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Abstract
Synchronization of rotations finds many applications in computer vision, sensor network localization,
and computational imaging. In this paper, we consider the problem of learning a set of rotation
matrices on the manifold of the special orthogonal group from highly incomplete and corrupted
relative rotation observations and solve a nonsmooth nonconvex optimization formulation of the
problem. Under mild conditions, we provide a global identifiability guarantee, which asserts
that solving our optimization formulation to global optimality will yield the underlying rotation
matrices. Then, we design an efficient manifold subgradient method for addressing the optimization
formulation, which can be shown to converge linearly to a globally optimal solution when properly
initialized. We also present an initialization method and its theoretical guarantee. Finally, we conduct
experiments to show the superiority of the nonconvex formulation over convex ones and demonstrate
the efficacy of our algorithm.1

1. Introduction

The importance of synchronization of rotations is illustrated by applications arising from many
engineering fields. For example, synchronization problems over SO(2) (also known as ‘phase
synchronization’ [2]) has been applied to sensor network localization [5, 18], signal recovery from
phaseless observations [1]. Synchronization on SO(3) is used for structuring from motion in
computer vision [7, 12, 14].

Denote the special orthogonal group as SO(d) :=
{
R ∈ Rd×d : RTR = I,det(R) = 1

}
. Ro-

bust synchronization of rotations amounts to find a set of rotation matrices in SO(d),
X?

1 , · · · ,X?
i , · · · ,X?

n ∈ SO(d), (1)
from corrupted measurements of relative rotations

Yij =

{
X?T
i X

?
j , with probablity p,

Oij , with probablity 1− p,
(2)

1. ∗ indicates equal contribution
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Algorithm 1 ManSGM: Manifold Subgradient Method

1: Input: InitializationX0 =
(
X0

1 , · · · ,X0
n

)
and stepsize parameters µ0 > 0 and ρ ∈ (0, 1).

2: for k = 0, 1, . . . do
3: Set the stepsize µk = µ0 · ρk.
4: UpdateXk+1 =

(
Xk+1

1 , · · · ,Xk+1
n

)
as

Xk+1
i = RetrXk

i

(
−µk∇̃Rf(Xk

i )
)
, ∀ 1 ≤ i ≤ n.

5: end for

whereOij ∈ SO(d) is outlying observation (outliers). Moreover, we assume the data is incomplete.
Consider the synchronization graph G = (V, E) with vertex set V = {1, · · · , n} drawn from Erdös-
Rényi model G(n, q), meaning that (i, j) ∈ E with probability q, the observation Yij is available if
and only if (i, j) ∈ E .

A large number of works focus on smooth least-squares optimization, which is, however, known
to be sensitive to outliers. To robustify the solution in the presence of outliers, the works [15, 16] study
semidefinite relaxations (SDR) method for solving nonsmooth least absolute deviation optimization.
In addition to optimization methods, the work [9] considers a statistical method called message
passing and provides theoretical guarantees.

Our main results Instead of using convex relaxation approach, we directly solve a nonsmooth
nonconvex least absolute deviation formulation. In particular, we show that the aforementioned
formulation has the global identifiability property and the so-called sharpness property. Consequently,
a properly initialized Riemannian subgradient method can be shown to converge linearly to the
underlying rotations.

2. Problem Formulation and Algorithm

In the sequel,X = (X1, · · · ,Xn) ∈ SO(d)n represents the Cartesian product of all the variables
Xi ∈ SO(d), 1 ≤ i ≤ n and the same applies to the ground truth rotationsX? = (X?

1 , · · · ,X?
n).

Unlike least-squares loss that is sensitive to outliers, the least absolution deviation is much
more robust against outlying observations; see, e.g., [4, 6, 10]. Thus, to robustly synchronize the
underlying rotationsX? ∈ SO(d)n, we consider the following nonsmooth nonconvex optimization
problem.

minimize
X∈Rd×nd

f(X) :=
∑

(i,j)∈E

‖XT
i Xj − Yij‖F , s.t. Xi ∈ SO(d), 1 ≤ i ≤ n, (3)

which is also mentioned in [15], but they did not study this formulation directly.
To tackle our optimization problem, we propose a Manifold algorithm that utilizes the sub-

gradient information of the objective function in (3). We first present a concise preliminary for
manifold optimization. We impose the Euclidean inner product 〈R1,R2〉 = trace(RT

1R2) as the
inherent Riemannian metric. Consequently, the tangent space to SO(d) at R ∈ SO(d) is given
by TR SO := {RS : S ∈ Rd×d,S + ST = 0}. The Riemannian subgradient ∇̃Rf(X) =(
∇̃Rf(X1), · · · , ∇̃Rf(Xn)

)
can be computed as ∇̃Rf(Xi) = PTXi

SO(∇̃f(Xi)), 1 ≤ i ≤ n,

where the projection PTXi
SO(B) = Xi

(
XT
i B −BTXi

)
/2 for anyB ∈ Rd×d and ∇̃f(Xi) is the

Euclidean subgradient of f with respect toXi [17].
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We employ a retraction operator to address the feasibility issue and our algorithm can be written
as an iterative procedure,

Xk+1
i = RetrXk

i

(
ξki

)
, 1 ≤ i ≤ n, (4)

with ξki = −µk∇̃Rf(Xi) is the search direction. Note that the retraction can be implemented effi-
ciently through RetrXi(ξi) = qf(Xi + ξi), where qf(B) is the Q-factor in the thin QR factorization
of B (the diagonal of the R-factor is restricted to be positive) [3]. We display the pseudo code in
Algorithm 1 and name our algorithm ManSGM.

3. Main Results

In this section, we present our main results stating that the optimization problem (3) precisely locates
the true rotations X? (up to a global rotation) at its global minima and meanwhile our algorithm
ManSGM is able to find a global minimum to problem (3) at a linear rate, under some mild conditions
on the fraction of outliers and observation ratio.

The following theorem states the global identifiability and sharpness property of the optimization
problem (3).

Theorem 1 (global identifiability and sharpness property) Consider the measurement model (2),
where the outliers Oij are sampled randomly on SO(d) following a uniform distribution for all
(i, j) ∈ Ωc. Suppose

p >
2

2 +
√

2
and q ≥ 24

(2 +
√

2)p− 2

√
log n/n.

Then with probability at least 1− (4d+ 3)/n, we have the following sharpness property,

f(X)− f(X?) ≥ α dist(X,X?), ∀X ∈ SO(d)n. (5)

where α = ((2+
√
2)p−2)nq
96 > 0. Consequently, the underlying rotationX? is precisely the ‘unique’

global minimum to problem (3) (up to a global rotation).

Remark 1 The model on the outliers—Oij for all (i, j) ∈ Ωc is randomly and uniformly distributed
on the manifold SO(d)—has been widely adopted for synchronization of rotations problems [15, 16]
and robust PCA and robust subspace learning problems [8, 13, 19], etc.

Remark 2 Sharpness property is a kind of regularity of optimization problems and plays a key
role to the convergence analysis of our ManSGM algorithm. Currently, only a few applications are
known to give rise to sharpness property, and most of them are unconstrained optimization problems.
By contrast, we establish sharpness property for a manifold-constrained nonsmooth optimization
problem, thus expanding the currently limited repertoire of sharp constrained nonsmooth nonconvex
optimization problems.

Remark 3 Theorem 1 proves the correctness of the formulation (3). It asserts that if one wants to
compute the underlying rotationsX?, one possibility is to solve problem (3) to its global optimality.

With the help of sharpness property, we establish the linear convergence guarantee for our
ManSGM algorithm for solving problem (3), by means of generalizing the analysis framework
developed in [11].
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Algorithm 2 Spectral Initialization

1: Input: Construct Y ∈ Rnd×nd with its (i, j)-th block being Yi,j ∈ Rd×d.
2: Compute the d (unit) leading eigenvectors of Y to get {u1, . . . ,ud}.
3: SetW1 =

√
n[u1,u2, . . . ,ud] ∈ Rnd×d andW2 =

√
n[−u1,u2, . . . ,ud].

4: Set X̃0 =

{
W1, if dist(SO(d)n,W1) ≤ dist(SO(d)n,W2),

W2, otherwise.

5: X0 = PSO(d)n(X̃0).
6: Output: Initial pointX0.

Theorem 2 (linear convergence) Under the condition of Theorem 1. Let {Xk}k≥0 be gener-
ated by ManSGM (cf. Algorithm 1) with dist(X0,X?) < 2α

τ . Suppose further the stepsize

µk is computed by µk = ρkµ0, where µ0 < min
{

2αe0−τe20
4MLα+L2+nM2τ2

, e0
2α−τe0

}
and 1 > ρ ≥√

1 + (τ − 2α/e0)µ0 + (4MLα+ L2 + nM2τ2)µ20/e
2
0 > 0 with e0 = max

{
dist(X0,X?), ατ

}
.

Then, with probability 1−O(1/n), we have
dist(Xk,X?) ≤ ρk · e0, ∀ k ≥ 0.

Here, L =
√
nτ with τ = 8

3nq, α is the sharpness parameter shown in (5), M > 0 is a numerical
constant.

The linear convergence result requires initializing our ManSGM close to the global minimum.
We use a properly designed initialization method in Algorithm 2 to address this issue. The follow-
ing proposition provides the upper bound on the estimation error of the initial point returned by
Algorithm 2.

Proposition 1 (good initialization) Under the condition of Theorem 1 and letX0 be generated by
Algorithm 2. Then, with probability at least 1− 2d/n, we have

dist(X0,X?) ≤ O
(

1/
√
q
)
. (6)

4. Experiments

Experiments on synthetic datasets. We conduct a series of experiments on robust synchronization
of rotations to demonstrate the performance of our ManSGM algorithm on synthetic datasets. We
first generate the ground truth rotationsX?

1 , · · · ,X?
n from a uniform distribution on SO(d). Then,

we generate a synchronization graph G(V, E) according to Erdös-Rényi model G(n, q). The available
noise measurements Yij with (i, j) ∈ E are drawn according to (2) with co-outliers ratio p.

We compare the performance of our ManSGM with the SDR method developed in [15] which
the authors used ADMM to solve the resultant SDP. We utilize spectral initialization Algorithm 2
to initialize ManSGM. For ADMM, we set the stepsize to be 1. For the following experiments, we
assume an output X̂ returned by the algorithms to be a successful recovery if dist(X,X?) < 10−4.
(a) Convergence verification. We evaluate the convergence performance of our ManSGM on

SO(3)500 with different stepsize parameters µ0 and ρ. We can observe from Figure 2a that our
algorithm can converge linearly to the ground truth rotation X? for a wide range of µ0 and ρ.
However, it is noteworthy that too small a ρ (e.g., ρ < 0.7) results in the early termination before
reaching the global minimum as in Figure 2b.
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Figure 1: (a)-(b) Phase transition on (p, q) with fixed n = 500 on SO(3) for ADMM and ManSGM.
(c)-(d) Phase transition on (n, q) with fixed p = 0.8 on SO(2) and SO(3) for ManSGM.

(b) Phase transition. We plot the thase transition for (p, q) and (n, q) in Figure 1. For each (p, q)
and (n, q), we repeat the simulation for 10 times. Whiter pixel indicates higher successful
recovery probability. As shown in Figure 1(a)-(b), in the SO(3) case, the white spaces generated
via our ManSGM is much larger than that generated via ADMM, which indicates the nonsmooth
nonconvex optimization (3) can handle much severe corruption and incompleteness than the
SDR method.

(c) Running time comparison. To compare the running time, we terminate both our ManSGM and
ADMM when the Gram matrix G := XTX is close to G? := X?TX? (i.e., ‖G −G?‖F <
10−3). It is not surprising to observe that our ManSGM can be about 3× faster than ADMM as
shown in Figure 2c due to the scalability issue of SDR method and the low computational load
in each iteration of our ManSGM.

(d) Recovery with varying noise. We compare the recovery probability between our method and
ADMM with fixed n = 500 and varying p and q. As can be observed from Figure 2d, solving the
nonsmooth nonconvex optimization (3) enables successful recovery with much lower co-outlier
ratio p and observation ratio q on both SO(2) and SO(3) scenarios.

Experiment on real dataset. We compare our ManSGM
algorithm and ADMM algorithm on the Notre Dame dataset
where the observations and ground truth are provided.4 The
results are in Table 1. We set µ0 = 0.002, ρ = 0.999
for ManSGM and stepsize to be 1 for ADMM. For both
algorithms, we run 3000 iterations. From Table 1, we can
observe that our ManSGM outperforms ADMM in terms of
both running time and accuracy.

4. Availiable on https://github.com/RafaelMarinheiro/
RotationAveraging/tree/master/tests/data.

Table 1: Results on Notre Dame
dataset with n = 715 rotations and
|E| = 64678 observations.

Method iteration time (s) dist(X,X?)

ADMM 3000 3616 19.30

ManSGM 3000 427 16.52
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