convex Functions: Despite their NP-hardness, several works
have studied non-convex optimization problems. Standard analysis for smooth functions can guar-
antee convergence to a first order stationary point (‖∇f(x)‖ ≤ ε) only [25, 26] at rate O(ε−2).
Recently, there has been much interest in second-order stationary points, where ε-SOSP is defined
as ‖∇f(x)‖ ≤ ε, λmin(∇2f(x)) ≥ −

√
ε [5, 24, 75]. If all saddle points are strict, then all ε-SOSP

are approximate local minima [34]. Thus, convergence to ε-SOSP allows us to escape all saddle
points. While SGD guarantees O(ε−4) convergence to ε-SOSP, utilizing acceleration and second-
order approximations improves it to O(ε−3.5) [1, 11, 12, 35, 36]. Other methods, with same or
slightly better rates, utilize efficient subroutines [3, 4], negative curvature of the loss [22, 74, 76],
adaptive regularization [60, 70, 73] and variance reduction [46, 66, 79]. For Table 1, we will use the
following definitions:

• First-order stationary point: A point x ∈ Rd is called a ε-first-order stationary point if ‖∇f(x)‖ ≤
ε.

• Second-order stationary point: A point x ∈ Rd is called a (ε,
√
ρε))-second-order stationary point

if ‖∇f(x)‖ ≤ ε and λmin(∇2f(x)) ≥ −√ρε, where ρ is the Lipschitz constant of the Hessian.
Under certain conditions on the saddle points of the function [34], these points can be regarded
as approximate local minima, and convergence to them implies escaping all saddle points.

Additionally, all methods converging to first-order stationary points require gradients to be Lips-
chitz, while for all methods converging to second-order stationary points, the function, its gradient
and its Hessian should all be Lipschitz.

In contrast our methods, require only stochastic gradients, smoothness of g and Assumption 2, to
allow linear convergence to a neighborhood of global minima. Moreover, the algorithms achieving
best rates need more complicated algorithms than our Perturbed SGD.

Smoothing: Injecting artificial noise is classically also known as smoothing or convolution [18,
44] and has found countless applications in various domains and communities. In the context of
optimization, smoothing has been used at least since the 1960s in [51, 65, 68]. While most proofs
apply to the convex setting only [56, 61], smoothing is more prominently used in heuristic search
procedures for non-convex problems [9, 27]. One of the outstanding features of the smoothing
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Table 1: Comparison to related works on non-convex optimization

Output Assumptions Oracle Method Rate
First-order

stationary point
Gradient
Lipschitz

Gradient
[26] O(ε−2)

[12] Õ(ε−1.75)

Second-order
stationary point

Function,
Gradient

and Hessian
Lipschitz

Hessian [60] O(ε−1.5)

Hessian-vector
product

[11] Õ(ε−2)

[1] Õ(ε−1.75)

Gradient
[34] Õ(ε−2)

[36] Õ(ε−1.75)

Stochastic
Gradient

[78] poly(ε−1)

[24] Õ(ε−4)
[23]

Õ(ε−3.5)
[70]
[4]
[66]
[46] Õ(ε−3.33)
[5] Õ(ε−3.25)
[22] Õ(ε−3)

Global Minima
Assumption 2,
∇g(x) Lipschitz

g convex
This paper O(log(ε−1) + ε−1)

technique is that it allows to reduce the optimization complexity of non-smooth optimization prob-
lems [21, 58].

Compositional structure: Often in machine learning settings, an inherent structure f = g + h
is explicitly known, for instance when one term denotes a regularizer. In this case, optimization
methods can be designed that exploit favorable properties of the regularizer (such as strong convex-
ity) [20, 57]. However, this is different from our approach, as these algorithms need to have explicit
knowlege of the regulariser. We, instead, use the structure (2) only as an analysis tool [opposed to
e.g. 14], while the algorithm has only access to stochastic gradients of f .

Approximately convex functions: Another approach for analysis of non-convex functions in-
vestigates weaker forms of convexity. The most common formulations include PŁ functions [39, 49,
64], where all minima are global minima, star-convex functions [45, 80], which are convex about
the minima and approximately convex functions, which differ from convex functions by a bounded
constant [8, 35, 78]. These functions are analyzed using standard techniques used for convex func-
tion. also extend this notion. Necoara et al. [54] provide a survey of when this analysis can lead to
linear convergence. The class of non-convex functions that we consider subsume most mild cases
of non-convexity like PŁ, star-convexity or approximate convexity and can be extended to stronger
ones like quasar-convexity [31, 37].

The key idea for these function classes is to relax the convexity condition to include non-convex
functions. We will show that our settings allow us to encompass most function classes which are

17



ESCAPING LOCAL MINIMA WITH STOCHASTIC NOISE

approximately convex. First of all, our function class includes convex and PŁ functions [39], by set-
ting h(x) = 0. Another class of functions which are discussed extensively are those with bounded
h. Belloni et al. [8] consider a class of functions where h(x) is bounded. A similar notion is covered
by Zhang et al. [78], where SGLD is used for derivative free optimization of functions, where the
stochastic function oracle is bounded from the function value. This can also be encompassed by
our function class as we only need the stochastic oracle to be unbiased. Another simpler function
class covered by our settings, is that of bounded gradients for h. We discuss this in detail in Ap-
pendix D.5.2. There are other forms of non-convexity, like star-convexity [37], where the function
is convex about only the global minima, and its generalization to quasar-convexity [31]. While our
settings do not cover these classes, we can extend our analysis to include them, by considering that
function g is quasar or star convex instead of strongly-convex, ensuring that all results still hold.

Non-convex smoothing: A theoretical connection between stochastic optimization and smooth-
ing as been established in [42]. They study smoothing with distributions with bounded support
(while we do not make this restriction) and prove convergence under the assumption the smooth fU
is star convex [31]. In [30] a graduated smoothing technique was analyzed under the assumption the
smoothed function is strongly convex on a sufficiently large neighborhood of the optimal solution.
Further, smoothing has been used in the context of derivative free optimization or in Langevin dy-
namics in non-convex regimes, most notably in [8, 35, 78], however these works do not show global
linear convergence in stronger paradigms of non-convexity.

Apart from these works, we do a rigorous comparison to [30] and [42] in Appendix F, since
they are closely related to our settings.

Appendix B. Notation

For the reader’s convenience, we summarize here a few standard definitions [59]. We say that a
function f : Rd → R is L-smooth if its gradient is L-Lipschitz continuous:

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x,y ∈ Rd. (8)

A function f : Rd→R is µ-strongly convex for µ ≥ 0, if

〈∇f(x)−∇f(y),x− y〉 ≥ µ ‖x− y‖2 , ∀x,y ∈ Rd

Sometimes relaxations of this condition are considered. A function f : Rd → R satisfies the Polyak-
Łojasiewicz (µ-PŁ) condition with respect to x? if

2µ(f(x)− f(x?)) ≤ ‖∇f(x)‖2 , ∀x ∈ Rd . (9)

If follows that x? = arg minx∈Rd f(x) is unique. We provide additional useful standard conse-
quences of these inequalities in Appendix C.

Appendix C. Additional Technical Tools

We list here a few useful properties, sometimes used in the proofs. Further, we also provide missing
proofs and additional analysis for Remark 4 and Lemma 2 in Section 5.
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C.1. On Smooth and Convex Functions

We first provide additional definitions and formulations for smooth functions, which we will use
later.

A function is µ-star-convex with respect to x? if

〈∇f(x)−∇f(x?),x− x?〉 ≥ µ ‖x− x?‖2 , ∀x ∈ Rd . (10)

Strongly convex functions are both PŁ and star convex.
The smoothness assumption (8) is often equivalently written as

|f(y)− f(x) + 〈∇f(x),y − x〉| ≤ L

2
‖y − x‖2 , ∀x,y ∈ Rd (11)

Remark 3 Note that if a function f is L− smooth and has a minimizer x? ∈ arg minx f(x), then
it holds satisfies

‖∇f(x)‖2 ≤ 2L(f(x)− r(x?)) ∀x ∈ Rd . (12)

Proof Let y = x− 1
L∇f(x), then, substituting these x and y in above definition –

‖∇r(x)‖2 ≤ 2L(r(x)− r(x− 1

L
∇f(x))) .

Since r(x− 1
L∇f(x)) ≥ r(x?), we can substitute this in the upper bound.

Strong convexity is often written as

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖y − x‖2 ∀x,y ∈ Rd . (13)

C.2. Discussion on Assumption 1

We obtain a provide additional details on obtaining Assumption 1 as a decomposition of the smooth-
ing and stochastic noise.

Remark 4 If the smoothing distribution, U(x) has variance bounded by ζ2 + Z
∥∥∇fU(x)(x)

∥∥2,

and the variance of stochastic gradients have variance bounded as σ2+M
∥∥∇fU(x)(x)

∥∥2, for some
σ2, ζ2,M,Z ≥ 0, then under independence of U and D and L-smoothness of f , we can chose the
terms in Assumption 1 as σ′2 := σ2 + 2(Lζ)2 and M ′ := M + 2(LZ)2.

The above remark allows us to separate the contributions of smoothing noise and stochastic noise.
Further, setting the terms of smoothing (ζ, Z) to 0, we recover the standard assumptions for SGD
with unbounded variance.

To prove Remark 4, we first restate a more general version of the assumptions on the smoothing
distribution U(xt) and noise distribution D (in the main text we assumed Z = 0 for simplicity).

Assumption 3 (Smoothing noise) For given f : Rn → R, the smoothing distribution U(x) is zero-
mean (Eu∼U(x) u = 0), can possibly depend on x ∈ Rd and there exists constants (ζ2 ≥ 0, Z2 ≥ 0)
such that the variance can be bounded as

Eu∼U(x) ‖u‖2 ≤ ζ2 + Z2
∥∥∇fU(x)(x)

∥∥2
, ∀x ∈ Rd . (14)
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This Assumption is modeled similar to our Assumption 1. Further, setting Z = 0, we obtain a
bound on the variance of the smoothing distribution, which is valid for subgaussian variables [21].

We can use the above assumption to obtain bounds on variance of the perturbed gradient.

Lemma 5 (Stochastic Approximation) If f isL-smooth and Assumption 3, the variance is bounded
as

Eu∼U(x)

∥∥∇f(x− u)−∇fU(x)(x)
∥∥2 ≤ 2L2ζ2 + 2L2Z2

∥∥∇fU(x)(x)
∥∥2

, ∀x ∈ Rd . (15)

Proof By Jensen’s inequality and smoothness

Eu

∥∥∇f(x− u)−∇fU(x)(x)
∥∥2

= Eu

∥∥∇f(x− u)− Ev∼U ∇f(x−v)(x)
∥∥2

≤ Eu,v ‖∇f(x− u)−∇f(x− v)‖2

≤ L2 Eu,v ‖u− v‖2 ≤ 2L2ζ2 + 2L2Z2
∥∥∇fU(x)(x)

∥∥2
.

Now, that we have defined all the terms for the smoothing distribution in Remark 4, we introduce
a common assumption for the stochastic noise.

Assumption 4 For given f : Rn → R, the perturbed stochastic gradient can be expressed as

∇f(x− u, ξ) = ∇f(x− u) + w (16)

where w ∼ W(x) and W(x) denotes the zero-mean noise distribution, and there exist constants
(σ2 > 0,M > 0), such its variance can be bounded as

Ew∼W(x) ‖w‖2 ≤ σ2 +M
∥∥∇fU(x)(x)

∥∥2
, ∀x ∈ Rd . (17)

Now, we are ready to present the complete the proof for Remark 4. We first present its extended
version as a Lemma below and then prove it.

Lemma 6 (Extension of Remark 4) If f is L-smooth, Assumptions 3 and 4 are satisfied, and the
noise (W(x)) and smoothing distributions (U(x)) are independent for x, then,

Eu,ξ

∥∥∇f(x− u, ξ)−∇fU(x)(x)
∥∥2 ≤ (σ2 + 2(Lζ)2) + (M + 2(LZ)2)

∥∥∇fU(x)(x)
∥∥2

. (18)

Note that this is identical to Assumption 1, with σ′2 = σ2 + 2(Lζ)2 and M ′ = M + 2(LZ)2.
Proof Consider the term on the left hand side,

Eu,ξ

∥∥∇f(x− u, ξ)−∇fU(x)(x)
∥∥2

= Ew,ξ

∥∥∇f(x− u) + w −∇fU(x)(x)
∥∥2

= Eξ

∥∥∇f(x− u)−∇fU(x)(x)
∥∥2

+ Ew ‖w‖2

≤ (σ2 + 2(Lζ)2) + (M + 2(LZ)2)
∥∥∇fU(x)(x)

∥∥2
.

The first step is obtained by applying Assumption 4 to separate w. We can then separate terms of u
and w since their distributions are independent. Then, we use Lemma 5 and Assumption 4 to bound
the two variance terms.
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Appendix D. Deferred Proofs

In this section we give the proofs that are missing from the main text.
First, we state and prove an intermediate lemma for sufficient decrease which resembles (3).

Using this Lemma, we can easily prove the corresponding theorems for gradient noise, PŁ and
strongly-convex functions. Additionally, we restate the complete theorems for these cases which
contain all the details about step sizes and exact convergence rate.

D.1. One Step Progress

Lemma 7 (One Step Progress) Let f satisfy Assumptions 1 and 2 and, assume g to be Lg-smooth
and xt generated according to Algorithm 1. Then, for γ ≤ 1

Lg(M ′+1) , it holds

(1−m)

2
E[‖∇g(xt)‖2] ≤ Gt − Gt+1

γ
+

∆

2
+
γLg

2
σ′2 ,

where Gt and g? are as defined before.

Proof Using Lg-smoothness of g, we can write

g(xt+1) ≤g(xt) + 〈∇g(xt),xt+1 − xt〉+
Lg
2
‖xt+1 − xt‖2

≤g(xt)− γ 〈∇g(xt),∇g(xt − ut, ξt) +∇h(xt − ut, ξt)〉

+
γ2Lg

2
‖∇g(xt − ut, ξt) +∇h(xt − ut, ξt)‖

2 .

Taking expectation wrt ξt and ut, and using the inequality E[‖X‖2] = E[‖X − E[X]‖2]+‖E[X]‖2,
and using the definition of smoothness we get

Eξt,ut [g(xt+1)] ≤g(xt)− γ
〈
∇g(xt),Eξt,ut [∇g(xt − ut, ξt) +∇h(xt − ut, ξt)]

〉
+
γ2Lg

2
Eξt,ut ‖∇g(xt − ut, ξt) +∇h(xt − ut, ξt)‖

2

≤g(xt)− γ
〈
∇g(xt),∇gU(xt)(xt) +∇hU(xt)(xt)

〉
+
γ2Lg

2

∥∥∇fU(xt)(xt)
∥∥2

+
γ2Lg

2
Eξt,ut [

∥∥∇f(xt − ut, ξt)−∇fU(xt)(xt)
∥∥2

] .

Using Assumption 1, with γ ≤ 1
Lg(M ′+1)

Eξt,ut [g(xt+1)] ≤g(xt)− γ
〈
∇g(xt),∇gU(xt)(xt) +∇hU(xt)(xt)

〉
+
γ2Lg(M

′ + 1)

2

∥∥∇fU(xt)(xt)
∥∥2

+
γ2Lg

2
σ′2 .

(19)

Eξt,ut [g(xt+1)] ≤− γ

2

(
‖∇g(xt)‖2 −

∥∥∇hU(xt)(xt) + gU(xt)(xt)− g(xt)
∥∥2
)

+ g(xt) +
γ2Lg

2
σ′2 .
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Now, using Assumption 2.

Eξt,ut [g(xt+1)] ≤g(xt)−
γ(1−m)

2
‖∇g(xt)‖2 +

γ∆

2
+
γ2Lg

2
σ′2 .

Taking full expectation on both sides and subtracting g? from both sides, we get the required result.

D.2. Gradient Norm Convergence

Theorem 8 (Gradient Norm convergence) Under the assumptions in Lemma 7, for stepsize γ ≤
1

Lg(M ′+1) , after running the Algorithm 1 for T steps, it holds:

ΦT ≤
(

2G0

Tγ(1−m)
+
γLgσ

′2

1−m

)
+

∆

1−m
,

where ΦT = 1
T

∑T−1
t=0 E[‖∇g(xt)‖2].

Further, for ε > 0 and γ = min{ 1
Lg(M ′+1) ,

ε(1−m)+∆
2Lgσ′2

}, then

T = O
(

M ′ + 1

ε(1−m) + ∆
+

σ′2

ε2(1−m)2 + ∆2

)
LgG0

iterations are sufficient to obtain ΦT = O(ε+ ∆
1−m)

Proof We can sum the terms of Lemma 7 for t = 0 to T − 1, and divide both sides by T ,to obtain

1

T

T−1∑
t=0

E[‖∇g(xt)‖2] ≤ 2(G0 − GT )

Tγ(1−m)
+

∆

(1−m)
+

γLg
(1−m)

σ′2 ,

This proves the first part of the above Theorem. We can choose step sizes according to obtain rates
in terms of ε. This can be found in [2, Lemma 3] and [2, Theorem 4] with different constants and
notation.

D.3. Convergence for PŁ functions (Proof of Theorem 1)

We state the extended version of Theorem 1.

Theorem 9 Under Assumptions of Lemma 7 and the additional assumption that g is µ-PŁ, it holds
for any stepsize γ ≤ 1

Lg(M ′+1) ,

GT ≤ (1− γµ(1−m))TG0 +
1

2
Ξ , where Ξ =

∆

µ(1−m)
+

γLgσ
′2

µ(1−m)
.

Further, by choosing γ = min{ 1
Lg(M ′+1) ,

ε(1−m)µ+∆
Lgσ′2

}, for any ε > 0,

T = Õ
(

(M ′ + 1) log
1

ε
+

σ′2

ε(1−m)µ+ ∆

)
κ

1−m

iterations are sufficient to obtain GT = O(ε+ ∆
µ(1−m)), where κ :=

Lg
µ and Õ hides only log terms.
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Proof We use the PL condition in Lemma 7, to obtain

µGt ≤
(Gt − Gt+1)

γ(1−m)
+

∆

2(1−m)
+

γLg
2(1−m)

σ′2

Gt+1 ≤(1− µγ(1−m))Gt +
∆γ

2
+
γ2Lg

2
σ′2

Unfolding the above recursion from t = 0 to t = T − 1, we get the first part of above Theorem.
For the convergence rates in terms of ε, we can choose step size γ accordingly. This is similar to [2,
Theorem 6] with different constants and notation.

D.4. Convergence under Strong Convexity

We now extend our results to the case when g is strongly convex. Note that while Theorem 1 still
applies (all strongly convex functions are PŁ), applying this result in the for PŁ case admits a weaker
convergence rate by a factor proportional to κ in contrast to the improved result in Theorem 10.
This result is not covered in prior frameworks, as matching convergence rates were previously only
derived for m < 1/κ [2, Remark 7]. To achieve, this, we slightly refine our Assumption 2, ensuring
we still are able to retain its expressivity.

Assumption 5 (Structural properties) The objective function f : Rd → R can be written in the
form (2) with g being Lg-smooth, and there exists parameters ∆ ≥ 0, 0 ≤ m < 1 such that,
∀x ∈ Rd: ∣∣(r(x)

)
g

∣∣2 ≤ m ‖∇g(x)‖2 ,
∣∣(r(x)

)
g⊥

∣∣2 ≤ ∆ ,

where r(x) = (∇fU(x)(x) − ∇g(x)) and (r(x))g and (r(x))g⊥ denote the components of r(x),
along the direction of∇g(x) and perpendicular to it, respectively.

Our main idea is to split the bound in Assumption 2 to its respective components. Note that we can
easily verify that this is stronger than Assumption 2 by computing ‖r(x)‖2.

To ensure the same level of expressivity for both the structural assumptions, we can verify that
they have similar worst-case scenarios for a biased oracle, that is, when r(x) points in the opposite
direction of ∇g with squared norm m ‖∇g(x)‖2, ignoring the constant terms of ∆. Thus, our new
assumption can still deal with worst-case oracles obeying Assumption 2 while still admitting a better
analysis.

Theorem 10 Under Assumptions 1 and 5, and if g is µ-strongly convex, running Algorithm 1 for T
steps, with γ ≤ 1−

√
m

Lg(1+
√
m)2(M ′+1)

, there exist non-negative weights {wt}Tt=0, with WT =
∑T

t=0wt,
such that

1

WT

T∑
t=0

wtGT +
µ

2
dT+1 = O

(
d0

γ(1−
√
m)

exp

(
− (1−

√
m)γµT

2

)
+ Ξ

)
where Gt is same as defined previously before, dt = E[

∥∥xt − x?g
∥∥2

] , x?g = arg minx∈Rd g(x), and

Ξ =
γ(σ′2 + ∆(M ′ + 1))

(1−
√
m)

+
2∆

µ(1−
√
m)2

.
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Further, choosing γ = min

{
(1−
√
m)

Lg(M ′+1)(1+
√
m)2

, µε(1−
√
m)2+4∆

2(σ′2+∆(M ′+1))(1−
√
m)µ

}
,

T = Õ
(

2κ(M ′ + 1)(1 +
√
m)2

(1−
√
m)2

log
1

ε
+

4(σ′2 + ∆(M ′ + 1))

µε(1−
√
m)2 + 4∆

)
iterations are sufficient to obtain 1

WT

∑T
t=0wtGT = O(ε+ 4∆

µ(1−
√
m)2

).

Comparing Theorems 1 and 10, we find that the κ dependence is no longer present in the noise
term, while our proof holds for arbitrary m < 1. Thus, we have addressed both the problems
which we mentioned at the start of this subsection. However, this does not come for free, as the
convergence rate is inversely proportional to (1 −

√
m), instead of 1 − m, in the PŁ case and

1−
√
m < 1−m. Also, we have a larger noise term (σ′2 + ∆(M ′ + 1)), than with PŁ, which also

depends on ∆.
Proof Consider

∥∥xt − x?g
∥∥2, and take expectations with respect to ut, ξt, on both sides, further use

E[‖X‖2] = E[‖X − E[X]‖2] + ‖E[X]‖2 and Assumption 1.∥∥xt+1 − x?g
∥∥2

=
∥∥xt − x?g

∥∥2 − 2γ
〈
∇f(xt − ut, ξt),xt − x?g

〉
+ γ2 ‖∇f(xt − ut, ξt)‖

2

Eut,ξt [
∥∥xt+1 − x?g

∥∥2
] =

∥∥xt − x?g
∥∥2 − 2γ

〈
∇fU(xt)(xt),xt − x?g

〉
+ γ2

∥∥∇fU(xt)(xt)
∥∥2

+ γ2 Eut,ξt [
∥∥∇f(xt − ut, ξt)−∇fU(xt)(xt)

∥∥2
]

≤
∥∥xt − x?g

∥∥2 − 2γ
〈
∇g(xt),xt − x?g

〉
+ γ2σ′2

− 2γ
〈
∇gU(xt)(xt) +∇hU(xt)(xt)−∇g(xt),xt − x?g

〉
+ γ2(M ′ + 1)

∥∥∇gU(xt)(xt) +∇hU(xt)(xt)
∥∥2

. (20)

Let ∇̂g(xt) and ∇̂g(xt)⊥ be the units vector in direction of∇g(xt) and perpendicular to it, respec-
tively. For clarity of notations, let (∇hU(xt)(xt)+∇gU(xt)(xt)−∇g(xt)) = r(xt). First, we bound
the component perpendicular to∇g(xt), using Assumption 2

(r(xt))g⊥

〈
∇̂g(xt)⊥,xt − x?g

〉
≤ µ

4

∥∥xt − x?g
∥∥2

+
1

µ
|(r(xt))g⊥ |

2

≤ µ(1−
√
m)

4

∥∥xt − x?g
∥∥2

+
∆

µ(1−
√
m)

. (21)

Now, consider the component along∇g(xt) and strong convexity of g implies
〈
∇g(xt),xt − x?g

〉
≥

0, and using Assumption 2

(r(xt))g

〈
∇̂g(xt)g,xt − x?g

〉
≥ −|(r(xt))g|
‖∇g(xt)‖

〈
∇g(xt),xt − x?g

〉
≥ −
√
m
〈
∇g(xt),xt − x?g

〉
. (22)
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Additionally, consider
∥∥∇gU(xt)(xt) +∇hU(xt)(xt)

∥∥2 and use Assumption 5.∥∥∇gU(xt)(xt) +∇hU(xt)(xt)
∥∥2 ≤

∥∥∇gU(xt)(xt) +∇hU(xt)(xt)−∇g(xt) +∇g(xt)
∥∥2

≤ ‖v +∇g(xt)‖2

≤
∥∥∥(v)g ˆ∇g(xt) + (v)g⊥

ˆ∇g(xt)⊥ +∇g(xt)
∥∥∥2

≤ |(v)g + ‖∇g(xt‖|2 + |(v)g⊥ |
2

≤ (1 +
√
m)2 ‖∇g(xt)‖2 + ∆ . (23)

Using Eqns. (21), (22) and (23) in Eq. (20), we get

Eut,ξt [
∥∥xt+1 − x?g

∥∥2
] ≤

∥∥xt − x?g
∥∥2

(1 +
γµ(1−

√
m)

2
)− 2γ(1−

√
m)
〈
∇g(xt),xt − x?g

〉
+ γ2(M ′ + 1)(1 +

√
m)2 ‖∇g(xt)‖2 + γ2(σ′2 + ∆(M ′ + 1))

+
2γ∆

µ(1−
√
m)

.

Now, using strong-convexity and smoothness of g, we get

Eut,ξt [
∥∥xt+1 − x?g

∥∥2
] ≤

∥∥xt − x?g
∥∥2
(

1− γµ(1−
√
m)

2

)
+ γ2(σ′2 + ∆(M ′ + 1)) +

2γ∆

µ(1−
√
m)

− 2γ(1−
√
m)

(
1− γLg(M

′ + 1)(1 +
√
m)2

2(1−
√
m)

)
(g(xt)− g(x?g)) .

Now, taking γ ≤ (1−
√
m)

Lg(M ′+1)(1+
√
m)2

, taking complete expectations, and substituting Gt = E[g(xt)]−

g(x?g) and dt = E[
∥∥xt − x?g

∥∥2
].

dt+1 ≤ dt
(

1− γµ(1−
√
m)

2

)
+ γ2(σ′2 + ∆(M ′ + 1)) +

2γ∆

µ(1−
√
m)

− γ(1−
√
m)Gt .

We follow analysis in [69, Lemma 2] to multiply both sides by wt =

(
1 − γµ(1−

√
m)

2

)−(t+1)

.

If γµ(1−
√
m)

2 < 1, we sum over t = 0 to T and divide both sides by WT =
∑T

t=0wt. We obtain the
following results after performing these steps,

(1−
√
m)

WT

T∑
t=0

wtGt +
wTdT+1

γWT
≤ dt
γWT

+
2∆

µ(1−
√
m)

+ γ(σ′2 + ∆(M ′ + 1)) .

Since WT ≤ wT
(γµ(1−

√
m)/2)γ

and WT ≥ wT , we obtain the first inequality

1

WT

T∑
t=0

wtGt +
µ

2

dT+1

γWT
≤ d0

γ(1−
√
m)

exp

(
− µγ(1−

√
m)T

2

)
+

2γ∆

µ(1−
√
m)2

+
γ(σ′2 + ∆(M ′ + 1))

(1−
√
m)

.
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For the second part, first let α = σ′2 + ∆(M ′ + 1) and β = M ′ + 1 Then, we denote the RHS of
the main convergence result in terms of γ and T .

Θ(γ, T ) =
d0

γ(1−
√
m)

exp

(
− µγ(1−

√
m)T

2

)
+

α

(1−
√
m

+
2∆

µ(1−
√
m)2

.

We show that our bound for Θ(γ, T ) = O
(
ε + 4∆

µ(1−
√
m)2

)
is achieved by γ = min{γ1, γ2} and

T = max{T1, T2}

γ1 =
(1−

√
m)

LgM ′(1 +
√
m)2

, γ2 =
µε(1−

√
m)2 + 4∆

2α(1−
√
m)µ

T1 =
2βLg(1 +

√
m)2

µ(1−
√
m)2

log

(
2Lgβd0(1 +

√
m)2

ε(1−
√
m)2

)
,

T2 =
4β

µε(1−
√
m)2 + 4∆

log

(
4d0αµ

(µε(1−
√
m)2 + 4∆)ε

)
.

If γ = γ1, then γα
(1−
√
m)
≤ ε

2 + 2∆
µ(1−

√
m)2

. Then, we can choose T ≥ T1, so that Θ(γ, T ) ≤
ε+ 4∆

µ(1−
√
m)2

Similarly, if γ = γ2, then γα
(1−
√
m)
≤ ε

2 + 2∆
µ(1−

√
m)2

. Then, we can choose T ≥ T2, so that

Θ(γ, T ) ≤ ε+ 4∆
µ(1−

√
m)2

.

D.5. Additional Settings

In this subsection, we present alternative formulations to our Assumptions, namely, for bounded
perturbed h and for exact smooth oracle∇fU(x)(x), instead of the perturbed gradient.

D.5.1. CONVERGENCE FOR EXACT SMOOTH ORACLE ∇fU(x)(x)

While we have derived all results assuming we have access to ∇f(x + u; ξ), our results can be
extended to the case when we have access to ∇fU(x)(x; ξ). This extension is similar to extensions
of SGD results to GD. This is mainly done by setting the variance of gradients to 0, by setting
σ2 = M = 0. Similarly, for our case setting ζ2 = Z = 0, yields converge rates with gradient
oracle ∇fU(x). This does not mean that the smoothing distribution U(x) has 0 variance, just that
the contribution to gradient noise due to smoothing is 0, again motivating the connection between
smoothing and SGD.

D.5.2. PERTURBATION h WITH BOUNDED GRADIENTS

In this section, we explore a class of non-convex functions satisfying our formulation (2), but which
are easy to solve. Consider as before that g(x) and h(x) denote the convex part and non-convex
perturbation of f(x), respectively. We now provide a few definitions which we will use later.

A point x ∈ Rd is a stationary point of a differentiable function f : Rd → R if

∇f(x) = 0 .
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Let X ? denote the set of stationary points of f . Additionally, let g? = minx∈Rd g(x) and x?g =
arg minx∈Rd g(x)

A function h : Rd → R has B2-bounded gradients if

‖∇h(x)‖2 ≤ B2 ∀x ∈ Rd . (24)

A function h : Rd → R is B1-bounded if

|h(x)| ≤ B1 ∀x ∈ Rd . (25)

With these definitions, we provide the below lemma, which illustrates the impact of a simple
(bounded and gradient bounded) h on the stationary points of f .

Lemma 11 Let f satisfy structure (2) with convex part g and non-convex part h.

• If g is µ-PŁ and h is B2-gradient bounded

g? ≤ g(x) ≤ g? +
B2

2µ
, ∀x ∈ X ? .

• If g is µ-strongly convex and h is B2-gradient-bounded∥∥x− x?g
∥∥2 ≤ B2

µ2
, ∀x ∈ X ?,Xg = {x?g} .

• If g is µ-PŁ and h is B1-bounded and B2-gradient bounded

g? −B1 ≤ f(x) ≤ g? +B1 +
B2

2µ
, ∀x ∈ X ? ,

|f(x)− f(y)| ≤ 2B1 +
B2

2µ
, ∀x,y ∈ X ? .

Proof Let y be a stationary point of f . Then,

∇g(y) = −∇h(y) .

For the first part, since g is and h is B2-gradient bounded,

2µ(g(y)− g?) ≤ ‖∇g(y)‖2 = ‖∇h(y)‖2 ≤ B2 .

For the second part, since g is µ-strongly convex with global minima x?g

g(y) ≥g? +
µ

2

∥∥y − x?g
∥∥2

,

and the claim follows together with the first part of this lemma (all µ-strongly convex functions are
also µ-PŁ).

For the third part, assuming h is B1- bounded with the result from first part,

g? + h(y) ≤ g(y) + h(y) ≤ g? + h(y) +
B2

2µ
,

g? −B1 ≤ f(y) ≤ g? +B1 +
B2

2µ
.
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From the above lemma, we can see that if h is gradient bounded, all its stationary points are close to
minima of g. Thus, even GD on such a function should always end up close to the global minima.
Note that Assumption 2 is weaker than bounded gradients for h, as we allow h to have unbounded
gradients and its stationary points are also not constrained to a neighborhood. This is demonstrated
by our toy example f(x) = x2 + ax sin(bx), which we describe in detail in the next section.

Appendix E. Additional Details about connection to SGD

In this section we provide additional details about the connection between Algorithm 1 and SGD.
We provide a lemma to connect the results for strongy-convex case for Algorithm 1 to SGD iterates.
Later, we discuss how to extend this to the finite-sum case and provide experiments to verify this
assumption. Additionally, we verify these claims for Deep Learning examples in Appendix G.

Lemma 12 Let xt,yt and zt be as defined above. Define ȳT := 1
WT

∑T
t=0 wt E[yt], for {wt}Tt=0

and WT as defined in Theorem 10. If Lemma 2 holds, g is convex,

g(ȳT )− g(x?g) ≤
1

WT

T∑
t=0

wtGt

where x?g and Gt are as defined in Theorem 10 .

Proof Consider the term g(ȳt)− g?.

g(ȳt)− g? ≤
1

WT

T∑
t=0

wt(g(E[yt])− g?)

≤ 1

WT

T∑
t=0

wt(g(E[zt])− g?)

≤ 1

WT

T∑
t=0

wt(E[g(zt)]− g?)

≤ 1

WT

T∑
t=0

wtGt .

For the first step, we use convexity of g with coefficients
{

wt
WT

}T
t=0

. The second step is obtained
from equality in expectation. The third step is obtained from Jensen’s inequality on convex g and
the last term is the definition of Gt.

This lemma allows us to utilize the results of Thm. 10 for SGD iterates defined by yt.
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(a) Uniform noise setting (b) Noise dependent on x

Figure 3: Equivalent trajectories of SGD and Perturbed SGD. Mean trajectories of 1000 independent runs of
SGD and Perturbed SGD with the same γ selected by grid search, as described in Fig. 2, and z0 = y0. Solid
lines depict mean and shaded areas standard deviations.

E.1. Finite-Sum Setting

In this section, we explain the connection between SGD and our Algorithm 1 for a finite-sum
objective. Consider the objective function, f(x) = 1

n

∑n
i=1 fi(x), which is a sum of n terms. For

SGD, at each step t,

∇f(xt, ξ) = ∇fi(xt)

where i is sampled uniformly at random from [n]. Thus, the noise in each gradient step, wt, is,

wt = ∇fi(xt)−∇f(xt) = ∇fi(xt)− 1
n

∑n
j=1∇fj(xt) . (26)

To find an equivalent smoothing distribution, we can set U(x) = γW(x) as described above. How-
ever, the resulting distribution would require to compute ut = γ

(
∇fk(xt)− 1

n

∑n
j=1∇fj(xt)

)
) for

an uniformly at random sampled index k. This involves computation of a full batch gradient, render-
ing the resulting procedure very inefficient. To overcome this, we can define ut in the following way:

ut = γ(∇fk(xt)−∇fj(xt)) , (27)

where k, j are sampled uniformly at random from [n]. This results in an efficient oracle with vari-
ance

EU(xt)[‖ut‖
2] = 2γ2 EW(xt)[‖wt‖2] .

Note that this resembles the method implemented in [29] in a distributed setting.

E.2. Experimental Verification

We empirically demonstrate the connections between our algorithm and SGD in two settings, when
noise is– a) independent of x and b) dependent on x.

For our first setting (depicted in Figure ??), we use our toy problem f(x) = x2 + 10x sin(x).
We fix the initial point for SGD as x0 = 100 and ζ = 0.1. We add a Gaussian noise sampled from
N (0, σ2) to the gradients, where σ2 = γζ2.

For our second setting (depicted in Figure 3(b)subfigure), we consider a finite-sum objective.
The objective function is of the form f(x) = 1

n

∑n
i=1 fi(x), where n is the number of datapoints
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and fi(x) is the cross-entropy loss for the nth datapoint. For SGD, we sample 1 datapoint from
the dataset at each step, while for the smoothing distribution, we use the formulation in (26), as
described above.

The stochastic noise arises from sampling one datapoint in the finite sum with replacement, and
is thus dependent on x. We use logistic regression with cross entropy loss on the Digits dataset [19]
from scikit-learn [62]. The dataset consists of 8× 8 images of handwritten digits from 0 to 9, from
which we use only images of 0 and 1. For SGD, x0 is sampled uniformly from [−0.5, 0.5]64. We
choose the same sampling for U(x), to obtain U(x) = γW(x).

For both of these cases, the mean trajectories for yt and zt are very close, verifying our analysis.
For the uniform noise setting, the variances of the trajectories are also very similar. However, the
variance for our algorithm is much smaller than SGD for the logistic regression example. Note that
we also illustrate this connection for deep learning examples in Appendix G.

Appendix F. Investigating Examples

In this section, we further investigate our toy example f(x) = x2 + ax sin(bx) and utilize it to
compare our settings to other applications of non-convex smoothing in [30, 42].

For any finite value of ζ, the function fU is never convex. However, for every ζ > 1
b

√
(2 ln(ab)− ln(4)),

we can always find m < 1,∆ > 0 which satisfies our Assumption 2.

F.1. Comparison to other Applications of Non-Convex Smoothing

In [30], the notion of graduated optimization is utilized, by successively smoothing with decreasing
δ variance, to converge to global optima of a class of non-convex Lipschitz functions in a bounded
domain X ((c, δ)-nice, [30, Definition 3.2]). Convergence of their method relies on the function
becoming strongly-convex on X after cδ-smoothing. For a fixed domain, we can set ζ = cδ >
1
b

√
(2 ln(ab)− ln(4)), with appropriate a, b such that our toy example is never strongly convex in

a fixed interval inside X , but satisfies our Assumption 2. Thus, their analysis fails on our example.
Further, on a bounded domain, if a function is strongly-convex after smoothing, it satisfies our
Assumption 2 for the same smoothing with m = ∆ = 0. Thus, all (c, δ)-nice functions also satisfy
this assumption.

Our assumptions are weaker than those required in [42]. Notably, [42] consider only smoothing
with bounded support, while we do not have this restriction. Moreover, they need to assume that for
given U , fU is star convex. We see from Figure 1(a)subfigure that our toy function is not star convex
for all ζ2, while our Assumption 2 holds. This shows, that our setting allows more flexibility and
trade-offs in the parameters.

Consider f(x) = x2 + ax sin(bx) and U = N (0, ζ2) as in the main text. For g(x) = x2 and
h(x) = ax sin(bx), we observe that

gU (x) = x2 + ζ2, hU (x) = ae−(b2ζ2)/2(bζ2 cos(bx) + x sin(bx))

∇gU (x) = 2x, ∇hU (x) = abe−(b2ζ2)/2((1− bζ2) sin(bx) + x cos(bx))

‖∇hU (x) +∇gU (x)−∇g(x)‖2 ≤ a2b2e−b
2ζ2(x2 + (bζ2 − 1)2)

≤ a2b2e−b
2ζ2

4
(‖∇g(x)‖2 + 4(bζ2 − 1)2)
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To satisfy Assumption 2 we can choose m = 1
4a

2b2e−b
2ζ2 or ζ = 1

b

√
2 ln(ab)− ln(4m) (note that

m < 1) and ∆ = a2b2e−b
2ζ2(bζ2 − 1)2 = 4m

b2
(2 ln(ab)− ln(4m)− b)2.

F.2. Comparing to (c, δ)-Nice Functions [30]

We consider the toy example which is (c, δ)-nice, mentioned in [30], and show that this function can
be optimized under our biased gradient assumptions as well. Consider x = (x1,x2, . . . ,xd) ∈ Rd

f(x) = 0.5 ‖x‖2 − αe−
x1−1

2λ2

This function is (
√
d, 0.5)-nice for λ ≤ 0.1 and α ∈

[
0, 1

200

]
. Note that, if we consider g(x) = x2

and h(x) = −αe−
x1−1

2λ2 , after smoothing with U = N (0, ζ2Id), we obtain –

‖∇hU (x) +∇gU (x)−∇g(x)‖2 ≤ α2ζ4

λ2(ζ2 + λ2)3

(
‖∇g(x)‖2 + 1

)
.

Here, choosing ζ = kλ, this function satisfies Assumption 2 with ∆ = m = α2k4

(k2+1)3λ4
. For every

valid α, λ, we can choose k such that m < 1.

F.3. Toy Example is not convex after smoothing

Consider the toy example again, f(x) = x2 + 10x sin(x), with smoothing f with N (0, ζ2). We
obtain:

fU (x) = x2 + ζ2 + ae−(bζ)2/2
(
bζ2 cos(bx) + x sin(bx)

)
. (28)

According to our structure (2), we can pick g(x) = x2 and h(x) = ax sin(bx). We observe that
smoothing reduces the non-convexity in the function and it starts resembling its convex component
g. This is better visualized in Figure 1, where we plot the function and its gradient for parameters
a = 10 and b = 1 and ζ ∈ {0, 1, 2}, where ζ = 0 corresponds to no smoothing.

Further, if we take our toy example again, f(x) = x2 + 10x sin(x), we can see that even after
smoothing f with N (0, ζ2), fU still has local minima and is not strongly-convex. To generate a
concrete example, consider ζ = 2, and denote the smoothed function with fζ which is plotted in
Figure 1(a)subfigure, and for better visualization additionally in Figure 4. The smoothed function
f2 has two minima, close to x ≈ −2.56 and x ≈ 2.56 and an additional stationary point at x = 0.
Therefore, the function f2 is not strongly convex on a 3ζ-ball around its minima (as each such ball
contains also x = 0 and the other minima). Therefore, the example function f2 does not satisfy
the local strong convexity condition that is required for (c, δ)-nice functions, but it satisfies our
Assumption 2 (note that ζ > 2 satisfies the sufficient condition derived in Section F.1 above).

F.4. Additional experiments on toy example

We perform additional experiments on our toy example for the same settings as Section 6. We
implement Perturbed SGD with no gradient noise and different smoothing by controlling ζ and
SGD, with a Gaussian gradient noise distribution,W = N (0, σ2).

From Figure 5, we can see that SGD and Perturbed SGD have similar behaviours when we start
increasing the noise level, as the last iterates are able to escape local minimas. But, if we keep
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Figure 4: Function f(x) and fζ(x) for ζ = 2 (the same function as in Figure 1(a)subfigure, highlighting that
f2 is not strongly convex in a 3ζ-ball around its minima, as required for (c, ζ)-nice functions, but f2 satisfies
Assumption 2.

(a) Low noise ζ = 0.5 (b) Low noise ζ = 1

(c) Intermediate noise ζ = 2 (d) Intermediate noise ζ = 5

(e) High noise ζ = 10 (f ) High Noise ζ = 20

Figure 5: Comparison of Last iterate positions for SGD and Perturbed SGD without gradient noise for same
noise levels. In each subfigure, ζ decides the noise level of both SGD and Perturbed SGD, as γ is constant.

increasing the noise level, SGD starts performing poorly and its last iterates get spread out evenly
over the domain. In contrast, Perturbed SGD at the same noise level concentrates around the global
minima, and only at the highest noise level of ζ = 20, its last iterates start spreading out. Although
SGD and Perturbed SGD are equal in expectation, there are key differences especially in high noise
setting.

Appendix G. Deep Learning Examples

We further investigate the equivalence between SGD and Perturbed SGD for a standard deep learn-
ing problem–Resnet18 on CIFAR10 dataset . Note that in deep learning settings, our loss function is
f(x) = 1

n

∑n
i=1 fi(x), where fi(x) is the loss, in this case cross-entropy loss, for the ith datapoint

in the dataset for network with weights given by x.
We compare our Algorithm 1 with mini-batch SGD with batch size 128. In Section E.1, we

describe two possible implementations for the finite-sum setting– (26) and (27). Since we require
the full-batch gradient in each step of (26), we cannot use this in deep learning settings with large
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(a) Training Accuracy (b) Training Loss (c) Validation Accuracy

Figure 6: Equivalent Trajectories for SGD and finite-sum implementations of Perturbed SGD (Algorithm 1)
according to (27). Mean trajectories after 5 independent runs of SGD and Perturbed SGD with same γ = 0.1,
momentum = 0.9, weight decay = 10−4 for 50 epochs with same initialization and noise levels. Solid lines
depict means and shaded areas standard deviations.

dataset sizes. In (27), we utilize only minibatch gradients, so we can apply it to deep learning
problems. In our pytorch implementation, we break down Algorithm 1 into two steps–perturbation
step which computes ut, and the gradient step which updates parameters with∇f(xt + ut, ξt).

To verify the equivalence of SGD and Perturbed SGD, we need to ensure the same noise levels
and the number of steps for both algorithms. We briefly describe how this is achieved for finite-sum
implementation of Perturbed SGD described in eqrefeq:structuredsmoothing.

For (27) , the perturbation step and the gradient step have 3 times the noise of SGD, as the
perturbation step has 2 times the noise of SGD. To ensure the same noise levels, we set the batch
size for both steps as 128× 3 = 384. To ensure the same number of steps as SGD in one epoch, we
repeat perturbation + gradient step 3 times in each epoch.

From Fig 6, we can see that the efficient finite-sum implementation of Perturbed SGD and
SGD have very similar trajectories for training accuracy, training loss and validation accuracy. This
verifies our claim of equivalence of SGD and Perturbed SGD on DL examples, with the same noise
levels. Moreover, the variance is higher for Perturbed SGD than SGD, despite similar gradient noise
level, providing further motivation for how adding perturbations to SGD can improve generalization
and escape saddles [24].
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