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Abstract
First-order methods for stochastic optimization have undeniable relevance. Variance reduction for
these algorithms has become an important research topic. We exploit convexity and L-smoothness
to improve the noisy estimates outputted by the stochastic gradient oracle. Our method, named
COCO denoiser, is the joint maximum likelihood estimator of multiple function gradients from
their noisy observations, subject to co-coercivity constraints between them. The resulting estimate
is the solution of a convex Quadratically Constrained Quadratic Problem. Although this problem is
expensive to solve by interior point methods, we exploit its structure to apply an accelerated first-
order algorithm, the Fast Dual Proximal Gradient method. Besides analytically characterizing the
proposed estimator, we show empirically that increasing the number and proximity of the queried
points leads to better gradient estimates. We also apply COCO in stochastic settings by plugging
it in existing algorithms, such as SGD, Adam or STRSAGA, outperforming their vanilla versions,
even in scenarios where our modelling assumptions are mismatched. 1

1. Introduction

We study first-order solution methods to problems of the form:

min
x∈Rd

{
f(x) = E [fξ(x)]

}
, (1)

where f is a convex and L-smooth function and the randomness denoted by the index ξ results from
the selection of data points. This type of formulation commonly arises in cases where the exact
gradient of the objective function f , ∇f(x), cannot be easily obtained, being preferable to con-
sult a first-order stochastic oracle [3] that provides us with a noisy but unbiased gradient estimate,
∇fξ(x) = gξ(x). The difficulties in obtaining an exact gradient are typically caused by either the
computational cost (e.g., in large-scale machine learning problems, where we have a huge but finite
number of indexes), or by the intrinsic nature of problem (e.g., in streaming applications, where we
have an infinite number of indexes [11]). We focus our attention on the latter, in applications where
the oracle queries are very expensive, therefore measuring the progress of the different first-order
methods as a function of the number of gradient evaluations.

Related Work. In the core of stochastic optimization, we find SGD [14], which despite its sim-
plicity, remains a fundamental algorithm. Based on queries to a stochastic first-order oracle queries,

1. Code for the experiments and plots is available at https://github.com/ManuelMLMadeira/COCO-Denoiser.
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the iterates generated by SGD to solve (1) are of the form: xk+1 = xk − γk gk, where γk denotes
the step size. In the convergence analysis of this method, the bias term vanishes under a convenient
selection of a fixed step size, but that does not happen to the variance term. To enable convergence,
some variance reduction approaches have been proposed, such as i) O(1/k) decreasing step sizes
or ii) averaging algorithms, where we include the so-called Polyak-Ruppert (PR) averaging [13]
and more refined averaging schemes (e.g. [9]). Other improvements on SGD have also been
achieved by addressing other weaknesses of the original methods. In particular, the adaptive (step
size) algorithms overcome sensitivity to initialization by successively adjusting the step size in each
dimension according to the magnitude of the progress in that same dimension (e.g. see [6–8, 12, 17],
from where we pick as its representative Adam [12]), drastically improving the performance in high
condition number problems. More recently, the variance-reduced (VR) methods emerged, which
despite being originally derived for a finite number of indexes ε in (1) [5, 10, 15], already have
streaming versions (e.g. STRSAGA [11]).

Our Approach. We leverage on the convexity and L-smoothness of f . These properties can
be merged into gradient co-coercivity, which we exploit to denoise a set of gradients g1, . . . , gk,
obtained from an oracle [3] consulted at iterates x1, . . . , xk, respectively. We refer to our method
as the co-coercivity (COCO) denoiser and plug it in existing stochastic first-order algorithms (see
Figure 1). The COCO denoiser is obtained from the joint maximum likelihood estimation of the
function gradients constrained by the pairwise co-coercivity constraints (see Section 2.1). This es-
timator can be expressed as convex quadratically constrained quadratic problem (QCQP) [2], for
which we derive the closed-form solution when dealing with two observations and introduce an ac-
celerated algorithm for the general case, based on Beck and Teboulle [1] (see Section 2.2). We study
the estimator properties, finding empirical evidence that the COCO denoiser yields better gradient
estimates than the stochastic oracle and that variance monotonically decreases with the number
of gradients used, providing a natural way to trade off variance reduction and computation (see
Section 3). Our experiments also illustrate that current stochastic first-order methods (SGD [14],
Adam [12] and STRSAGA [11]) benefit from using gradients denoised by COCO, even in settings
where the assumptions from COCO are mismatched (see Section 4 and Appendix E).

2. COCO Denoiser

First, we formulate COCO as a maximum likelihood estimator constrained by the co-coercivity
conditions; then, we propose efficient methods to compute its solution.

2.1. Maximum Likelihood Estimation

Let the objective function f : Rd → R be convex and L-smooth. A standard result in convex
analysis states that the gradient of f is co-coercive [2], which is expressed as

∀x, y ∈ Rn :
1

L
‖∇f(y)−∇f(x)‖2 ≤ 〈∇f(y)−∇f(x), y − x〉. (2)

Our approach hinges on the following assumptions:

Assumption 2.1 A Lipschitz constant L for the gradient of f is known.

Assumption 2.2 There is access to an oracle which, given an input x ∈ Rd, outputs a noisy version
of the gradient of f at x: g(x;w) = ∇f(x)+w, wherew ∈ Rd is a sample of a zero mean Gaussian
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distribution, w ∼ N (0,Σ), with covariance Σ = σ2I . The noise samples are independent across
the oracle queries.

The oracle is consulted at points x1, . . . , xK , returning the data vector g = [g1, . . . , gK ]T ∈
RKd, from which our goal is to estimate the true gradients ∇f(x1), . . . , ∇f(xK), arranged in
the parameter vector θ = [θ1, . . . , θK ]T ∈ RKd, where θk = ∇f(xk) ∈ Rd. From 2.2, the
observation model is immediate: g = θ + w, where w = [w1, . . . , wK ]T ∼ N (0,Σw), with Σw

block-diagonal, each block being Σ. The maximum likelihood estimate [16] of θ is then

θ̂ = argmax
θ∈Θ

p(g|θ), with p(g|θ) =
1√

(2π)n|Σ|
e−

1
2

(g−θ)T Σ−1
w (g−θ),

where the parameter vector θ is constrained by the co-coercivity condition (2), i.e.,

θ ∈ Θ =

{
(θ1, . . . , θK) :

1

L
‖θm − θl‖2 ≤ 〈θm − θl, xm − xl〉, 1 ≤ m < l ≤ K

}
.

Consequently, the maximum likelihood estimate θ̂ comes from solving the following optimiza-
tion problem:

min
θ1,...,θK

K∑
i=1

‖gi − θi‖2

subject to
1

L
‖θm − θl‖2 ≤ 〈θm − θl, xm − xl〉, 1 ≤ m < l ≤ K.

(3)

Since both the objective and the constraints in (3) are convex quadratics, the resulting problem is
a convex Quadratically Constrained Quadratic Problem (QCQP) [2]. Since there is one constraint
for each pair of query points, the total number of constraints in (3) is K(K − 1)/2. This quadratic
growth motivates an approach where we keep only the K last query points (1 < K ≤ k, where
k is the total number of queried points). For example, for K = 2, the denoiser works only with
xk−1, xk, gk−1 and gk. We define COCOK to be the denoiser that uses a window of length K.

2.2. Efficient Algorithms for COCOK

To solve the COCO optimization problem (3), we present its closed-form solution for K = 2 in
Appendix A and propose an iterative method to efficiently compute its approximate solution for
arbitrary K. We present a first-order algorithm which explores the COCO structure2. The dual
problem of the QCQP in (3) can be shown to be

min
s

1

2
‖ −AT s‖2︸ ︷︷ ︸
p∗(−AT s)

+
∑

1≤m<l≤K
rml‖sml‖ − sTmlcml︸ ︷︷ ︸
q∗(s)

,
(4)

where s = [s12, s13, . . . , s1K , s23, s2K , . . . , sK−1K ]T is the dual variable, A is a structured matrix,
cml = (gm − (L/2) xm) − (gl − (L/2) xl) and rml = L‖xm − xl‖/2. The first term in (4),
p∗(−AT s) = 1/2sTAAT s, is differentiable, with ∇s p∗(−AT s) = AAT s. Note that p∗(−AT s) is

2. A more detailed derivation of the method is provided in Appendix B.
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Figure 1: Typical workflow for
stochastic optimization
(grey), to which we plug-in
COCO denoiser (white).

Algorithm 1: FDPG for the COCO denoiser
Input: Initial Point: s0; Number of steps: T ;
Aux. Iterate: y0 = s0; Aux. Momentum: t0 = 1;
L-Smoothness Constant: Lp∗ ;
for k = 1, . . . , T do

sk = prox 1
Lp∗

q∗

(
yk−1 − 1

Lp∗
∇p∗(−AT yk−1)

)
tk =

1+
√

1+4t2k−1

2

yk = sk +
tk−1−1
tk

(sk − sk−1)

end
Output: Final Point: sT ;

necessarily L-smooth, with a Lipschitz constant of Lp∗ = σ2
max(A). On the other hand, despite its

non-differentiability, a proximity operator can be efficiently computed for the second term, q∗(s):
proxµq∗(s) = s− µ(vproj − c), where vproj = argminv∈B‖v − (c+ s/µ)‖2 collects the projections
of cml + sml/µ onto the ball B(0, rml) = {x ∈ Rn : ‖x‖ ≤ rml}. Hence, we can use the Fast
Dual Proximal Gradient (FDPG) method [1]. This approach consists of applying FISTA to the dual
problem of the original one. Since FDPG is a first-order method with a low cost per iteration, we
obtain a computationally efficient solution for COCO. After computing an approximate solution for
the dual problem, s∗, we can easily recover the primal solution for the QCQP: θ̂ = −AT s∗+g. The
FDPG method for the COCO denoiser is summarized in Algorithm 1.

3. COCO Estimator Properties

While in Appendix C we theoretically prove some simple results for the COCO estimator, here we
focus our attention on their experimental exploration. In particular, we find empirical evidence that
the COCO denoiser decreases the elementwise MSE3, i.e., that the MSE(θ̂k) ≤ MSE(gk), thus
providing better gradient estimates than the oracle. This result also makes explicit the variance
reduction provided by COCO, since Var(θ̂k) ≤ MSE(θ̂k) ≤ MSE(gk) = Var(gk). One of the
instances generated is represented in Figure 2. We observe that when points are inside the tighter
cube, we obtain the best COCO denoising (lower MSE(θ̂k)). On the other hand, for the looser cube,
the COCO denoising capability is almost non-existent, tending to the oracle values. Regarding the
intermediate cube, it is shown in Section D.2 that the more isolated points are the ones with worse
MSE(θ̂k). As exposed in Appendix D, we find out that the better perfomance (lower MSE) for
closer points is intrinsically related to the fact that smaller distances between points make the co-
coercivity constraints in (3) tighter.

We also found evidence that for sufficiently close points, MSE(θ̂k) = Cσ2, with C being
O(1/K), while for the oracle, C is obviously O(1) (see Figure 3). This result for MSE(θ̂k) is
the same as for the averaging of normal random variables, enabling a nice interpretation: while
direct averaging would require that K gradient observations to be available at each iterate xk, with
COCOK , we achieve the same MSE(θ̂k) without having to be stuck on that point for K iterates.

3. Elementwise MSE for COCO: MSE(θ̂k) = E[‖θ̂k −∇f(xk)‖2]; for the oracle: MSE(gk) = E[‖gk −∇f(xk)‖2]

4



COCO DENOISER

COCO can then be interpreted as an extension to the averaging procedure, allowing to integrate
information from different points.

4. Stochastic Optimization

In this section, we show that SGD benefits from using COCO gradient estimates when plugged
in as represented in Figure 1, both for a scenario that completely matches Assumptions 2.1 and
2.2 (Synthetic Data) and one where those assumptions are mismatched (Real Data). These ex-
periments are extended to Adam and STRSAGA in Appendix E. We also propose a warm-starting
procedure for the COCO denoiser iterative solution method (FDPG) for first-order stochastic meth-
ods (detailed in Appendix B.4).

Synthetic Data. The first-order oracle provides observations whose noise is additive and nor-
mally distributed, with Σ = 100I . The objective function is a 10-dimensional (d = 10) quadratic,
f(x) = 1/2 xTAx, where A is an (anisotropic) Hessian matrix. While this is a simple model,
every twice-differentiable convex function can in fact be approximated by a quadratic function near
an isolated minimizer. Figure 4 illustrates the results of using COCOK as a plug-in to SGD. We
observe an initial bias regime, where the algorithms converge similarly, that is successively slowed
down and eventually leads to a stagnation, usually called the variance regime. We see that COCO
leads to improved performance in the variance regime without compromising the bias regime and
that the improvement increases with the number K of gradients simultaneously denoised.

Real Data. We test the robustness of plugging in COCO in SGD in real logistic regression
problems using the “fourclass” dataset (n = 862 data points of dimension d = 2) and “mushrooms”
dataset (n = 8124, d = 112) [4]. For the “mushrooms” dataset, we added a Tikhonov regularization
term to the objective function, which is formulated according to the typical finite-sum setting. At
each gradient evaluation, one of those examples is randomly picked, from which we compute a noisy
gradient of the objective. This setup falls out of the assumptions for COCO, since the sampled
gradients are not independent and the noise is not additive and normally distributed. The results
are also shown in Figure 4. For both datasets, consistent variance improvements are observed for
SGD with increasing number K of gradients simultaneously denoised. In contrast to the results
for the “fourclass” dataset, we do not detect any significant bias delay in the ‘mushrooms” dataset
performance.
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Figure 2: Measuring the amount of noise reduction as a function of proximity of the points.
M̂SE(θ̂k) (COCO), M̂SE(gk) (Oracle (E)), both estimated via Monte-Carlo method
(N = 1000), and MSE(gk) (Oracle (T)) for 8-point configuration in R3. Each point
is sampled from the cube xk ∈ [−l, l]3. Left: l = 10; Center: l = 100; Right: l = 1000.
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Figure 3: Measuring the amount of noise reduction as a function of the noise level. M̂SE(gk)
(Left) and M̂SE(θ̂k) (Center), both estimated via Monte-Carlo method (N = 1000),
as functions of the noise variance σ2, for several numbers of points considered (1 ≤
K ≤ 10). For each simulation, a different set of K points is sampled from an uniform
distribution over the cube xk ∈ [−5, 5]3. The dashed-dotted red lines result from linear
regressions with intercept fixed at 0. Right: each of the regressed slopes is depicted as a
function of the number of points.
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Appendix A. Closed-form solution for COCO2

The result for the QCQP in (3), obtained by instantiating the Karush-Kuhn-Tucker conditions, is
given by the following theorem.

Theorem 1 For K = 2, the solution to the optimization problem (3) is given by:
If ‖g1 − g2‖2 ≤ L 〈g1 − g2, x1 − x2〉,{

θ̂1 = g1

θ̂2 = g2;

If ‖g1 − g2‖2 > L 〈g1 − g2, x1 − x2〉,
θ̂1 =

g1+g2+L
2

(x1−x2)

2 + ‖L4 (x1 − x2)‖ g1−g2−L
2

(x1−x2)

‖g1−g2−L
2

(x1−x2)‖
θ̂2 =

g1+g2−L
2

(x1−x2)

2 − ‖L4 (x1 − x2)‖ g1−g2−L
2

(x1−x2)

‖g1−g2−L
2

(x1−x2)‖ .

The solution above has an intuitive interpretation: when the observed gradients are co-coercive
(‖g1 − g2‖2 ≤ L〈g1 − g2, x1 − x2〉), they are on the feasible set of the problem, so they coincide
with the estimated ones; when they are not co-coercive (‖g1 − g2‖2 > L〈g1 − g2, x1 − x2〉), their
difference is orthogonally projected onto the feasible set, which is a ball. Despite its simplicity, this
closed-form solution is of the utmost relevance in practice, since, as shown in Section 4, COCO
leads to significant improvements in stochastic optimization, even for this simple case of K = 2.
Therefore, when available, using the closed-form is obviously preferable to the FDPG method, since
it has a total runtime of only O(d) and much lower memory requirements: the closed-form solution
only requires two points and respective gradients, both d-dimensional vectors, to be kept in memory,
an O(Kd) memory overhead.
Proof For K = 2, we first formulate the problem in (3) for a generic Σ:

min
θ1,θ2

(g1 − θ1)TΣ−1(g1 − θ1) + (g2 − θ2)TΣ−1(g2 − θ2)

subject to ‖θ1 − θ2‖2 − L〈θ1 − θ2, x1 − x2〉 ≤ 0.

In order to solve this problem, the Karush-Kuhn-Tucker (KKT) conditions will now be used. It
can be observed that there are no equality constraints. We have:

f(θ1, θ2) = (g1 − θ1)TΣ−1(g1 − θ1) + (g2 − θ2)TΣ−1(g2 − θ2)

f1(θ1, θ2) = ‖θ1 − θ2‖2 − L〈θ1 − θ2, x1 − x2〉.

Since both functions are differentiable and convex, we can use ∂(f(x)) = {∇f(x)}4. This
can be applied for simplification of the stationarity condition, through the linearity of the gradient

4. ∂(·) denotes the subdifferential operator. For a continuous function f : Rd → R, c ∈ Rd is a subgradient of f at
x ∈ Rd if and only if f(y)− f(x) ≥ cT (y − x), with y ∈ Rd. The set of all the subgradients of f at x is called the
subdifferential of f at x, ∂(f(x)).
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operator. Therefore, the KKT conditions yield the following system of equations:

2Σ−1(θ̂1 − g1) + µ1

[
2(θ̂1 − θ̂2)− L(x1 − x2)

]
= 0 [ i. Stationarity in order to θ̂1 ]

2Σ−1(θ̂2 − g2)− µ1

[
2(θ̂1 − θ̂2)− L(x1 − x2)

]
= 0 [ ii. Stationarity in order to θ̂2 ]

µ1

(
‖θ̂1 − θ̂2‖2 − L〈θ̂1 − θ̂2, x1 − x2〉

)
= 0 [ iii. Complementary Slackness ]

‖θ̂1 − θ̂2‖2 − L〈θ̂1 − θ̂2, x1 − x2〉 ≤ 0 [ iv. Primal Feasibility ]
µ1 ≥ 0 [ v. Dual Feasibility ].

From iii., two cases must be considered:
• µ1 = 0 : In this case, from complementary slackness (iii.), ‖θ̂1−θ̂2‖2 ≤ L〈θ̂1−θ̂2, x1−x2〉.

In that case, from i. and ii., it is easy to conclude that θ̂1 = g1 and θ̂2 = g2. Therefore, we note that
this happen when ‖g1 − g2‖2 ≤ L〈g1 − g2, x1 − x2〉.

• µ1 > 0 : In that case, from complementary slackness (iii.), ‖θ̂1−θ̂2‖2 = L〈θ̂1−θ̂2, x1−x2〉.
By summing i. and ii.:

θ̂1 + θ̂2 = g1 + g2.

This equality is particularly interesting and further developed in the proof of Theorem 2. By
replacing it in i. and ii., we obtain:

θ̂1 = (Σ−1 + 2µ1I)−1[(Σ−1 + µ1I)g1 + µ1g2 + µ1
L

2
(x1 − x2)]

θ̂2 = (Σ−1 + 2µ1I)−1[µ1g1 + (Σ−1 + µ1I)g2 − µ1
L

2
(x1 − x2)].

(5)

Then, by replacing those results in ‖θ̂1 − θ̂2‖2 = L〈θ̂1 − θ̂2, x1 − x2〉, it yields the following
expression:

Iµ2
1 + Σ−1µ1 − (Σ−1)2C = 0, (6)

with C = (‖g1 − g2‖2 − L〈g1 − g2, x1 − x2〉)/(L2‖x1 − x2‖2). Note that C ≥ 0, since, other-
wise, we would have ‖g1 − g2‖2 < L〈g1 − g2, x1 − x2〉 and we would be in the case of µ1 = 0.
By considering that Σ = σ2I , the equation above yields for each diagonal entry:

µ2
1 +

1

σ2
µ1 −

(
1

σ2

)2

C = 0. (7)

The non-diagonal entries are not informative, as they are all zero. The only solution of (7) that
respects dual feasibility (v.) is:

µ1 =
1

σ2

(−1 +
√

1 + 4C

2

)
.

Replacing this value of µ1 in (5), we obtain the intended result.

10
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Appendix B. Detailed Derivation of the FDPG Method

B.1. Reformulation of the Problem

We start by multiplying the objective function in (3) by 1/2 for the sake of simplicity in the next
steps, yielding the following problem:

min
θ1,...,θK

1

2

K∑
k=1

‖gk − θk‖2

subject to ‖θm − θl −
L

2
(xm − xl)‖ ≤

L

2
‖xm − xl‖, 1 ≤ m < l ≤ K,

This problem remains the same as the one provided in (3), where the new form for the constraints
is obtained by completing the square in the expression from the original formulation:

1

L
‖θm − θl‖2 ≤ (θm − θl)T (xm − xl)

⇔ ‖θm − θl‖2 − L(θm − θl)T (xm − xl) +
L

4
‖xm − xl‖2 −

L

4
‖xm − xl‖2 ≤ 0 (8)

⇔ ‖θm − θl −
L

2
(xm − xl)‖2 ≤ ‖

L

2
(xm − xl)‖2

⇔ ‖θm − θl −
L

2
(xm − xl)‖ ≤ ‖

L

2
(xm − xl)‖,

where in (8) we add and subtract L‖xm − xl‖2/4 and all the other steps are simple manipulations.
Note that, in this case, θm − θl ∈ B (L(xm − xl)/2, L ‖xm − xl‖/2)5.

Now, performing the change of variables αk = θk − gk, the problem becomes:

min
α1,...,αK

1

2

K∑
k=1

‖αk‖2

subject to ‖αm − αl + cml‖ ≤ rml, 1 ≤ m < l ≤ K,

where cml = (gm − (L/2) xm)− (gl − (L/2) xl) and rml = L‖xm − xl‖/2.
The indicator function can be defined as

1E(x) =

{
0 if x ∈ E
∞ if x /∈ E.

Using this definition, the primal problem can be finally formulated as

min
α

1

2
‖α‖2︸ ︷︷ ︸
p(α)

+ 1B(Aα+ c)︸ ︷︷ ︸
q(Aα)

,

where α = [α1, α2, . . . , αK ]T , Aα = [α1−α2, α1−α3, . . . , α1−αK , α2−α3, . . . , αK−1−
αK ]T , c = [c12, c13, . . . , c1K , c23, . . . , cK−1K ]T and B = B(0, r12) × B(0, r13) × . . . ×
B(0, r1K)× B(0, r23)× . . .× B(0, rK−1K).

5. The notation B(c, r) denotes the set of points within a ball centered at c and of radius r, i.e., B(c, r) = {x ∈ Rn :
‖x− c‖ ≤ r}.

11
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In this formulation, we want to minimize the sum of two convex functions, where the first is
differentiable and the second is non-differentiable, but still closed6. This is the setup to which
the iterative shrinkage-thresholding algorithms (ISTA) are designed for. In particular, when the
non-differentiable function is a simple indicator function, that method can be interpreted as the
Projected Gradient Descent. However, in this formulation, that function is composed with a linear
map A, case in which there is no closed-form for the proximity operator.

Given this, a reformulation using Lagrange duality is used. First, the problem can be rewritten
as:

min
α,β

p(α) + q(β)

subject to Aα = β.

It is possible to write the Lagrangian for the reformulated problem:

L(α, β, s) = p(α) + q(β) + sT (Aα− β)

= p(α) + sTAα+ q(β)− sTβ.

The Lagrange dual function can be computed:

L(s) = inf
α,β

L(α, β, s)

= inf
α

(
p(α) + sTAα

)
+ inf

β

(
q(β)− sTβ

)
.

Thus,

−L(s) = sup
α

(
(−AT s)Tα− p(α)

)
+ sup

β

(
sTβ − q(β)

)
.

By definition, for a generic function, its (Fenchel) conjugate is defined as f∗(s) = sup
x

(sTx−f(x)).

Therefore, it is possible to conclude that:

−L(s) = p∗(−AT s) + q∗(s).

It remains to obtain the specific form of p∗(s) and q∗(s). Regarding the former:

p∗(s) = sup
α

(
sTα− 1

2
‖α‖2

)
=

1

2
‖s‖2,

where the second equality easily comes from differentiating sTα− 1/2 ‖α‖2 with respect to α and
equating to zero. Therefore, the value obtained for α is then replaced on the original expression.

6. A function f : Rd → R is said to be closed if for each α ∈ R, the sublevel set {x ∈ domf |f(x) ≤ a} is a closed
set.
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Regarding q∗:

q∗(s) = sup
β

(
sTβ − 1B(β + c)

)
= sup

β

{
sTβ : β + c ∈ B

}
= sup

β

 ∑
1≤m<l≤K

sTmlβml : βml + cml ∈ B(0, rml)


=

∑
1≤m<l≤K

sup
β

{
sTmlβml : ‖βml + cml‖ ≤ rml

}
=

∑
1≤m<l≤K

rml‖sml‖ − sTmlcml.

where the last step is obtained via:

sup
b

{
sT b : ‖b− (−c)‖ ≤ r

}
= sup

b

{
sT (−c+ u) : ‖u‖ ≤ r

}
= −sT c+ sup

b

{
sTu : ‖u‖ ≤ r

}
= −sT c+ r‖s‖,

and the equality supb
{
sTu : ‖u‖ ≤ r

}
= r‖s‖ is obtained (we assume s different from 0, other-

wise, the equality is trivial):

(1) by picking u = r s
‖s‖ (note that ‖u‖ ≤ r), we have sTu = r‖s‖.

This shows sup{sTu : ‖u‖ ≤ r} ≥ r‖s‖;

(2) from Cauchy-Schwartz inequality: sTu ≤ ‖s‖‖u‖. Since ‖u‖ ≤ r: sTu ≤ r‖s‖.
So, supb{sTu : ‖u‖ ≤ r} ≤ r‖s‖.

From (1) and (2), we obtain the intended result. Therefore, the minimization problem can be
rewritten in the following form:

min
s

1

2
‖ −AT s‖2︸ ︷︷ ︸
p∗(−AT s)

+
∑

1≤m<l≤K
rml‖sml‖ − sTmlcml︸ ︷︷ ︸
q∗(s)

.
(9)

At this point, the linear mapping A has now been transferred to the differentiable term. This change
allows us now to find a closed-form expression for the proximity operator of q∗(s), as the gradient
of the first term can still be computed even considering its composition with AT .

B.2. Proximity Operator Computation

By definition, the proximity operator of a generic closed, convex function f is:

proxf (x) = argmin
u

1

2
‖u− x‖2 + f(u).

13
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We are interested in obtaining proxµq∗(s), for any given µ > 0. Thus:

proxµq∗(s) = s− prox(µq∗)∗(s) (10)

= s− prox(q∗)∗·µ(s) (11)

= s− proxq·µ(s), (12)

where in (10) it is applied the well-known Moreau identity proxf (x) = x− proxf∗(x); in (11), we
used (µf)∗(x) = f∗ · µ (x) = µf∗(x/µ) and, in (12), the property (f∗)∗ = f , which holds for any
closed, convex function. Now, note that:

q · µ (s) = µ q

(
s

µ

)
= µ 1B

(
s

µ
+ c

)
= 1B

(
s

µ
+ c

)
, (13)

since, in (13), µ can be dropped as 1B returns either 0 or∞. Therefore,

proxµq∗(s) = s− argmin
u

(
1

2
‖u− s‖2 + 1B

(
u

µ
+ c

))
= s− µ

(
argmin

v

(
1

2
‖µ(v − c)− s‖2 + 1B(v)

)
− c

)
(14)

= s− µ
(

argmin
v∈B

(
1

2
‖v − (c+

s

µ
)‖2
)
− c

)
= s− µ ( vproj − c ),

where the change of variable v = u
µ+cwas used in (14) and the orthogonal projection of cml+sml/µ

onto the ball B(0, rml), with 1 ≤ m < l ≤ K, is denoted by vml, whose stacking results in
vproj = argmin

v∈B
‖v − (c+ s/µ)‖2.

B.3. Fast Dual Proximal Gradient Method

Recalling (9), we now have a first term, p∗(−AT s), differentiable, for which the gradient has a
closed-form and a second term, q∗(s), non-differentiable but for which we can compute also a
closed-form and inexpensive proximity operator. We are now in place to apply ISTA, where the
iterates are generated by alternating between taking a gradient step of the differentiable function
and taking a proximal step.

The gradient for p∗(−AT s) can be easily computed: ∇s p∗(−AT s) = AAT s. Furthermore,
from this expression is straightforward to observe that the first term, p∗(−AT s), is necessarily L-
smooth, with Lipschitz constant Lp∗ = σmax(A)2. Given this, not only the optimal step size for a
gradient update is known (γ = 1/Lp∗), but also, just as happened with first-order algorithms (for
differentiable functions) in the deterministic convex setting, it is possible to accelerate the ISTA
resorting to a Nesterov acceleration similar scheme, i.e., enabling momentum to contribute in the
generated iterates. The accelerated version of ISTA is known as FISTA. Moreover, this perspective
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Figure 5: Dual objective function obtained for the different iterates of the COCOK solution method,
using the warm-starting procedure (WS) and without using it (No WS). DualFunction(s)
is the dual objective function p∗(−AT s)+q∗(s), si is the vector that results from stacking
the different sml at iteration i, and s∗ is the corresponding optimal vector.

of applying FISTA to the dual problem is a well-studied technique, already introduced in this paper
as the FDPG method (applied to COCO in Algorithm 1). Through FDPG, it is possible to find
an approximation of the optimal solution of the dual problem, s∗. However, we are interested
in recovering the solution of the primal problem, α∗, which, nevertheless, can be easily obtained
through α∗ = −AT s∗. Consequently, the gradient estimates are recovered as θ̂k = α∗k + gk.

Strong duality, i.e., p(α∗) + q(Aα∗) = −
(
p∗(−AT s∗) + q(s∗)

)
, holds for this convex opti-

mization problem. For example, a Slater point can be easily obtained by considering θ̂k = L/2 xk,
assuming the iterates to be different from each other (xi 6= xj if i 6= j). This is expectable if we
presume that these iterates are generated through a stochastic first-order method.

B.4. Warm-starting

By coupling a baseline algorithm with COCOK , at iteration i, only the oldest gradient (gi−K) is
forgotten and a new one (gi) is kept in memory. Thus, it is reasonable to consider taking advantage
of the COCOK solution obtained for the previous iterate to obtain a new solution faster. We pro-
pose a warm-starting procedure for the COCOK solution method (FDPG). In particular, we achieve
it by a careful initialization of the dual variable, s. In fact, s is the vector that results from stacking
the different sml, where each sml addresses the co-coercivity constraint between the COCO esti-
mates for gradient m, θ̂m, and for gradient l, θ̂l. Since we expect the estimates for old gradients
to only have small relative variations among them on the new iterate as they have been “filtered”
at least once, we initialize these sml to the values obtained for the correspondent dual variables
in the previous COCOK solution. For the multiple sml concerning the new gradient, we do not
have any information yet, thereby being initialized to a default value. Our implementation of this
warm-starting procedure allows the iterative method to start with a much better guess of s∗, thereby
achieving satisfactory approximate solutions faster (see Figure 5).
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Appendix C. Theoretical Analysis

In this section, we prove a relationship between the COCO output and its input, prove that the
COCO gradient estimates jointly outperform the oracle, and show that the co-coercivity constraints
become tighter for closer points. For all the theorem proofs below, the starting point is the COCO
denoiser formulation for a generic Σ:

min
θ1,...,θK

1

2

K∑
k=1

(gk − θk)TΣ−1(gk − θk)

subject to
1

L
‖θm − θl‖2 ≤ 〈θm − θl, xm − xl〉, 1 ≤ m < l ≤ K.

(15)

C.1. Relation between the oracle and COCO estimates

We start by relating the centroid of the noisy gradients (COCO input) with the centroid of the
denoised ones (COCO output), via the following theorem, which holds for generic Σ.

Theorem 2 The gradients estimated by COCO and the raw observations have the same centroid:

1

K

K∑
i=1

θ̂i =
1

K

K∑
i=1

gi.

Intuitively, we expect COCO to keep the centroid and reduce the input fluctuation.
Proof From the COCO denoiser formulation for generic Σ and K points considered (15), the KKT
conditions yield K stationarity equations. Its i-th equation is of the form:

2Σ−1(θ̂i − gi) +

K∑
j=1,j 6=i

µij [ 2(θ̂i − θ̂j)− L(xi − xj) ] = 0,

Summing the K equations, all the constraint terms cancel out pairwisely, yielding:

K∑
i=1

2Σ−1(θ̂i − gi) = 0⇔ 2Σ−1
K∑
i=1

(θ̂i − gi) = 0⇔
K∑
i=1

θ̂i =

K∑
i=1

gi.

C.2. Mean squared error (MSE) of COCO estimates

The following theorem states that the COCO estimator outperforms the oracle in terms of MSE
(MSE(θ̂)=E

[
||θ̂ −∇f ||2

]
, MSE(g)=E

[
||g −∇f ||2

]
, with∇f collecting the gradients∇f(xk)).

Theorem 3 The following inequality holds:

MSE(θ̂) ≤ MSE(g). (16)
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Proof The Orthogonal Projection operator on a set S is defined as

PS(x) : Rd → Rd

x 7→ argmin
y∈S

‖x− y‖.

In the case in which S ⊂ Rd is closed and convex, the following property holds:

‖PS(a)− PS(b)‖ ≤ ‖a− b‖.

Let also S be the feasible set of the problem in (15). Note that, in that case, S is a convex
and closed set as it results from the intersection of ellipsoids, which are convex and closed sets
themselves. Moreover, when Σ = σ2I , (15) yields:

θ̂ = argmin
θ∈S

1/σ2 ‖θ − g‖2 = argmin
θ∈S

‖θ − g‖ = PS(g)

Noting that ∇f = PS(∇f) since ∇f ∈ S, i.e., the true gradients of an L-smooth and convex
function are necessarily co-coercive7, it follows:

‖θ̂ −∇f‖ = ‖PS(g)− PS(∇f)‖ ≤ ‖g −∇f‖. (17)

Squaring both sides of the inequality in (17) and applying the Expectation operator, the result in-
tended is obtained.

C.3. COCO constraints tightness

Each constraint in COCO involves a pair of gradients, gi and gj . If they are not co-coercive, COCO
outputs co-coercive estimates θ̂i and θ̂j . It is thus interesting to know how often gi and gj do
not respect the co-coercivity constraint. In order to find a reasonable answer to this problem, the
following setup is proposed: for the sake of simplicity, our focus remains on the one-dimensional
situation (d = 1) where we have access to two different points, x1 and x2. Without loss of generality,
let us assume x1 > x2. The true gradients on those points are ∇f(x1) and ∇f(x2), whose noisy
versions (provided by the oracle) are g1 and g2. Therefore, g1 ⊥⊥ g2

8 and Σ = σ2, which is as
general as possible for the one-dimensional case. We obtain the following result for the probability
of g1 and g2 being co-coercive, pinactive:

pinactive = Φ

(
L∆x −∆∇f√

2σ

)
− Φ

(−∆∇f√
2σ

)
, (18)

where ∆x = x1 − x2 and ∆∇f = ∇f(x1)−∇f(x2).
Proof Note that gi ∼ N (∇f(xi), σ

2). Moreover, the co-coercivity constraint between g1 and g2 is
inactive when:

‖g1 − g2‖2 < L 〈g1 − g2, x1 − x2〉 ⇔ (g1 − g2)2 − L(g1 − g2)(x1 − x2) < 0

⇔ (g1 − g2)(g1 − g2 − L(x1 − x2)) < 0

⇔ 0 < g1 − g2 < L(x1 − x2).

7. Note that this statement is only true for L ≥ Lreal, where Lreal denotes the minimal Lipschitz constant of∇f .
8. The notation ⊥⊥ denotes independence between random variables.
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Therefore, noticing that g1− g2 ∼ N (∇f(x1)−∇f(x2), 2σ2) and defining ∆x = x1−x2 and
∆∇f = ∇f(x1)−∇f(x2):

P (‖g1 − g2‖2 < L 〈g1 − g2, x1 − x2〉) = P (0 < g1 − g2 < L∆x)

= Φ

(
L∆x −∆∇f√

2σ

)
− Φ

(−∆∇f√
2σ

)
= pinactive.

Appendix D. Estimator Properties

D.1. Extension of Theorem 3

As a consequence of Theorem 3, we analyze to what extent the COCO estimator outperforms the
oracle. In fact, it is possible to obtain a closed-form result for the MSE(g) for a general number of
points considered, K, a general dimension d and Σ = σ2I: MSE(g) = Kdσ2. Regarding MSE(θ̂),
even though without a closed-form solution, we were able to observe its direct dependence on the
COCO constraints tightness, as represented in Figure 6.

• For ∆x = 0, all the curves have pactive = 1 and MSE(θ̂) = 100 = σ2/2. This recovers a
well known result for the average of K random variables with Gaussian distributions: their
MSE9 is σ2/K. In fact, when ∆x = 0, COCOK denoiser outputs the average of the observed
gradients (recall closed-form solution for COCO2 - Theorem 1). Furthermore, COCO de-
noiser can therefore be considered an extension for the variance reduction through averaging
method, but which tolerates samples from different points. This can be viewed as one of the
main advantages of COCO;

• When the L is underestimated (∆L < 0), the MSE(θ̂) is not guaranteed to be lower than
MSE(g). Nevertheless, there still is a range of ∆x where MSE(θ̂) ≤ MSE(g). The more
underestimated L is, the smaller this region becomes. This observation not only recalls that
the result from Theorem 3 only holds for ∆L ≥ 0, but also reinforces the importance of
ensuring that the L considered for COCO is an upper bound for Lreal;

• When the L is perfectly estimated (∆L = 0), just as the pactive tends to an intermediate value,
so it happens with MSE(θ̂). This is the ideal situation, as MSE(θ̂) is minimal for every ∆L.
Moreover, note that when the pactive curve stabilizes, the MSE(θ̂) also stabilizes, reinforcing
the expected relation between those curves;

• When the L is overestimated (∆L > 0), just as pactive tends to 0, the MSE(θ̂) also tends to the
MSE(g) reference curve. Moreover, it is possible to see that when pactive stabilizes around
0, so it happens to MSE(θ̂) around the oracle’s curve. This is easily explained, again, by the
fact that when the constraints are loose, the COCO denoiser outputs the oracle results without
any “filtering”;

• Regarding the noise variance, σ2, it should be stated that, as previously seen in Figure ??,
its increase would shift the stabilization of the curves from the ∆L > 0 cases towards higher
∆x.

9. The MSE corresponds to the variance of an unbiased estimator, which is the case of the average of random variables
following normal distributions.
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Figure 6: Top: Experimental plot for pactive as a function of ∆x for different values of ∆L. Bot-
tom: Computed MSE(θ̂) (number of Monte-Carlo simulations: N = 10000). We have
MSE(g) = 200, represented as a dashed line. Both plots are obtained for f(x) = x2/2,
with one point fixed at x1 = 0 and a variable point at x2 = ∆x. The oracle provides
gradient estimates with additive Gaussian noise with Σ = σ2 = 100.
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D.2. Extension to COCO Elementwise MSE Improvement

In this Section, we provide additional empirical evidence obtained as far as the elementwise MSE is
concerned, by providing more instances of the results shown in the main body (in Figure 2). Those
results are depicted in Figure 7. In particular, we observe that MSE(θ̂k) ≤ MSE(gk) for every point
in every tested setting.

We also emphasize that MSE(θ̂) does not distribute evenly among the different points, as the
MSE(θ̂k) varies from point to point. In particular, points which have other points closer have lower
MSE(θ̂k), whereas more isolated points show higher MSE(θ̂k). This can be easily assessed by
comparing the relative positions of the points represented in Figure 8 with the MSE(θ̂k) obtained
for each of them (center plot from Figure 2).

Appendix E. Stochastic Optimization - Adam and STRSAGA

In this section, we repeat the same experiments as the ones in Section 4 but by plugging COCO
denoiser in Adam and STRSAGA, instead of SGD. The results obtained for Adam are represented
in Figure 9 and for STRSAGA in Figure 10. The STRSAGA algorithm is not applicable to the
synthetic dataset as, by being the streaming counterpart of SAGA [5], still requires the objective
function to be a finite-sum of sub-functions generated by each data point received. For this reason,
we only present the STRSAGA results for the logistic regression problem.

Regarding Adam, the results for the synthetic dataset in Figure 9 are analogous to the ones
obtained for SGD, as we observe an initial bias regime, where all the algorithms converge simi-
larly, that is successively slowed down and eventually leads to the variance regime. We see that
COCO leads to improved performance in terms of the variance regime without compromising the
bias regime and that the improvement increases with the number K of gradients simultaneously de-
noised. In the logistic regression problems, for the “fourclass dataset”, Adam almost does not show
bias compromise (due to its adaptive nature), but its variance gains only appear for higher values of
K; for the “mushrooms dataset”, although Adam benefits with COCO, its variance improvements
do not consistently improve withK. We also emphasize that for Adam the number of oracle queries
is different from the other two algorithms due to its adaptive nature and, thus, faster convergence
towards the variance regime.

The STRSAGA results are extremely similar to SGD: for the “fourclass dataset”, despite the bias
delay, consistent variance improvements are also observed with increasing number K of gradients
simultaneously denoised; for the “mushrooms dataset”, consistent variance improvements are again
observed both for SGD and STRSAGA with increasing K but without significant bias delay.
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Figure 7: More instances of the same setup of Figure 2, with Left: l = 10; Center: l = 100; Right:
l = 1000..
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Figure 8: Spatial configuration that yields the results in the plot on the center of 2 (to provide some
depth insight, marker size is proportional to the point x-coordinate). From 2, it is possible
to observe that x1, x2, x6 and x8 are the points with the best MSE(θ̂k), followed by x3

and x5. Finally, the worst MSE(θ̂k) is obtained for x4 and x7. Here we see that this
denoising performance can be assigned to the closeness to other points.
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Figure 9: COCO denoiser plugged in Adam. Left: synthetic problem satisfying the noise model.
E[‖xi − x∗‖] is averaged over 100 runs. The lines for “Adam + COCO16” and “Adam
+ COCO” are superimposed. Center: 100 runs of a logistic regression problem built on
the fourclass dataset [4]. Right: 50 runs of a logistic regression problem built on the
mushrooms dataset [4]. The width of each marker represents the standard error of the
mean.
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Figure 10: COCO denoiser plugged in STRSAGA. Left: 100 runs of a logistic regression problem
built on the fourclass dataset [4]. Right: 50 runs of a logistic regression problem built
on the mushrooms dataset [4]. The width of each marker represents the standard error
of the mean.
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