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Abstract
Communication is one of the key bottlenecks in the distributed training of large-scale machine
learning models, and lossy compression of exchanged information, such as stochastic gradients or
models, is one of the most effective instruments to alleviate this issue. Among the most studied
compression techniques is the class of unbiased compression operators with variance bounded by
a multiple of the square norm of the vector we wish to compress. By design, this variance may
remain high, and only diminishes if the input vector approaches zero. However, unless the model
being trained is overparameterized, there is no a-priori reason for the vectors we wish to compress
to approach zero during the iterations of classical methods such as distributed compressed SGD,
which has adverse effects on the convergence speed. Due to this issue, several more elaborate and
seemingly very different algorithms have been proposed recently, with the goal of circumventing
this issue. These methods are based on the idea of compressing the difference between the vector we
would normally wish to compress and some auxiliary vector which changes throughout the iterative
process. In this work we take a step back, and develop a unified framework for studying such
methods, conceptually, and theoretically. Our framework incorporates methods compressing both
gradients and models, using unbiased and biased compressors, and sheds light on the construction of
the auxiliary vectors. Furthermore, our general framework can lead to the improvement of several
existing algorithms, and can produce new algorithms. Finally, we performed several numerical
experiments which illustrate and support our theoretical findings.

1. Introduction

We consider distributed optimization problem

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
, (?)

where n is the number of workers/clients and fi : Rd → R is a smooth function representing the loss
of the model parametrized by x ∈ Rd for data stored on node i. Such formulation has become very
popular in recent years due to the need for training large-scale machine learning models [13].

Communication bottleneck. Compute nodes have to exchange information in a distributed
learning process. The size of the sent messages (usually gradients or model updates) can be very
large which forms a significant bottleneck [23, 29, 36] of the whole training procedure. One of the
main practical solutions to this problem is lossy communication compression [2, 20, 37]. It suggests
applying a (possibly randomized) mapping C to a vector/matrix/tensor x before it is transmitted
in order to produce a less accurate estimate C(x) : Rd → Rd and thus save bits sent per every
communication round.

© E. Shulgin & P. Richtárik.



SHIFTED COMPRESSION FRAMEWORK

Summary of contributions The main results of this work include:
1. Generalizations of existing methods. We introduce the concept of Shifted Compressor

which generalizes a common definition of compression operators used in distributed learning. It
allows to study various strategies for updating the shifts using both biased and unbiased compressors;
to recover and improve such previously known methods as DCGD and DIANA. As a byproduct a
new algorithm is also obtained: DCGD-STAR, which enjoys linear convergence to the exact solution
if we know the local gradients at the optimum.

2. Improved rates. The notion of a shifted compressor allows us to revisit existing analysis
of distributed methods with compressed iterates and improve guarantees in both cases: with and
without variance-reduction. Obtained results indicate that algorithms with model compression can
have the same complexity as compressed gradient methods.

3. New algorithm. We present a novel distributed algorithm with compression, called Ran-
domized DIANA, with linear convergence rate to the exact optimum. It has a significantly simpler
analysis than the original DIANA method. Via examination of its experimental performance we
highlight the cases when it can outperform DIANA in practice.

Obtained theoretical results are summarized in Table 1 with highlighted improvements over the
previous works. Notation: κ - condition number, ω/δ - variance of the un/biased compressor. More
methods covered by our framework can be found in Table 2. Due to space limitations Related works,
Experiments sections and some of the theoretical results are left for the Appendix.

Table 1: Iteration complexities are presented in Õ-notation to omit log 1/ε factors and for the
simplified case ωi ≡ ω, δi ≡ δ, Li ≡ L, pi ≡ p. More refined results are in Theorems
with links in the second column. The last two rows refer to the methods with compressed
iterates. Complexities for DCGD-SHIFT and GDCI are in the interpolation regimes:
∇fi(x?) = 0 = x? − γ∇fi(x?).

ALGORITHM REF PREVIOUS OUR RESULT

DCGD-SHIFT 5 − κ
(
1 + ω

n

)
Rand-DIANA 6 − max

{
κ
(
1 + ω

n (1− δ)
)
, 1p

}
DIANA 11 max

{
κ
(
1 + ω

n

)
, ω
}

max
{
κ
(
1 + ω

n (1− δ)
)
, ω(1− δ)

}
GDCI 14 κ2

(
1 + ω

n

)
κ
(
1 + ω

n

)
VR-GDCI D.2 max

{
κ2
(
1 + ω

n

)
, ω
}

max
{
κ
(
1 + ω

n

)
, ω
}

2. General Framework

In this section we introduce compression operators and the framework of shifted compressors.

2.1. Standard Compression

At first recall some basic definitions.
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Definition 1 (General contractive compressor) A (possibly) randomized mapping C : Rd → Rd
is a compression operator (C ∈ B(δ) for brevity) if for some δ ∈ [0, 1] and ∀x ∈ Rd

E ‖C(x)− x‖2 ≤ (1− δ)‖x‖2,

where the expectation is taken w.r.t. (possible) randomness of operator C.

One of the most known operators from this class is greedy sparsification (Top-K):

CTop-K(x) :=
∑d

i=d−K+1 x(i)e(i),

where K ∈ [d] := {1, . . . , d}, coordinates are ordered by their magnitudes so that |x(1)| ≤ |x(2)| ≤
· · · ≤ |x(d)|, and ei ∈ Rd are the standard unit basis vectors. This compressor belongs to B (d/K).

Definition 2 (Unbiased compressor) A randomized mapping Q : Rd → Rd is an unbiased com-
pression operator (Q ∈ U(ω) for brevity) if for some ω ≥ 0 and ∀x ∈ Rd

(a)EQ(x) = x, (Unbiasedness)

(b)E ‖Q(x)− x‖2 ≤ ω‖x‖2 (Bounded variance)

A notable example from this class is the random sparsification (Rand-K for K ∈ [d]) operator:

QRand-K(x) := d
K

∑
i∈S xiei, (1)

where S is a random subset of [d] sampled from the uniform distribution on the all subsets of [d]
with cardinality K. Rand-K belongs to U (d/K − 1). Notice that property (a) from Definition 2 is
"uniform" across all vectors x, while property (b) is not. Namely, vector x = 0 is treated in a special
way because E ‖Q(0)− 0‖2 = 0, which means that the compressed zero vector has zero variance.
In other words, zero is mapped to itself with probability 1.

2.2. Compression with shift

We can generalize the class of unbiased compressors U(ω) to a class of operators with other (not
only 0) “special” vectors. Specifically, this class allows for shifts away from the origin, which is
formalized in the following definition.

Definition 3 (Shifted compressor) Let h ∈ Rd. A randomized mapping Qh : Rd → Rd is a
shifted compression operator (Qh ∈ U(ω;h) in short) if exists ω ≥ 0 such that ∀x ∈ Rd

(a)EQh(x) = x

(b)E ‖Qh(x)− x‖2 ≤ ω‖x− h‖2.

Vector h is called a shift. Note that class of unbiased compressors U(ω) is equivalent to U(ω; 0).

Next lemma shows that shifts add up and all shifted compression operators Qh ∈ U(ω;h) arise by a
shift of some operator Q0 from U(ω; 0).

Lemma 4 (Shifting a Shifted Compressor) Let Qh ∈ U(ω;h) and v ∈ Rd. Then the (possibly)
randomized mapping Q defined by Q(x) := v +Qh(x− v) satisfies Q ∈ U(ω;h+ v).
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Shifted compressor concept allows to construct a shifted gradient estimator Qh ∈ U(ω;h)

gh(x) = Qh (∇f(x)) = h+Q(∇f(x)− h), (2)

which is the main focus of this work. In particular, we are going to study different mechanisms for
choosing this shift vector throughout the optimization process.

Note: Estimator (2) is clearly unbiased, as soon as operator Q satisfies EQ(x) = x.
Estimator (2) uses operatorQ from class of unbiased compressors U(ω), which are usually easier

to analyse but have higher empirical variance than biased counterparts [6]. In an attempt to kill two
birds with one stone we can incorporate biased compressor C ∈ B(δ) into h using a similar trick:

h = s+ C(∇f(x)− s), (3)

as gh(x) allows for virtually any shift vector. This leads to the following estimator1

gh(x) = h+Q (∇f(x)− h)

= s+ C(∇f(x)− s) +Q (∇f(x)− s− C(∇f(x)− s)) .
(4)

2.3. The meta-algorithm

Now we are ready to present the general distributed optimization algorithm for solving (?) employing
shifted gradient estimators

gh(x) =
1

n

n∑
i=1

ghi(x) =
1

n

n∑
i=1

[hi +Qi (∇fi(x)− hi)] .

Algorithm 1: Distributed Compressed Gradient Descent with Shift (DCGD-SHIFT)

Input: learning rate γ > 0; unbiased compressors Q1, . . . ,Qn; initial iterate x0 ∈ Rd, initial
local shifts h01, . . . , h

0
n ∈ Rd (stored on the n nodes)

Initialize: h0 = 1
n

∑n
i=1 h

0
i (stored on the master)

for k = 0, 1, 2 . . . do
Broadcast xk to all workers
for i = 1, . . . n do

Compute local gradient: ∇fi(xk)
Compress shifted local gradient: mk

i = Qi(∇fi(xk)− hki )
Update the local shift: hk+1

i

Send message mk
i and (possibly) the shifts hk+1

i to the master
end
Aggregate received messages: mk = 1

n

∑n
i=1m

k
i

Compute global gradient estimator: gk = hk +mk

Take Gradient Descent step: xk+1 = xk − γgk
Update aggregated shift: hk+1 = 1

n

∑n
i=1 h

k+1
i

end

1The resulting estimator is closely related to Induced compressor [14] Qind(x) = C(x) + Q (x− C(x)), which
belongs to U(ω(1− δ)) class for C ∈ B(δ) andQ ∈ U(ω).
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In Algorithm 1, each worker i = 1, . . . , n queries the gradient oracle ∇fi(xk) in iteration k.
Then compression operator is applied to the difference between the local gradient and shift, and the
result is sent to the master (with possibly the new shift as well). The shift is updated on both the
server and workers. After receiving the messages mk

i a global gradient estimator is formed on the
server, and a gradient step is performed.

Please note that this method is not fully defined because it requires a description of the mechanism
for updating the shifts hk+1

i (highlighted in red) throughout the iteration process on both workers and
master. Next, we will present a general convergence guarantee for this algorithm with fixed shifts
hik ≡ hi and later discuss how it can be practically fixed.

3. Convergence theory

We will use the following standard assumptions for the function f : Rd → R

• µ-Strong convexity: f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µ
2‖x− y‖

2.
If µ = 0 then the function is convex.

• L-Smoothness: f(x) ≤ f(y) + 〈∇f(y), x− y〉+ L
2 ‖x− y‖

2

Theorem 5 (DCGD with fixedSHIFT) Assume each fi is convex and Li-smooth, and f is L-
smooth and µ-strongly convex. Let Qi ∈ U(ωi) - independent unbiased compression operators. If
the step-size satisfies

γ ≤ 1

L+ 2 maxi (Liωi/n)
.

Then the iterates of Algorithm 1 with fixed shifts hki ≡ hi satisfy

E ‖xk − x?‖2 ≤ (1− γµ)k‖x0 − x?‖2 +
2γ

µ

1

n

n∑
i=1

ωi
n
‖∇fi(x?)− hi‖2 . (5)

This theorem establishes a linear convergence rate up to a certain oscillation radius, controlled by the
average distance of shift vectors hi to the optimal local gradients∇fi(x?) multiplied by the step-size
γ. It means that in the interpolation/overparameterized regime (∇fi(x?) = 0 for all i) method
reaches exact solution with zero shifts h0i = 0.

3.1. Learning the optimal shifts

We need to design the sequences {hk1}k≥0, . . . , {hkn}k≥0 in such a way that all of them converge to
the optimal shifts:

hki → ∇fi(x?) as k →∞,

but at the same time we do not want to send uncompressed vectors from workers to the master. So,
the challenge is not only in learning the shifts, but doing this in a communication-efficient way. In
this work we present two different solutions (one left for Appendix) to this problem.
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Randomized DIANA (Rand-DIANA) The simplest possible solution to the issue raised above
would be just to set hki to ∇fi(xk) because if xk → x? in the optimization process then ∇fi(xk)
converges to the optimal local shift. But this approach is not efficient, as workers have to transfer
full (uncompressed) vectors hki = ∇fi(xk). Our new solution is to update a reference point wki for
calculating the shift hki = ∇fi(wki ) infrequently (with small probability pi ∈ (0, 1]) so that it needs
to be communicated very rare:

hki = ∇fi(wki ), wk+1
i =

{
xk with probability pi
wki with probability 1− pi

(6)

This method has a remarkably simpler analysis than DIANA, but can solve the original problem of
eliminating the variance introduced by gradient compression. Next we state the convergence result
of DCGD with shifts updated in a randomized fashion (6). We give it a Randomized-DIANA
name (Rand-DIANA in short) to acknowledge the original method [25] first solving such problem.

Theorem 6 (Rand-DIANA) Assume that fi are convex, Li-smooth for all i and f is µ-convex. If
the stepsize satisfies

γ ≤ 1(
1 + 2ω

n

)
Lmax +M maxi(piLi)

,

where M > 2ω
npmin

and pmin = mini pi. Then the iterates of DCGD with Randomized-DIANA shift
update (6) satisfy

E
[
V k
]
≤ max

{
(1− γµ)k,

(
1− pmin +

2ω

nM

)k}
V 0,

where the Lyapunov function V k is defined by

V k :=
∥∥∥xk − x?∥∥∥2 +Mγ2 · 1

n

n∑
i=1

∥∥∥hki −∇fi(x?)∥∥∥2 .
By appropriate choice of this method’s parameters M = 4ω

npmin
and pi ≡ p = 1

ω+1 for every i, we
can obtain basically the same iteration complexity as for the original DIANA [16]

max

{
1

γµ
,

1

pmin − 2ω
nM

}
log

1

ε
= max

{
Lmax

µ

(
1 +

ω

n

)
, ω + 1

}
log

1

ε
.

In the Appendix one can find proofs for the presented results, generalized and improved analysis of
DIANA-like method, application of the shifted compressor to distributed methods with compressed
iterates (with and without variance reduction) along with experimental results.
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Appendix A. Related work

A.1. Compression operators.

The topic of gradient compression in distributed learning has been studied extensively over the last
years form both practical [44] and theoretical [1, 6, 35] sides. Compression operators are typically
divided into 2 large groups: unbiased and biased ones. The first group includes methods based
on some sort of rounding or quantization: Random Dithering [10, 31], Ternary quantization [43],
Natural [15] and Integer [26] compression. Another popular example is random sparsification –
Rand-K [19, 39, 42], which preserves only a subset of the original vector coordinates. These two
approaches can also be combined [4] for even more aggressive compression. There are also many
other approaches based on low-rank approximation [34, 40, 41], vector quantization [9], etc. The
second group of biased compressors mainly includes greedy sparsification – Top-K [3, 39] and
various sign-based quantization methods [5, 32, 37]. For a more complete review of compression
operators, one can refer to the survey [44] and [6, 35].

A.2. Optimization algorithms.

Compression operators on their own are not sufficient for building a distributed learning system
because they always go along with optimization algorithms. One of the first theoretically analyzed
methods is Distributed Compressed Gradient Descent (DCGD) [18] which considered arbitrary unbi-
ased compressors. The issue with it is that it was proven to converge linearly only to a neighborhood
of the optimal point with constant step-size. DIANA [25] fixed this problem by compressing specially
designed gradient differences. Later it was combined with variance reduction [16], accelerated [22] in
Nesterov’s sense [27] and by using smoothness matrices [33] with a properly designed sparsification
technique.

On the other side are methods working with biased compressors, which require the use of the
error-feedback (EF) mechanism [3, 37, 38]. Such algorithms were considered to be often better in
practice due to smaller variance of biased updates [6]. But recently it was demonstrated that biased
compressors can be incorporated into specially designed unbiased operators and show superior to
error-feedback results [14]. In addition, error-feedback was recently combined with the DIANA trick
[12], which led to the first linearly converging method with EF.

A.3. Compressed iterates.

Most of the existing literature (including all methods described above) focuses on compression of
the gradients, while in applications like Federated Learning [7, 20, 24], it is vital to reduce the size
of the broadcasted model parameters [30]. This demand gives rise to optimization algorithms with
compressed iterates. The first attempt to analyse such methods was done in [17] for a single node
set up. Later it was combined with variance-reduction for noise introduced by compression and
generalized to a much more general setting of distributed fixed point methods [8].

In Table 2, we show the generality of our approach by presenting some of the existing and new
distributed methods falling into our framework of DCGD-SHIFT with shift updates of the form (3).

3Bep(x) :=
{
x with probability p
0 with probability 1− p

12
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Table 2: List of existing and new algorithms which fit our general framework. VR – variance
reduced method. O/I – zero/identity operator, Bepi – Bernoulli3 compressor. DGD refers
to Distributed Gradient Descent.

SHIFT hk+1
i = ski + Ci

(
∇fi(xk)− ski

)
METHOD REFERENCE VR? ski Ci

DCGD [18] 7 0 O

DCGD-SHIFT [New] 7 s0i O

DGD 3 s0i I

DCGD-STAR [New] 3 ∇fi(x?) any Ci

DIANA [25] 3 hki αQi

RAND-DIANA [New] 3 hki Bepi

GDCI [8] 7 xk/γ O

Appendix B. Basic Facts

Bregman Divergence associated with continuously-differentiable, strictly convex function f is
defined as

Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉.

Bregman Divergence and Strong Convexity inequality

〈∇f(x)−∇f(y), x− y〉 ≥ Df (x, y) +
µ

2
‖x− y‖2 (7)

Bregman Divergence and L-smoothness inequality

‖∇f(x)−∇f(y)‖2 ≤ 2LDf (x, y) (8)

Basic Inequalities For all a, b ∈ Rd

‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 (9)

2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2 (10)

Appendix C. Proofs

For brevity we can use notation E ‖x‖2 instead of E
[
‖x‖2

]
.

13
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C.1. Shifted Compression

C.1.1. PROOF OF LEMMA 4

Proof For proof we need to show unbiasedness and (shifted) bounded variance property for operator
Q := v +Qh(x− v) with Qh ∈ U(ω;h).
(a) Unbiasdeness:

EQ(x) = E [v +Qh(x− v)] = v + EQh(x− v) = v + (x− v) = x.

(b) Variance:
E ‖Q(x)− x‖2 = E ‖v +Qh(x− v)− x‖2

= E ‖Qh(x− v)− (x− v)‖2

≤ ω ‖x− v − h‖2 = ω ‖x− (v + h)‖2 .

C.1.2. COMPRESSION OF THE ITERATES

Lemma 7 Let Q ∈ U(ω), then for

Q̂(z) := −t · Q
(
−z
t

)
, t 6= 0 (11)

we have Q̂(z) ∈ U(ω).

Proof We consequentially show the unbiasedness (1) and bounded variance (2) properties according
to Definition 2

1)E Q̂(z) = −t ·EQ
(
−z
t

)
= −t ·

(
−z
t

)
= z;

2)E
∥∥∥(̂z)

∥∥∥2 = E
∥∥∥−t · Q(−z

t

)∥∥∥2 = t2E
∥∥∥Q(−z

t

)∥∥∥2 ≤ t2(ω + 1)
∥∥∥−z

t

∥∥∥2 = (ω + 1)‖z‖2

Now we prove that shifted compressor Q̃(z) := 1
γ [x−Q(x− γz)], obtained from (11) by

procedure described in Section D, belongs to class U (ω;x/γ) for Q ∈ U(ω).
Proof 1) Unbiasedness follows from EQ(x) = x.

14
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2) Computation of the variance:
Expectation conditional on x

E
∥∥∥Q̃(z)

∥∥∥2 = E

∥∥∥∥1

γ
[x−Q(x− γz)]

∥∥∥∥2
=

1

γ2
E ‖x−Q(x− γz)‖2

=
1

γ2
E ‖x− γz −Q(x− γz) + γz‖2

=
1

γ2

[
E ‖x− γz −Q(x− γz)‖2 + ‖γz‖2

]
≤ 1

γ2

[
ω ‖x− γz‖2 + ‖γz‖2

]
= ω

∥∥∥∥xγ − z
∥∥∥∥2 + ‖z‖2,

which implies

E
∥∥∥Q̃(z)− z

∥∥∥2 ≤ ω ∥∥∥∥z − x

γ

∥∥∥∥2 .

C.1.3. INDUCED COMPRESSOR

Definition 8 (Induced Compression Operator [14]) For C ∈ B(δ), choose Q ∈ U(ω) and define
the induced compressor via

Cind(x) := C(x) +Q(x− C(x)). (12)

Lemma 9 The induced operator satisfies Cind ∈ U(ω̃) for

ω̃ = ω(1− δ) (13)

Proof
E ‖Cind(x)− x‖2 = E ‖Q(x− C(x))− (x− C(x))‖2

≤ ωE ‖x− C(x)‖2

≤ ω(1− δ)
ω̃

‖x‖2

15
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C.2. Proof of Theorem 5 (DCGD-SHIFT)

According to Algorithm 1 gradient estimator always has the following form

gh(x) =
1

n

n∑
i=1

ghi(x) =
1

n

n∑
i=1

[hi +Qi (∇fi(x)− hi)] .

Obvious unbiasedness (as Qi ∈ U(ωi)) of this estimator for any hi will be used in all further proofs.
Decomposition

E
∥∥∥gh(xk)−∇f(x?)

∥∥∥2 = E
∥∥∥gh(xk)−∇f(xk)

∥∥∥2 +
∥∥∥∇f(xk)−∇f(x?)

∥∥∥2 (14)

Next we upper-bound the first term from (14).
Expectation conditional on xk and h = (h1, . . . , hn) for brevity

E
∥∥∥gh(xk)−∇f(xk)

∥∥∥2 = E
∥∥∥gh(xk)−∇f(xk)

∥∥∥2
≤ E

∥∥∥∥∥ 1

n

n∑
i=1

Qi
(
∇fi(xk)− hi

)
+ hi −∇fi(xk)

bki

∥∥∥∥∥
2

=
1

n2
E

 n∑
i=1

‖bki ‖2 +
∑
i 6=j
〈bki , bkj 〉


=

1

n2

n∑
i=1

E ‖bki ‖2 +
1

n2

∑
i 6=j
〈E bki ,E bkj 〉
=0 (EQi(x)=x)

=
1

n2

n∑
i=1

E ‖Qi
(
∇fi(xk)− hi

)
+ hi −∇fi(xk)‖2

(2)

≤ 1

n2

n∑
i=1

ωi‖∇fi(xk)− hi‖2

=
1

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x?)− (hi −∇fi(x?)) ‖2

(9)
≤ 2

n2

n∑
i=1

ωi

[∥∥∥∇fi(xk)−∇fi(x?)∥∥∥2 + ‖hi −∇fi(x?)‖2
]

(8)
≤ 2

n2

n∑
i=1

ωi · 2LiDfi(x
k, x?) +

2

n2

n∑
i=1

ωi ‖hi −∇fi(x?)‖2

≤ 4

n
max (ωiLi)

1

n

n∑
i=1

Dfi(x
k, x?) +

2

n2

n∑
i=1

ωi ‖hi −∇fi(x?)‖2

≤ 4

n
max (ωiLi)Df (xk, x?) +

2

n2

n∑
i=1

ωi ‖hi −∇fi(x?)‖2 .
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Combined with (14) we obtain

E

[∥∥∥gh(xk)−∇f(x?)
∥∥∥2 | xk, h] ≤ 2

[
2

n
max (ωiLi) + L

]
Df (xk, x?)+

2

n2

n∑
i=1

ωi ‖hi −∇fi(x?)‖2

Now from [11, Theorem 4.1] we get statement of Theorem 11.
Next subsection we start by introducing practically useless, but theoretically insightful DCGD-

SHIFT? and then move on to implementable Algorithms.

C.3. Optimal shifts

Assume, for the sake of argument, that we know the values∇fi(x?) for every i ∈ [n]. Then we can
construct optimally shifted compressed shift updates sequence using the form (3)

hk+1
i = ∇fi(x?) + Ci(∇fi(xk)−∇fi(x?)). (15)

This is enough to fully characterize the Algorithm 1 and obtain the following convergence guarantee.

Theorem 10 (DCGD-SHIFT?/STAR) Assume each fi is convex and Li-smooth, and f is L-smooth
and µ-strongly convex. Let Qi ∈ U(ωi), Ci ∈ U(δi) - independent compression operators. If the
step-size satisfies

γ ≤ 1/ [L+ maxi (Liωi(1− δi)/n)] , (16)

Then the iterates of DCGD with optimally shifted compressed shift update (15) satisfy

E
∥∥xk − x?∥∥2 ≤ (1− γµ)k‖x0 − x?‖2.

This is the first presented Algorithm with linear convergence to the exact solution for the general
not-overparameterized case. Notice that for zero-identity operators Ci ≡ 0 we obtain the simplest
optimal shift hi = ∇fi(x?) and term δi in (16) should be interpreted as zero.

The issue with the described method is that in general, we do not know the values h?i := ∇fi(x?),
which makes it impractical.

C.3.1. PROOF OF THEOREM 10 (DCGD-STAR)

Proof At first compute the variance of the estimator.

17
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Expectation conditional on xk and hk = (hk1, . . . , h
k
n) for brevity

Var[gk] = E
∥∥∥gk −E

[
gk
]∥∥∥2

= E

∥∥∥∥∥ 1

n

n∑
i=1

Qi
(
∇fi(xk)− hki

)
+ hki −∇fi(xk)

bki

∥∥∥∥∥
2

=
1

n2
E

 n∑
i=1

‖bki ‖2 +
∑
i 6=j
〈bki , bkj 〉


=

1

n2

n∑
i=1

E ‖bki ‖2 +
1

n2

∑
i 6=j
〈E bki ,E bkj 〉
=0 (EQi(x)=x)

=
1

n2

n∑
i=1

E ‖Qi
(
∇fi(xk)− hki

)
+ hki −∇fi(xk)‖2

(2)

≤ 1

n2

n∑
i=1

ωiE ‖∇fi(xk)− hki ‖2

=
1

n2

n∑
i=1

ωiE ‖∇fi(xk)− h?i − Ci
(
∇fi(xk)− h?i

)
‖2

≤ 1

n2

n∑
i=1

ωi(1− δi)‖∇fi(xk)−∇fi(x?)‖2

(8)
≤ 1

n2

n∑
i=1

ωi(1− δi) · 2LiDfi(x
k, x?)

≤ 2

n
max{ωi(1− δi)Li}

1

n

n∑
i=1

Dfi(x
k, x?)

≤ 2

n
max{ωi(1− δi)Li}Df (xk, x?).

(17)

Now we can move to convergence proof.
Expectation conditional on xk and hk

E ‖rk+1‖2 = E ‖xk+1 − x?‖2

= E ‖xk − γgk − (x? − γ∇f(x?))‖2

= E ‖xk − x? − γ(gk −∇f(x?))‖2

= ‖rk‖2 − 2γ〈xk − x?,E gk −∇f(x?)〉+ γ2E
∥∥∥gk −∇f(x?))

∥∥∥2
= ‖rk‖2 − 2γ〈xk − x?,∇f(xk)−∇f(x?)〉

+ γ2
[
E
∥∥∥gk −∇f(xk))

∥∥∥2 +
∥∥∥∇f(xk)−∇f(x?))

∥∥∥2]
(7)
≤ ‖rk‖2 − 2γ

[
Df (xk, x?) +

µ

2
‖xk − x?‖2

]
18
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+ γ2
[
Var[gk] +

∥∥∥∇f(xk)−∇f(x?))
∥∥∥2]

(17)
≤ (1− γµ)‖rk‖2 − 2γDf (xk, x?)

+ γ2
[

2

n
max{ωi(1− δi)Li}Df (xk, x?) + 2LDf (xk, x?)

]
= (1− γµ)‖rk‖2 − 2γ [1− γ (L+ max{Liωi(1− δi)/n})]Df (xk, x?). (18)

By choosing step-size

γ ≤ 1

L+ maxi (Liωi(1− δi)/n)
,

it is guaranteed that the second term in (18) is positive. Therefore,

E ‖xk+1 − x?‖2 = E
[
E
[
‖xk+1 − x?‖2 | xk, hk

]]
≤ (1− γµ)E ‖xk − x?‖2

≤ (1− γµ)k+1E ‖x0 − x?‖2,

which concludes the proof.

C.4. DIANA-like trick

Next we present approach to issue raised in 3.1 based on the celebrated DIANA [16, 25] Algorithm:

hk+1
i = hki + α

[
Ci(∇fi(xk)− hki ) +Qi

(
∇fi(xk)− hki − Ci(∇fi(xk)− hki )

)]
, (19)

where α is a suitably chosen step-size. For Ci ≡ 0 it takes the simplified form

hk+1
i = hki + αQi

(
∇fi(xk)− hki

)
. (20)

This recursion resolves both of the earlier raised issues. Firstly, this sequence of hki indeed converges
to the optimal shifts∇fi(x?), which is formalized in the Theorem 11 presented later. Besides, shift
on the master hk+1 = 1

n

∑n
i=1 h

k+1
i is updated this way

hk+1 =
1

n

n∑
i=1

{
hki + α

[
Ci(∇fi(xk)− hki ) +Qi

(
∇fi(xk)− hki − Ci(∇fi(xk)− hki )

)]}
=

1

n

n∑
i=1

hki + α
1

n

n∑
i=1

{
cki +mk

i

}
= hk + α

(
ck +mk

)
,

which requires aggregation of only compressed vectors cki := Ci(∇fi(xk) − hki ) and mk
i :=

Qi
(
∇fi(xk)− hki − cki

)
from the workers. In case of update (20) it is even not needed to send

anything in addition to messages mk
i required by default in DCGD-SHIFT (1).

Furthermore, simplified recursion (20) can be interpreted as 1 step of Compressed Gradient
Descent (CGD) with stepsize α applied to such optimization problem:

max
hi∈Rd

[
φki (hi) := −1

2

∥∥∥hi −∇fi(xk)∥∥∥2] ,
19



SHIFTED COMPRESSION FRAMEWORK

which is in fact a 1-smooth and 1-strongly concave function. In this way hk+1
i keeps track of the

latest local gradient and produces a better estimate than the previous shift hki offered.
Now we present the convergence result for the Algorithm 1 with described shift learning proce-

dure.

Theorem 11 (DIANA) Assume each fi is convex and Li-smooth, and f is µ-strongly convex. Let
Qi ∈ U(ωi), Ci ∈ U(δi) - independent compression operators. If the step-sizes satisfy

α ≤ 1

1 + ωi(1− δi)
(for all i), γ ≤ 1

2
n maxi (ωiLi) + (1 + αM)Lmax

,

where Lmax := maxi Li,M > 2/(nα) and δi should be interpreted as zero for Ci ≡ 0. Then the
iterates of DCGD with DIANA-like shift update (19) satisfy

EV k ≤ max

{
(1− γµ)k,

(
1− α+

2ω

nM

)k}
V 0,

where the Lyapunov function V k is defined by

V k :=
∥∥∥xk − x?∥∥∥2 +Mγ2 · 1

n

n∑
i=1

ωi

∥∥∥hki −∇fi(x?)∥∥∥2 .
Our result improves over original DIANA in several ways. Firstly, it uses much more general shift
updates involving Ci, which allows using biased operators for learning the optimal shifts. Secondly,
one can use different compressors Qi, which can be particularly beneficial when different workers
have various bandwidths/connection speeds to the master. So, the slower processors can compress
more, and therefore use operators with higher ωi. At the same, time the opposite makes sense for
"faster" workers.

C.4.1. PROOF OF THEOREM 11 (DIANA-LIKE)

DIANA-like shift update has the following form

hk+1
i = hki + α

[
Ci(∇fi(xk)− hki ) +Qi

(
∇fi(xk)− hki − Ci(∇fi(xk)− hki )

)]
,

which is in fact equivalent to the standard DIANA shift update with induced compressor Qind
i ∈

U (ωi(1− δi)) defined before (8):

hk+1
i = hki + αQind

i

(
∇fi(xk)− hki

)
,

The proof of Theorem 11 is mainly a generalization of the original DIANA analysis. Our approach
is based on [11, Theorem 4.1], which requires the following Lemma (referred as Assumption 4.1
in [11]).

Lemma 12 Assume that functions fi are convex and Li-smooth for all i, and Qi ∈ U(ωi), Ci ∈
B(δi). Let h = (h1, h2, . . . , hn) ∈ Rd × Rd . . .× Rd = Rnd and define σ : Rnd → [0,∞) and σk

by

σ(h) =
1

n

n∑
i=1

ωi ‖hi −∇fi(x?)‖2 , σk := σ(hk) =
1

n

n∑
i=1

ωi

∥∥∥hki −∇fi(x?)∥∥∥2 .
20
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Then for all iterations of DCGD with DIANA-like shift update we have

1) E
[
gk | xk, hk

]
= ∇f(xk),

2) E
[∥∥∥gk −∇f(x?)

∥∥∥2 | xk, hk] ≤ 2

(
2 max

i
(Liωi/n) + Lmax

)
Df (xk, x?) +

2

n
σk,

3) E
[
σk+1 | xk, hk

]
≤ (1− α)σk + 2αmax

i
(Liωi)Df (xk, x?).

Proof The Lemma consists of three points.
1) Unbiasedness of the shifted gradient estimator was already shown in C.2.

2) Expected smoothness:

Gk := E

[∥∥∥gk −∇f(x?)
∥∥∥2 | xk, hk]

= E
[
‖gk −∇f(xk)‖2 | xk, hk

]
+
∥∥∥∇f(xk)−∇f(x?)

∥∥∥2
≤ E

[
‖gk −∇f(xk)‖2 | xk, hk

]
+ 2LDf (xk, x?)

= E

∥∥∥∥∥ 1

n

n∑
i=1

(
hki +Qi

(
∇fi(xk)− hki

)
−∇fi(xk)

)∥∥∥∥∥
2

| xk, hk
+ 2LDf (xk, x?)

≤ 1

n2

n∑
i=1

E

[∥∥∥Qi (∇fi(xk)− hki )− (∇fi(xk)− hki )
∥∥∥2 | xk, hk]+ 2LDf (xk, x?)

≤ 1

n2

n∑
i=1

ωi

∥∥∥∇fi(xk)− hki )∥∥∥2 + 2LDf (xk, x?)

≤ 1

n2

n∑
i=1

ωi

[
2
∥∥∥∇fi(xk)−∇fi(x?))∥∥∥2 + 2

∥∥∥∇fi(x?)− hki )∥∥∥2]+ 2LDf (xk, x?)

≤ 2
2

n
max(ωiLi)

1

n

n∑
i=1

Dfi(x
k, x?) +

2

n

1

n

n∑
i=1

ωi

∥∥∥∇fi(x?)− hki )∥∥∥2 + 2LDf (xk, x?)

≤ 2

[
2

n
max(ωiLi) + Lmax

]
Df (xk, x?) +

2

n
σk.

Denote mk
i := Qind

i

(
∇fi(xk)− hki

)
.

3) Sigma-k recursion:

E
[
σk+1 | xk, hk

]
= E

[
1

n

n∑
i=1

ωi

∥∥∥hk+1
i −∇fi(x?)

∥∥∥2 | xk, hk]

≤ 1

n

n∑
i=1

ωi

(∥∥∥hki − h?i ∥∥∥2 + 2α
〈
∇fi(xk)− hki , hki − h?i

〉
+ α2E

[∥∥∥mk
i

∥∥∥2 | xk, hk])

≤ σk +
1

n

n∑
i=1

ωi

(
2α
〈
∇fi(xk)− hki , hki − h?i

〉
+ α2 (1 + ωi(1− δi)

∥∥∥∇fi(xk)− hki ∥∥∥2)
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≤ σk +
1

n

n∑
i=1

ωiα

(
2
〈
∇fi(xk)− hki , hki − h?i

〉
+
∥∥∥∇fi(xk)− hki ∥∥∥2)

= σk +
1

n

n∑
i=1

αωi

(∥∥∥∇fi(xk)− h?i ∥∥∥2 − ∥∥∥hki − h?i ∥∥∥2)

=
1

n

n∑
i=1

(1− α)σk +
1

n

n∑
i=1

αωi

∥∥∥∇fi(xk)−∇fi(x?)∥∥∥2
≤ (1− α)σk +

1

n

n∑
i=1

α2ωiLiDfi(x
k, x?)

≤ (1− α)σk + 2 max
i

(Liωi)Df (xk, x?),

which concludes the proof.

Now by direct application of [11, Theorem 4.1] we get statement of Theorem 11.

C.5. Proof of Theorem 6 (Randomized-DIANA)

In short Rand-DIANA is defined by the shift update

hki = ∇fi(wki )

wk+1
i =

{
xk with probability pi
wki with probability 1− pi

which is similar to gradient estimator structure of Loopless-SVRG [21].
The proof of Theorem 6 is also based on [11, Theorem 4.1], which requires a modified version

of Lemma 12.

Lemma 13 Assume that functions fi are convex and Li-smooth for all i, and Qi ∈ U(ω) for all i.
Let h = (h1, h2, . . . , hn) ∈ Rd × Rd . . .× Rd = Rnd and define σ : Rnd → [0,∞) and σk by

σ(h) =
1

n

n∑
i=1

‖hi −∇fi(x?)‖2 σk := σ(hk) =
1

n

n∑
i=1

∥∥∥hki −∇fi(x?)∥∥∥2 .
Then for all iterations of Rand-DIANA we have

1) E
[
gk | xk, hk

]
= ∇f(xk),

2) E

[∥∥∥gk −∇f(x?)
∥∥∥2 | xk, hk] ≤ 2

(
2ω

n
+ 1

)
LmaxDf (xk, x?) +

2ω

n
σk,

3) E
[
σk+1 | xk, hk

]
≤ 2 max

i
(piLi)Df (xk, x?) + (1−min

i
pi)σ

k.

Proof 1) Unbiasedness of the shifted gradient estimator was already shown in C.2.
2) Expected smoothness: Exactly the same as in Lemma 12 with simplified σk (without ωi) and

ωi ≡ ω.
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3) Sigma-k recursion:

E
[
σk+1 | xk, hk

]
=

1

n

n∑
i=1

E
[
‖hk+1

i − h?i ‖2 | xk, hk
]

= E

[
1

n

n∑
i=1

‖∇fi(wk+1
i )−∇fi(x?)‖2 | xk, hk

]

=
1

n

n∑
i=1

[
pi‖∇fi(xk)−∇fi(x?)‖2 + (1− pi)‖∇f(wki )−∇fi(x?)‖2

]
≤ 1

n

n∑
i=1

pi · 2LiDfi(xk, x
?) + max

i
(1− pi)

1

n

n∑
i=1

‖∇f(wki )−∇fi(x?)‖2

≤ 2 max
i

(piLi)Df (xk, x
?) + (1−min

i
pi)σ

k

Appendix D. Compressing the iterates

In this section, we discuss how the shifted compression framework can be applied to the case where
the iterates themselves need to be compressed and lead to the improved results.

Let Q ∈ U(ω). Consider such shifted by vector x/γ compressor

Q̂(z) :=
x

γ
+Q

(
z − x

γ

)
,

which clearly belongs to the class U(ω;x/γ).
By using the fact that compressor Q̄(z) := − 1

γ · Q (−γz) ∈ U(ω) (for γ 6= 0) we can transform

Q̂ to operator

Q̃(z) :=
x

γ
+ Q̄

(
z − x

γ

)
=
x

γ
− 1

γ
· Q
(
−γ
[
z − x

γ

])
=

1

γ
[x−Q(x− γz)] ,

which also belongs to U(ω;x/γ) and it is helpful for analysing algorithms with compressed iterates.

D.1. Distributed Gradient Descent with Compressed Iterates (GDCI)

GDCI was at first analyzed in [17] for single node and in short, was formulated in the relaxed form

xk+1 = (1− η)xk + ηQ
(
xk − γ∇f(xk)

)
(1 node GDCI)

by [8]. This algorithm can be reformulated using previously described shifted compressor Q̃

xk+1 = xk − (ηγ)
1

γ

[
xk −Q

(
xk − γ∇f(xk)

)]
= xk − (ηγ)Q̃k(∇f(xk)),
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which for distributed case takes the form

xk+1 = xk − (ηγ)
1

γ

[
xk − 1

n

n∑
i=1

Qi
(
xk − γ∇fi(xk)

)]
. (21)

The essence of this method is compression of the local workers’ iterates Qi
(
xk − γ∇fi(xk)

)
and

aggregation on the master (21). Established linear convergence up to a neighborhood introduced due
to variance of compression operator (similarly to DCGD with fixed shifts result 5) is presented next.

Theorem 14 (GDCI) Assume each fi is convex and Li-smooth, and f is L-smooth and µ-strongly
convex. Let Qi ∈ U(ω) - independent compression operators. If the step-sizes satisfy

η ≤
[
L

µ
+

2ω

n

(
Lmax

µ
− 1

)]−1
, γ ≤ 1 + 2ηω/n

η (L+ 2Lmaxω/n)

then the iterates of Distributed GDCI (21) satisfy

E
∥∥∥xk − x?∥∥∥2 ≤ (1− η)k‖x0 − x?‖2 + η

2ω

n

1

n

n∑
i=1

‖x? − γ∇fi(x?)‖2 . (22)

In the interpolation regime (∇fi(x?) = 0 = x? − γ∇fi(x?) for every i) this result matches the
complexity of DCGD with fixed shifts (5)

Õ (κ (1 + ω/n))

and improves over the original rate of GDCI from [8] analyzed for fixed point problems and
specialized for gradient mappings:

Õ (κmax {1, κω/n}) ≤ Õ
(
κ2ω/n

)
D.1.1. PROOF OF THEOREM 14 (GDCI)

This and further sections rely on Subsection C.1.2.
Distributed Gradient Descent with Compressed Iterates (GDCI) has the form

xk+1 = xk − (ηγ)
1

γ

[
xk − 1

n

n∑
i=1

Qi
(
xk − γ∇fi(xk)

)]
= xk − (ηγ)Q̃k(∇f(xk)).

where shifted compressor Q̃k(∇f(xk)) belongs to class U
(
ω; xk/γ

)
for Qi ∈ U(ω)

Convergence analysis for the non-regularized case (∇f(x?) = 0).4

4Can be easily generalized to a proximal setup as the previous parts.
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Proof Expectation conditional on xk

E ‖rk+1‖2 := E ‖xk+1 − x?‖2

= E
∥∥∥xk − ηγQ̃k(∇f(xk))− x?

∥∥∥2
= E

∥∥∥xk − ηγQ̃k(∇f(xk))− (x? − ηγ∇f(x?))
∥∥∥2

= ‖rk‖2 + (ηγ)2E
∥∥∥Q̃k(∇f(xk))−∇f(x?)

∥∥∥2 − 2ηγ〈xk − x?,∇f(xk)−∇f(x?)〉

= ‖rk‖2 + (ηγ)2
[
E
∥∥∥Q̃k(∇f(xk))−∇f(xk)

∥∥∥2 +
∥∥∥∇f(xk)−∇f(x?)

∥∥∥2]
− 2ηγ〈xk − x?,∇f(xk)−∇f(x?)〉.

(23)
Next we upper-bound the variance of Q̃k(∇f(xk))

E
∥∥∥Q̃k(∇f(xk))−∇f(xk)

∥∥∥2 = E

∥∥∥∥∥1

γ

[
xk − 1

n

n∑
i=1

Qi
(
xk − γ∇fi(xk)

)]
− 1

n

n∑
i=1

∇fi(xk)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n2

n∑
i=1

(
∇fi(xk)−

1

γ

[
xk −Qi

(
xk − γ∇fi(xk)

)])∥∥∥∥∥
2

[independence of Qi] ≤
1

n2

n∑
i=1

E

∥∥∥∥∇fi(xk)− 1

γ

[
xk −Qi

(
xk − γ∇fi(xk)

)]∥∥∥∥2
≤ 1

n2

n∑
i=1

ω

∥∥∥∥∇fi(xk)− 1

γ
xk
∥∥∥∥2

=
1

n2

n∑
i=1

ω

γ2

∥∥∥xk − γ∇fi(xk)∥∥∥2
=

ω

n2γ2

n∑
i=1

∥∥∥xk − γ∇fi(xk)± (x? − γ∇fi(x?))
∥∥∥2

≤ ω

n2γ2

n∑
i=1

2

[∥∥∥xk − γ∇fi(xk)− (x? − γ∇fi(x?))
∥∥∥2 + ‖x? − γ∇fi(x?)‖2

]

=
2ω

n2γ2

n∑
i=1

[ ∥∥∥xk − x?∥∥∥2 − 2γ〈xk − x?,∇fi(xk)−∇fi(x?)〉

+ γ2
∥∥∥∇fi(xk)−∇fi(x?)∥∥∥2 + ‖x? − γ∇fi(x?)‖2

]
≤ 2ω

n2γ2

n∑
i=1

[ ∥∥∥rk∥∥∥2 − 2γ
(
Dfi(x

k, x?) +
µ

2
‖xk − x?‖2

)
+ γ22LiDfi(x

k, x?) + ‖x? − γ∇fi(x?)‖2
]

=
2ω

n2γ2

n∑
i=1

[
(1− γµ)

∥∥∥rk∥∥∥2 − 2γ (1− γLi)Dfi(x
k, x?) + ‖x? − γ∇fi(x?)‖2

]
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≤ 2ω

nγ2
(1− γµ)

∥∥∥rk∥∥∥2 +
2ω

n2γ2

n∑
i=1

‖x? − γ∇fi(x?)‖2

− 2ω

nγ2
· 2γ (1− γLmax)Df (xk, x?).

Combining it with (23) and using notation Ti(x) := x− γ∇fi(x) we get

E ‖rk+1‖2 ≤ ‖rk‖2 − 2ηγ〈xk − x?,∇f(xk)−∇f(x?)〉+ (ηγ)2
∥∥∥∇f(xk)−∇f(x?)

∥∥∥2
+

2ωη2

n

[
(1− γµ)

∥∥∥rk∥∥∥2 − 2γ (1− γLmax)Df (xk, x?) +
1

n

n∑
i=1

‖Ti(x?)‖2
]

≤ ‖rk‖2 − 2ηγ
[
Df (xk, x?) +

µ

2
‖xk − x?‖2

]
+ (ηγ)2 · 2LDf (xk, x?)

+
2ωη2

n

[
(1− γµ)

∥∥∥rk∥∥∥2 − 2γ (1− γLmax)Df (xk, x?) +
1

n

n∑
i=1

‖Ti(x?)‖2
]

≤
[
1− ηγµ+

2ωη2

n
(1− γµ)

]
‖rk‖2 +

2ωη2

n

1

n

n∑
i=1

‖Ti(x?)‖2

− 2ηγ

[
1− ηγL+

2ωη

n
(1− γLmax)

]
Df (xk, x?),

which after choosing the step-size

γ ≤ 1 + 2ηω/n

η (L+ 2Lmaxω/n)

and after optimizing over γ and η (to maximize contraction term before ‖rk‖2) leads to

E
[
‖xk+1 − x?‖2 | xk

]
≤ (1− η) ‖rk‖2 +

2ωη2

n

1

n

n∑
i=1

‖Ti(x?)‖2 ,

for

η ≤
[
L

µ
+

2ω

n

(
Lmax

µ
− 1

)]−1
,

And after unrolling the recursion and standard simplifications we obtain the desired result

E ‖xk − x?‖2 ≤ (1− η)k
∥∥x0 − x?∥∥2 +

2ωη

n

1

n

n∑
i=1

‖x? − γ∇fi(x?)‖2 .
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D.2. Variance-Reduced Gradient Descent with Compressed Iterates (VR-GDCI)

Algorithm 2: Variance-Reduced Gradient Descent with Compressed Iterates (VR-GDCI)
Input: learning rates α, γ, η > 0; compressors Qi, initial iterate x0 ∈ Rd, initial local shifts

h01, . . . , h
0
n ∈ Rd (stored on the n nodes)

Initialize: h0 = 1
n

∑n
i=1 h

0
i (stored on the master)

for k = 0, 1, 2 . . . do
Broadcast xk to all workers
for i = 1, . . . n do

Compute local gradient: ∇fi(xk)
Compress shifted local model δk+1

i = Qi
(
xk − γ∇fi(xk)− hki

)
Update the local shift: hk+1

i = hki + αδk+1
i

Send message δk+1
i to the master

end
Aggregate received messages: δk+1 = 1

n

∑n
i=1 δ

k+1
i

Update aggregated shift: hk+1 = hk + αδk+1

Compute ∆k+1 = δk+1 + hk

Take "model" step: xk+1 = (1− η)xk + η∆k+1

end

We can rewrite VR-GDCI (Algorithm 2) in the following equivalent way

δk+1 =
1

n

n∑
i=1

δk+1
i =

1

n

n∑
i=1

Qi
(
Ti(xk)− hki

)
hk+1 = hk + αδk.

which leads to such update rule

xk+1 = xk − η
(
xk − hk − δk

)
= xk − (ηγ)

1

γ

(
xk − hk − 1

n

n∑
i=1

Qi
(
xk − hki − γ∇fi(xk)

))
= xk − (ηγ)Q̃k(∇f(xk))

Theorem 15 Let Ψk be the following Lyapunov function:

Ψk := ‖xk − x?‖2 +
4η2ω

αn
σk, σk :=

1

n

n∑
i=1

∥∥∥hki − Ti(x?)∥∥∥2
Suppose that f is L-smooth and µ-strongly convex. Choose the stepsizes α, η, γ such that

α ≤ 1

ω + 1
, η =

[
L

µ
+

6ω

n

(
Lmax

µ
− 1

)]−1
, γ ≤ 1 + 6ωη/n

η(L+ 6Lmaxω/n)
.

Then the iterates defined by Algorithm 2 satisfy

EΨk ≤
(

1−min
{α

2
, η
})k
‖x0 − x?‖2Ψ0.
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Proof Start of the analysis is exactly the same as in the previous section (23).
Expectation conditional on xk and hk

E ‖rk+1‖2 := E ‖xk+1 − x?‖2 = ‖rk‖2 − 2ηγ〈xk − x?,∇f(xk)−∇f(x?)〉

+ (ηγ)2
[
E
∥∥∥Q̃k(∇f(xk))−∇f(xk)

∥∥∥2
τk

+
∥∥∥∇f(xk)−∇f(x?)

∥∥∥2 ]. (24)

For term τk we employ similar upper bound using the fact that Q̃ki ∈ U(ω;
(
xk − hki

)
/γ)

E

[∥∥∥Q̃k(∇f(xk))−∇f(xk)
∥∥∥2 | xk, hk] ≤ ω

n2

n∑
i=1

∥∥∥∇fi(xk)− (xk − hki ) /γ∥∥∥2
=

ω

n2
1

γ2

n∑
i=1

∥∥∥xk − hki − γ∇fi(xk)± Ti(x?)∥∥∥2
≤ 2ω

n2γ2

n∑
i=1

∥∥∥Ti(xk)− Ti(x?)∥∥∥2
+

2ω

γ2n

1

n

n∑
i=1

∥∥∥hki − Ti(x?)∥∥∥2
σk

.

(25)

Next we upper-bound the σk+1 term (expectation conditional on xk and hk):

Eσk+1 =
1

n

n∑
i=1

E
∥∥∥hk+1

i − Ti(x?)
∥∥∥2

=
1

n

n∑
i=1

E
∥∥∥hki + αQi

(
Ti(xk)− hki

)
− (x? − γ∇fi(x?))

∥∥∥2
=

1

n

n∑
i=1

[
‖hki − Ti(x?)‖2 + α2E

∥∥∥Qi (Ti(xk)− hki )∥∥∥2 + 2α〈hki − Ti(x?), Ti(xk)− hki 〉
]

(2)

≤ σk +
1

n

n∑
i=1

[
α2(ω + 1)

∥∥∥Ti(xk)− hki ∥∥∥2 − 2α〈hki − Ti(x?), hki − Ti(xk)〉
]

[α ≤ 1/(ω+1)] ≤ σk +
1

n

n∑
i=1

[
α
∥∥∥Ti(xk)− hki ∥∥∥2 − 2α〈hki − Ti(x?), hki − Ti(xk)〉

]
(10)
= σk +

1

n

n∑
i=1

α

[∥∥∥Ti(xk)− Ti(x?)∥∥∥2 − ∥∥∥hki − Ti(x?)∥∥∥2]

= (1− α)σk + α
1

n

n∑
i=1

∥∥∥Ti(xk)− Ti(x?)∥∥∥2 .
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Simplification of the second term (same as first term in (25))

1

n

n∑
i=1

∥∥∥Ti(xk)− Ti(x?)∥∥∥2 =
1

n

n∑
i=1

∥∥∥xk − γ∇fi(xk)− (x? − γ∇fi(x?))
∥∥∥2

=
1

n

n∑
i=1

[ ∥∥∥xk − x?∥∥∥2 + γ2
∥∥∥∇fi(xk)−∇fi(x?)∥∥∥2

− 2γ〈xk − x?,∇fi(xk)−∇fi(x?)〉
]

≤
∥∥∥rk∥∥∥2 +

1

n

n∑
i=1

[
γ22LiDfi(x

k, x?)− 2γ
(
Dfi(x

k, x?) +
µ

2
‖xk − x?‖2

) ]
= (1− γµ)

∥∥∥rk∥∥∥2 − 2γ · 1

n

n∑
i=1

(1− γLi)Dfi(x
k, x?)

≤ (1− γµ)
∥∥∥xk − x?∥∥∥2 − 2γ · (1− γLmax)Df (xk, x?).

(26)
Combining the obtained bounds for ‖xk+1 − x?‖2 and σk+1 we get the Lyapunov function

(expectation conditional on xk, hk):

EΨk+1 := E
∥∥∥xk+1 − x?

∥∥∥2 +
4η2ω

αn
Eσk+1

≤ ‖rk‖2 − 2ηγ〈xk − x?,∇f(xk)−∇f(x?)〉+ (ηγ)2
∥∥∥∇f(xk)−∇f(x?)

∥∥∥2
+ (ηγ)2

[
2ω

n2γ2

n∑
i=1

∥∥∥Ti(xk)− Ti(x?)∥∥∥2 +
2ω

γ2n
σk

]

+
4η2ω

αn

[
(1− α)σk + α

1

n

n∑
i=1

∥∥∥Ti(xk)− Ti(x?)∥∥∥2]
(7,8)

≤ (1− ηγµ)‖rk‖2 − 2ηγ (1− Lηγ)Df (xk, x?)

+
4η2ω

αn

(
1− α

2

)
σk +

6ωη2

αn

1

n

n∑
i=1

∥∥∥Ti(xk)− Ti(x?)∥∥∥2
(26)
≤
[
1− µηγ +

6ωη2

n
(1− γµ)

]
‖rk‖2 +

4η2ω

αn

(
1− α

2

)
σk

− 2ηγ

[
1− Lηγ +

6ηω

n
(1− γLmax)

]
Df (xk, x?)[

γ ≤
1 + 6ω

n η

η
(
L+ 6ω

n Lmax

)] ≤ [1− µηγ +
6ωη2

n
(1− γµ)

]
‖rk‖2 +

4η2ω

αn

(
1− α

2

)
σk

≤ (1− η) ‖xk − x?‖2 +
4η2ω

αn

(
1− α

2

)
σk

for

η = µ

[
L+

6ω

n
(Lmax − µ)

]−1
.
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The last inequality was obtained via minimization of the term
[
1− µηγ + 6ωη2

n (1− γµ)
]

w.r.t. γ, η
and using contraction inequality constraint. Using the definition of the Lyapunov function we obtain

E
[
Ψk+1 | xk, hk

]
≤
(

1−min
{
η,
α

2

})
‖xk − x?‖2Ψk,

which by unrolling the recursion and taking full expectation leads to the statement of the
Theorem 15.

Obtained Theorem gives rise to the following iteration complexity result

max

{
2(ω + 1),

L

µ
+

6ω

n

(
Lmax

µ
− 1

)}
log 1/ε,

which after simplification (Li ≡ L) is equivalent to complexity of DIANA up to numerical constants

max{2(ω + 1),
(

1 + 6
ω

n

)
κ} log 1/ε,

and improves over the original rate of VR-GDCI from [8] analyzed for fixed point problems and
specialized for gradient mappings:

2 max
{
ω + 1, κmin

(
1, 12

ω

n
κ
)}

log 1/ε.
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Appendix E. Experiments

Consider a classical ridge-regression optimization problem

min
x∈Rd

[
f(x) :=

1

2
‖Ax− y‖22 +

λ

2
‖x‖22

]
,

where λ = 1/m and A ∈ Rm×d, y ∈ Rm are generated using Scikit-learn library [28] method
sklearn.datasets.make_regression with default parameters for m = 100, d = 80. Obtained data is
uniformly at random distributed evenly among 10 workers. To compare selected Algorithms, we
evaluate the logarithm of a relative argument error log

(
‖xk − x?‖2/‖x0 − x?‖2

)
on vertical axis,

while for horizontal one we calculate number of communicated bits needed to reach certain error
tolerance ε. The starting point x0 ∈ Rd entries are sampled from the normal distribution N (0, 10).

E.1. Randomized-DIANA vs DIANA

In the first set of experiments we compare Rand-DIANA and DIANA with different compressors
Qi (Ci ≡ 0) and varied operators’ parameters. Obtained results are summarized Figure 1. Desig-
nation q := k/d is used for the share of non-zeroed coordinates of Random sparsification
(Rand-K) operator and s corresponds to number of levels for Natural Dithering (ND) [15]
compressor. Parameter p of Rand-DIANA was chosen as 1/(ω + 1) for every run.
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Figure 1: Comparison of DIANA and Rand-DIANA. Left plot: methods equipped with Rand-K
for various q values. Right plot: selected results of grid search for ND parameter s ∈ [20].

Left plot in Figure 1 clearly shows that Rand-DIANA performs better than original DIANA
for every value of Rand-K compressor parameter. It is worth noting that DIANA performs better
with higher q, while for Rand-DIANA the opposite holds. From the right plot one can find that
DIANA with ND can be superior to Rand-DIANA for optimized parameter s?. Nevertheless, for very
aggressive compression (e.g., s = 2) Rand-DIANA is preferable.

In the next experimental setup, we closer investigate the behavior of Rand-DIANA.
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E.2. Randomized-DIANA study
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Figure 2: Study of Rand-DIANA stability and performance with varying parameters b and p.

According to the formulation of Theorem 6 constant M has to be chosen strictly greater than
M ′ := 2ω/(np). In the left plot of Figure 2 we show that for smaller values of M (set to M ′ · b)
the method becomes less stable and can even diverge. But too big M (for b = 1.5) can lead to
overall (stable) slowdown. The right plot examines how parameter p affects the convergence in high
compression regime (q = 0.1). The conclusion is that for smaller p method converges faster, and
after certain threshold it can diverge. So, there is a trade-off similar to the previous study of M .
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