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Abstract
Quasi-Newton techniques approximate the Newton step by estimating the Hessian using the so-

called secant equations. Some of these methods compute the Hessian using several secant equations
but produce non-symmetric updates. Other quasi-Newton schemes, such as BFGS, enforce sym-
metry but cannot satisfy more than one secant equation. We propose a new type of quasi-Newton
symmetric update using several secant equations in a least-squares sense. Our approach generalizes
and unifies the design of quasi-Newton updates and satisfies provable robustness guarantees.

1. Introduction

We consider second-order methods for unconstrained minimization of a smooth, possibly non-
convex function f : Rd → R. Despite a locally quadratic convergence rate, the well-known Newton
method iterate

xk+1 = xk − η
[
∇2f(xk)

]−1∇f(xk). (1)

is not suitable for large-scale problems, in part because it requires solving a d × d linear system
involving the Hessian at every iteration. To address this issue, quasi-Newton algorithms replace the
update rule (1) by

xk+1 = xk − hkB−1
k ∇f(xk) or

xk+1 = xk − hkHk ∇f(xk), (2)

where Bk ≈ ∇2f(xk) and Hk ≈
[
∇2f(xk)

]−1 are approximations of the Hessian and its inverse
(respectively) at xk. Choosing the right approximation for Hk and Bk has drawn considerable
attention in the optimization literature. We can cite the DFP update [10], Broyden method [6], SR1
update [8] or the well-known BFGS method [7], [16], [17] [31]. In general, those methods estimate
a matrix Bk or Hk satisfying the secant equation

(∇f(xk)−∇f(xk−1)) = Bk(xk − xk−1) or

Hk(∇f(xk)−∇f(xk−1)) = (xk − xk−1), (3)
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then perform the quasi-Newton step (2). It is also possible to satisfy several secant equations. For
instance, the multisecant Type-I and Type-II Broyden methods [15] find a matrix Bk or Hk satisfying
a block of secants: for a memory size m and for i = k −m+ 1 . . . k,

[∇f(xi)−∇f(xi−1)] = Bk[xi − xi−1] or

Hk[∇f(xi)−∇f(xi−1)] = [xi − xi−1],

Such multisecant updates are called block Broyden methods, and have been considered by Fang and
Saad [15], who showed an equivalence between Broyden updates and Anderson acceleration [2].
Unfortunately, the resulting approximations of the Hessian are not symmetric.

By contrast, other methods like BFGS and DFP enforce the symmetry of the update. Their
main drawback is that, for generic objectives, they can only satisfy one secant equation. The major
limitation with single-secant update is the high dependence in the step size[28]. Indeed, while BFGS
and DFP enjoy an optimal convergence rate on quadratics when using an exact line-search [27],
Powell [28] showed that with unitary step size, theses updates converge particularly slowly on a
simple quadratic function with just two variables. Moreover, it was also observed that BFGS updates
are sensitive to gradient noise, and designing quasi-Newton methods for stochastic algorithm is still
a challenge [3–5, 9].

Unfortunately, except for quadratic functions [29], it is usually impossible to find a symmetric
matrix that satisfies more than one secant equation. Moreover, line search has been shown to be
computationally expensive. Finally, stabilisation procedure for stochastic BFGS usually requires a
growing batch size to reduce the gradient noise, making it unpractical in many applications.

1.1. Notation

We use boldface small letters, like x, to refer to vectors and boldface capital letters, like A, for
matrices. We use d to refer to the dimension of the problem, and m for the memory of the algorithm
(we will see later that m is the number of secant equations). For a function f : Rd → R, its gradient
and Hessian at x are denoted by∇f(x) and∇2f(x) respectively. Consistently with the notations in
the literature, we use H to denote an approximation of the inverse of the Hessian, while we use B to
denote an approximation of the Hessian. We denote the usual Frobenius norm as ‖ · ‖. Moreover,
for any square matrix A ∈ Rd×d and any positive definite matrix W ∈ Rd×d, we define the norm
‖A‖W as

‖A‖W = ‖W
1
2 AW

1
2 ‖. (4)

We often use the matrices X ∈ Rd×m and G, that concatenates the iterates and their gradients
as follow,

X = [xi, . . . , xi+m], G = [∇f(xi), . . . ,∇f(xi+m)].

Also, we define C, and ∆X and ∆G as
∆X = XC, ∆G = GC,

where C ∈ Rm+1×m is a matrix of rank m − 1 such that 1Tm+1C = 0, 1m+1 being a vector of size
m+ 1 full of ones. Typically, C is the column-difference matrix

C =


−1 0 0 ...

1 −1 0 ...
0 1 1 ...

. . . . . .
1 −1
0 1

⇒ ∆X =

 xi+1 − xi
...

xi+m − xi+m−1

 ,
and similarly for ∆G. See Section A for backgrounds on single-secant and multi-secant updates.
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1.2. Contributions

The previous section shows that quasi-Newton methods approximate the Hessian. However, the
two methods do it in very different ways that seems incompatible given the work of Schnabel [29].
Despite their difference, they shares similarities, such as the idea of secant equations. This leads to
the following questions:

Is it possible to design a generalized framework for quasi-Newton updates, including for instance
Broyden’s, DFP and BFGS schemes? Can Symmetric and Multisecant techniques be combined

into a symmetric multisecant update?

Our work proposes a positive answer to these questions trough the following contributions. (1)
We propose a general framework that models and generalizes previous quasi-Newton updates. (2)
We derive new quasi-Newton update rules (Algorithm 1), which are symmetric and take into ac-
count several secant equations. The bottleneck is a (economic size) Singular Value Decomposition
(SVD), whose complexity is linear in the dimension of the problem, therefore comparable to other
quasi-Newton methods. (3) We show the optimality of the convergence rate of any multisecant
quasi-Newton update build using our framework, on quadratic functions without line search. This
improves over the BFGS and DFP updates as they are inefficient with unitary step size on quadrat-
ics [28], and suboptimal if exact line-search is not used. (4) We introduce novel robust updates, that
provably reduce the sensitivity to the noise of our quasi-Newton schemes. This robustness property
is a direct consequence of considering several secant equations at once.

2. Generalization of Quasi-Newton

We have seen in the previous section two different qN updates, one that focuses on the symmetry of
the estimate, the other on the number of satisfied secant equations. In this section, we propose an
unified framework to design existing and new qN schemes.

2.1. Generalized (Multi-)Secant Equations

The central part of qN methods is the secant equation. The idea follows from the linearization of
the gradient of the objective function. Indeed, consider the function f(x), supposed to be smooth,
strongly convex and twice differentiable. In such case, the linearization of its gradient around the
minimum x? reads

∇f(x) ≈ ∇f(x?)︸ ︷︷ ︸
=0

+∇2f(x?)(x− x?). (5)

Therefore, like in the case of the Newton step, assuming this approximation equal we perform the
step

x− [∇2f(x?)]−1∇f(x) ≈ x?.

Unfortunately, we do not have access to the matrix [∇2f(x?)] as we do not know x?. Moreover,
solving the linear system [∇2f(x?)]−1∇f(x) may be costly in the case where d is big.

To avoid such problems, consider a sequence {x0, . . . , xm} of points for which we have com-
puted their gradient. In such case, (5) reads

G = ∇2f(x?)(X− X?),
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where X? = x?1Tm+1, i.e., the matrix concatenating m + 1 copies of the vector x?. Matrices X and
G are defined in section 1.1.

Ideally, the estimate B of the Hessian, or the estimate of its inverse H, has to satisfy the condition
G = B(X− X?), or HG = (X− X?).

However, the dependency in x? makes the problem of estimating B or H intractable. To remove this
problematic dependency, consider a matrix C ∈ Rm+1×m of rank m such that 1Tm+1C = 0 (see
Section 1.1 for an example). After multiplying on the right, we simplify X?C = 0 and we obtain
the multisecant equations

∆G = B∆X, or H∆G = ∆X, (6)

where ∆X and ∆G are defined in Section 1.1. In the specific case where we have only one secant
equation, (6) corresponds exactly to the standard secant equation in (11). In the case where C is
the column-difference operator, we obtain the multisecant equations usually used in multisecant
Broyden methods.

2.2. Regularization and Constraints

The matrix B (Broyden Type-I and DFP updates) and H (Broyden Type-II and BFGS) are selected
so as to minimize its distance w.r.t. a reference matrix, called Bref/Href, as shown in (13). In
the case where there is only a sequence of single secant equations, the reference matrix is taken
as being the previous estimate, with an arbitrary initialization. In the case of multisecant update,
the reference matrix is arbitrary. Moreover, in the case of DFP and BFGS, we have in addition a
symmetry constraint, restraining even more the search space for the estimate of the Hessian. For
simplicity, we will consider only the type-I update here, i.e., the estimate B. The formulation for
estimate H can be easily derived by swapping ∆G and ∆X.

The intuition behind the regularization term is due to the number of degrees of freedom in the
problem. Let us recall the secant equation,

B∆X = ∆G
This secant equation defines the behavior of the operator B, mapping from span{∆G} to span{∆X}.
However, the dimension of these two spans is as most m < d. This means we have to define the
behavior of B outside of span{∆X} and span{∆G}, i.e., from span{∆G}⊥ to span{∆X}⊥.

Since B outside the span is not driven by the secant equations, we have to define an operator
Bref, defining the default behavior of B outside the span of secant equations. This means that, in the
case where B satisfies exactly the secant equations, then B can be written as

B =[∆G∆X†]P
+ [depends on Bref and constraints](I− P),

where P is the projector to the span of ∆X, and ∆X† is the Moore-Penrose pseudo-inverse of ∆X.
Indeed, in this case

B∆X = [∆G∆X†]P∆X + [. . .](I− P)∆X.
Since P∆X = ∆X, thus (I − P)∆X = 0 (by construction of P), and ∆G∆X†∆X = ∆G by
definition of the Moore-Penrose pseudo-inverse and because ∆X is assumed to be full column rank,
we have that B satisfies the secant equation.

The way B behaves outside the span is thus driven by the constraints and initialization on the
matrix. To make a parallel with machine learning problem, this term can be seen as the ”general-
ization” term.
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There are two common ways to define B outside the span of the secant equations, trough reg-
ularization and constraints. Consider the regularisation function R(·,Bref), assumed to be strictly-
convex and with minimum attained at Bref, and the convex set of constraints C. We can thus write
the qN update estimation problem as

min
B∈C
R(B,Bref) subject to B∆X = ∆G. (7)

This approach generalizes the way we define qN updates. Indeed, for instance, we recover DFP
by settingR = ‖B− Bref‖W−1 , C = Sd×d (the set of symmetric matrices), m = 1 and Bref = Bk−1

in (7). We also recover the Type-I Broyden method by settingR = ‖B− Bref‖F and C = Rd×d.

2.3. Generalized QN Update

A natural extension, given the updates of DFP/BFGS and multisecant Broyden, would be the sym-
metric multi-secant update. This update would read, for an arbitrary regularization function,

min
B∈Sd×d

R(B,Bref) subject to B∆X = ∆G.

In the case wherem > 1, this multisecant technique seems promising as it combines the advantages
of multisecant Broyden and symmetric updates.

Unfortunately, the system of equations and the constraints in problem (7) are of the form
B∆X = ∆G. Assuming ∆X,∆G have full column rank, these equations always have a solution B,
there exists a symmetric solution if and only if ∆XT∆G is symmetric [21, 29].

When ∆XT∆G is symmetric, Schnabel [29] derived a Multisecant BFGS-type update rule.
This assumption indeed holds for quadratic objectives, but not for general objective functions when
m ≥ 2, that is, when we consider more than one secant condition [29, Example 3.1]. Hence, a naive
extension of symmetric quasi-Newton update leads to unfeasible problems.

To tackle the problem of unfeasible updates, we can relax the constraint on the secant equations
by a loss function L(·,∆X,∆G). We finally end up with the generalized (type-I and type-II) qN
update

Bk = lim
λ→0

arg min
B∈C

L(B,∆X,∆G) +
λ

2
R(B,Bref) (GQN-I)

Hk = lim
λ→0

arg min
H∈C

L(H,∆G,∆X) +
λ

2
R(H,Href) (GQN-II)

where we assume that L and R strictly convex, and sufficiently simple to have an explicit formula.
The limits here simply states that we first minimize the loss function, then with the remaining degree
of freedom we minimize the regularization term. In the case where the update (7) is feasible, then
(GQN-I)/(GQN-II) and (7) are equivalent.

2.4. Preconditioning

As shown for instance in DFP and BFGS, it is common to use a preconditionner to reduce the
dependence of the update to the units of the problem. We give here the example for type-II update.
The type-I follows immediately, as it suffices to consider W−1 instead of W.

The idea of preconditioning is, instead of considering H, we set
M = W(1−α)HWα,

where W is a symmetric, positive definite matrix, which ideally has the same units as the Hessian
of the function f . For example, in BFGS, W is any matrix such that W∆X = ∆G, which always
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exists in the case where ∆X and ∆G are vectors. Ideally, the preconditionner cancels the units in
the update rules, i.e., W has to have the same units as the Hessian.

In the case where we consider a preconditioner,
MW−α∆X = W1−α∆G, Mref = Wα−1HrefW−α.

Now, the problems becomes the type-II Preconditioned Generalized Quasi-Newton update

arg min
M∈C̃

L(M,W−α∆X,W(1−α)∆G) +
λ

2
R(M,Mref) (PGQN-II)

where C̃ = W(1−α)CWα, i.e., the image of the constraint after application of the preconditionner.
To retrieve the update H, it suffices to solve

H = W−(1−α)MW−α.

2.5. Rate of Convergence on Quadratics

The generalized qN methods (GQN-I) and (GQN-II) are optimal on quadratics under mild assump-
tions, in the sense that their performance is comparable to conjugate gradient descent, as shown in
the theorem below. The only requirement is that the loss, regularization, initialization and constraint
set of problems (PGQN-II) and (PGQN-II) create updates that are regular enough.

Theorem 1 Consider any multisecant quasi-Newton method (GQN-I) or (GQN-II) with unit step-
size and infinite memory of the form

xk+1 = xk −Hk∇f(xk), or xk+1 = xk − B−1
k ∇f(xk) (8)

where f is the quadratic form (x− x?)T Q
2 (x− x?) for some Q � 0, and B (H) satisfies exactly the

secant equations. If the update (8) is a Preconditioned first-order method, i.e.,

xk+1 ∈ x0 + B̃−1
(H̃) span{∇f(x0), . . . ,∇f(xk)}

where B̃−1
(H̃) is non-singular, then xk = x? if k ≥ d+ 1, otherwise the method converges at rate

‖∇f(xk)‖ ≤ constant ·
(

1−
√
κ

1+
√
κ

)k
‖∇f(x0)‖,

Where κ is the inverse of the condition number of Q. The constant is usually smaller when Bref
(Href) is a good approximation of Q (Q−1).

Notice that the multisecant Broyden update (13) satisfies the assumptions of Theorem (1) if Bref
or Href are scaled identity. We do the example for the Broyden Type-II method. Indeed,

H = ∆X∆G† + Href(I−∆G∆G†).

After multiplication by the gradient gk, if c def
= ∆G†gk and Href = βI,

Hgk = ∆Xc︸︷︷︸
∈span

+β(gk −∆Gc︸ ︷︷ ︸
∈span

) ∈ span{∇f(x0), . . .}

The same hold for the multisecant DFP or BFGS for quadratic functions if we use the update from
[29].

We have now a generic form of qN update, but it raises some important questions. What practical
losses and regularization functions should we use, and What happen if λ does not go to zero? The
next section addresses the first point by giving an example that extends (limited memory) DFP and
multi-secant Broyden methods. Then, we analyse the robustness of the method when λ is non-zero.
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3. Robust Symmetric Multisecant Updates

We now extend the BFGS and multisecant Broyden method into the type-II Symmetric Multisecant
Update (SMU-II) below, solving the problem (PGQN-II) in the special case where the loss and the
regularization are Frobenius norms. For simplicity, we do not consider any preconditionner here.
The method reads

Hk = arg min
H=HT

‖H∆X−∆G‖2F +
λ

2
‖H−Href‖2F , (SMU-II)

3.1. Explicit Formula

This section addresses the problem of solving (SMU-II) efficiently. This problem is an extension of
the symmetric Procrusted problem from [23]. Indeed, [23] solves the problem

min
Z=ZT

‖ZA− D‖F ,

where A and D are Rn×m matrices, where m > n. In our case, we have m � n, and an extra
regularization term, that makes the update formula more complicated. Fortunately, the matrix-vector
multiplication Zv can be done efficiently even in our case, the bottleneck being the computation of
the SVD of a thin matrix.

The next theorem details the explicit formula to compute Mk (and its inverse if one wants to use
a type-I method).

Theorem 2 Consider the Regularized Symmetric Procrustes (RSP) problem

Z? = arg min
Z=ZT

‖ZA− D‖2F +
λ

2
‖Z− Zref‖2F , (RSP)

where Zref is symmetric (otherwise, take the symmetric part of Zref), Z, Zref ∈ Rd×d, and A, D ∈
Rd×m, m ≤ d. Then, the solution Z? is given by

Z? = V1Z1VT1 + V1Z2 + ZT2 VT1 + (I− P)Zref(I− P) (Sol-RSP)
where

[U,Σ,V1] = SVD(AT , ’econ’),

Z1 = S�
[
VT1
(
ADT + DAT + λZref

)
V1

]
,

S =
1

Σ211T + 11TΣ2 + λ11T
,

P = V1VT1 ,

Z2 = (Σ2 + λI)−1VT1 (ADT+λZref)(I− P)

The fraction in S stands for the element-wise inversion (Hadamard inverse). The inverse Z−1
? reads

Z−1
? =E

(
Z1 − Z2Z−1

ref ZT2
)−1

ET + (I− P)Z−1
ref (I− P)

E = V1 − (I− P)Z−1
ref ZT2 . (Inv-RSP)

The type-I update uses the matrix Z−1
? , using A = ∆X and D = ∆G. The type-II uses instead

Z?, with A = ∆G and D = ∆X. the next proposition shows the complexity of performing one
matrix-vector multiplication with Z? and its inverse. The bottleneck of the method is the SVD of a
Rm×d matrix, whose complexity is O(m2d), thus linear in the dimension.
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Proposition 3 The complexity of evaluating Z?v and Z−1
? v is O(m2d), assuming m � d and that

the complexity of Zrefv and Z−1
ref v is at most O(m2d).

3.2. Robustness

The symmetric multisecant update can be used in two different modes, one that let λ→ 0, the other,
biased but more robust, that set λ > 0.

The update formula is slightly simpler when λ = 0. However, due to the presence of matrix
inversion, this may leads to instability problem is some cases, similarly to the BFGS method when

(xk+1 − xk)T (∇f(xk+1)−∇f(xk)) ≈ 0,

i.e., when the step and difference of gradients are close to be orthogonal. In BFGS, such problem
is tackled by a filtering step, discarding the update if the scalar product goes below some threshold.
Unfortunately, when the gradient is corrupted by some noise, the impact on the BFGS update can
be huge.

In the case where λ > 0, we can show that our update is robust when A and D are corrupted.

Proposition 4 Let Z?(λ) be defined as the solution of (Sol-RSP) for some λ, and Z?(λ) = limλ→0 Zλ.
Let Ã, C̃ be a corrupted version of A and C where

‖A− Ã‖ ≤ δA, ‖D− D̃‖ ≤ δD.

Finally, let Z̃?(λ) be the solution of (Sol-RSP) using Ã and C̃. Then, we have
‖Z̃?(λ)− Z?(0)‖ ≤ ‖Z?(λ)− Z?(0)‖︸ ︷︷ ︸

Bias

+ ‖Z̃?(λ)− Z?(λ)‖︸ ︷︷ ︸
Stability

,

where

‖Z?(λ)− Z?(0)‖ ≤
λ‖Z?(0)− Zref‖
σ2

min(A) + λ
, (9)

‖Z̃?(λ)− Z?(λ)‖ ≤ O
(

1

λ
(‖Ã‖+ ‖D̃‖)2

)
. (10)

This suggests that λ should satisfy a trade-off to achieve the best performing approximation.
Notice that when λ = 0 in the noise-less case, we recover the optimal Z?, and when λ → ∞, we
have Z? = Zref.

Our result is called robust as we can bound the maximum perturbation in any scenario, as long
as λ > 0. This is not the case in the analysis of [23], whose main assumption is δA ≤ σmin(A),
where σmin is the smallest non-zero singular value of A. This condition is extremely restrictive, as
we obverse that σmin is of the order of the epsilon machine even for reasonable m (like m = 5).

Since the singular values of A are, in practice, often small, it is always recommended to set a
small λ. We will show latter, in the numerical experiments, that even for quadratic function (i.e., in
the “perturbation-free regime”), a small value of λ drastically change the final result, as this makes
the method robust to numerical noise.

Scaling of λ. The parameter λ has to be scaled w.r.t. the problem input. It is clear, from Theorem
12, that the role of λ is to regularize the matrix inversion by lower-bounding the eigenvalues of the
inverted matrix. Therefore, we advice to set λ = λ̄‖ATA‖2, i.e., proportional to ‖ATA‖2. This
way, assuming σmin small, the conditioning of (ATA + λI)−1 is upper-bounded by 1 + 1/λ̄.
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Appendix A. Related work

The idea of iteratively updating an approximation of the Hessian or its inverse can be traced back
to Davidon [10, 11] with the DFP update. Several type of updates, such as the Broyden method [6] or
the BFGS method [7, 16, 17, 31] have been proposed since then. Notably, Dembo et al. [12], Dembo
and Steihaug [13] proposed to approximately invert the Hessian using a Conjugate Gradient method.
Limited memory BFGS (L-BFGS) [24], where a limited number of vectors are stored for the approx-
imation of the Hessian, has proven to be one of the most powerful type of quasi-Newton method.
Last, the use of multisecant equations has also been used in a different context by Fang and Saad
[15], Gower and Gondzio [20] and Hennig [22].

To scale up second-order methods, recent works focus on stochastic quasi-Newton methods. The
use of stochastic quasi-Newton updates has been investigated by Schraudolph et al. [30], Mokhtari
and Ribeiro [25], Moritz et al. [26], Byrd et al. [9] and Gower et al. [19], while approximating the
Hessian through sampling methods has been proposed by Erdogdu and Montanari [14], Xu et al.
[33] and Agarwal et al. [1], among others.

We now present two popular quasi-Newton updates: the BFGS method, and the multi-secant
Broyden method. They will serve as a basis to motivate the needs of generalization of quasi-Newton
updates.

A.1. Single secant DFP/BFGS updates

The BFGS update finds a symmetric matrix Hk that satisfies the secant equation (3). Among the
many possible solutions, it selects the one closest toHk−1 in a weighted Frobenius norm (4), specif-
ically:

Hk = argmin
H=HT

‖H−Hk−1‖W

s.t. H(∇f(xk)−∇f(xk−1)) = xk − xk−1.
(11)

where W is any positive definite matrix such that W(∇f(xk)−∇f(xk−1)) = xk − xk−1 [27, §8.1]
— a similar claim holds for the update formula of Bk, known as DFP, whose update reads

Hk = argmin
B=BT

‖B− Bk−1‖W−1

s.t. B(xk − xk−1) = ∇f(xk)−∇f(xk−1).
(12)

The matrix is then inverted using the Woodbury matrix identity. In the two update rules, the matrices
W and W−1 are used implicitly, i.e., we do not need to form W to evaluate Hk nor Bk.

Solving (11) repeatedly, BFGS builds a sequence H1,H2, . . . of matrices such that each Hk

satisfies the kth secant equation. While it may satisfy them approximately, the update rule offers no
such guarantees. The same holds for the DFP update.

A.2. Multi-secant Broyden updates

In the case of Broyden update, we seek for a matrix B for the type-I, or H for the type-II, that
satisfies the secant equations only, without any restriction on the symmetric of the estimate. The
update of the standard Broyden method is simpler than BFGS or DFP, and reads

Bk = argmin
B
‖B− Bk−1‖ s.t. B(xk − xk−1) = ∇f(xk)−∇f(xk−1),

Hk = argmin
H
‖H−Hk−1‖ s.t. H(∇f(xk)−∇f(xk−1)) = xk − xk−1.

(13)
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As for the DFP update, the matrix Bk can also be inverted cheaply. In [15], the authors show how
to extend this update to the case where we want to satisfy more than one secant equation. However,
its solution is generally not symmetric.

Appendix B. Algorithm

Algorithm 1 Type-I Symmetric Multisecant step
Input: Function f and gradient ∇f , initial approximation of the Hessian B0, maximum memory

m (can be∞), relative regularization parameter λ̄.
1: Compute g0 = ∇f(x0) and perform the initial step

x1 = x0 − B−1
0 g0

2: for t = 1, 2, . . . do
3: Form the matrices ∆X and ∆G using the m last pairs (xi,∇f(xi)).
4: Compute the qN direction d as

dt = −Z−1
? gt,

see (Inv-RSP) with A = ∆X, D = ∆G,
Zref = B0, λ = λ̄‖A‖.

5: Perform an approximate-line search

xt+1 = xt + htdt, ht ≈ arg min
h

f
(
xt + htdt

)
.

6: end for

Appendix C. Convergence Analysis for Quadratics

C.1. Convergence analysis for minimizing quadratic functions

In this section we analyse the convergence rate of quasi-Newton methods when f is the quadratic
function

f(x) =
1

2
(x− x∗)TQ(x− x∗), Q � 0.

For such function, the gradient is written
∇f(x) = Q(x− x∗).

In this case, there is a strong link between the matrices ∆X and ∆G since
∆X = Q∆G, ⇔ Q−1∆X = ∆G. (14)

In this section, we consider any method of the form
xk+1 = xk −Hk∇f(xk) (15)

where Hk satisfies exactly the secants conditions
Hk∆G = ∆X.

We show that this family of method has the optimal rate of convergence
‖∇f(xk)‖M = min

p∈P(1)
k

‖p(Q)∇f(x0)‖M ,

13
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where P(1)
k is the set of polynomials with degree at most k whose coefficients sum to one, and

‖v‖M =
√
vTMv, M � 0.

The next proposition shows the structure of the matrix Hk, if it satifies the secant conditions.

Proposition 5 If the function is quadratic, the matrix Hk is written
Hk = ∆X(∆G)† + H̃(I −∆G(∆G)†)

where (∆G)† is a pseudo inverse of ∆G satisfying
∆G(∆G)†∆G = ∆G.

Proof Since Hk satisfies the secant conditions, Hk can be written as
Hk = ∆X(∆G)†

where (∆G)† is a pseudo inverse of ∆G satisfying
∆G(∆G)†∆G = ∆G.

In this case, it satisfies the secant conditions since (I −∆G(∆G)†)∆G = 0 and
Hk∆G = ∆X(∆G)†∆G = Q−1∆G(∆G)†∆G = Q−1∆G = ∆X.

C.2. Generalized qN step

We introduce the generalized qN step, written
xk+1 = (X −HkG)c (16)

where c is a vector whose entries sum to one, and
X = [x0, . . . , xk], G = [∇f(x0), . . . , ∇f(xk)].

The qN update (15) can be seen as a special case of (16) where c = [0, . . . , 0, 1]T . The nest
proposition shows that for any c, the step (16) is identical.

Proposition 6 For any c, c′, the generalized qN step (16) produce the same xk, i.e.,
(X −HkG)(c− c′) = 0.

Proof With proposition 5, we have
Hk = ∆X(∆G)†.

Thus, the difference between two generalized qN step is written
(X −∆X(∆G)†G+ H̃(I −∆G(∆G)†)G)(c− c′).

Since c and c′ sum to one, (c− c′) sum to zero. Consider the k × k − 1 matrix

C =


1
−1 1
0 −1 1

. . . . . .

 .
Then, it is easy to show that C is full column rank and

∆X = XC, ∆G = GC.

In addition, for any vector w with k − 1 entries that sum to zero, there exists a vector v such that
w = Cv.

14
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In particular, we consider the vector v that gives
Cv = (c− c′).

We thus have
H̃(I −∆G(∆G)†)G(c− c′) = H̃(I −∆G(∆G)†)∆Gv = 0

and
(X −∆X(∆G)†G)(c− c′) = (X −∆X(∆G)†G)Cv,

= (∆X−∆X(∆G)†∆G)v,

= Q−1(∆G−∆G(∆G)†∆G)v

= Q−1(∆G−∆G)v,

= 0.

C.3. Accuracy of the generalized qN step

In this section, we consider the generalized qN step, where ∆G and ∆X are full column rank. At
the end of this section we will consider the case where ∆G and ∆X are not full rank. The next
proposition gives the expression of the gradient of the generalized qN step.

Proposition 7 The gradient of xk+1, generated by the generalized qN iteration (16) is written
∇f(xk+1) = (I −QH̃)(I − P )Gc ∀c : cT 1 = 1.

where P = ∆G(∆G)†.

Proof The gradient of xk+1 is written
∇f(xk+1) = Q(xk+1 − x∗) = Q((X −HkG)c− x∗) ∀c : cT 1 = 1,

which is valid for all c that sum to one thanks to Proposition 6. If we writte
X∗ = [x∗x∗ . . .] = x∗1T ,

then, because 1T c = 1 we have
Q(xk+1 − x∗) = Q((X −HkG)c− x∗) = Q(xk+1 − x∗) = Q((X −X∗ −HkG)c).

In addition, it is easy to show that Q(X −X∗) = G. Thus,
Q(X −X∗ −HkG)c = (G−QHkG)c.

Finally, using the definition of Hk from Proposition (5),
∇f(xk+1) = (G−Q∆X(∆G)†G+QH̃(I −∆G(∆G)†)G)c,

= (I −∆G(∆G)† −QH̃(I −∆G(∆G)†))Gc.

Writting P = ∆G(∆G)†, we finally have
∇f(xk+1) = (I − P −QH̃(I − P )Gc = (I −QH̃)(I − P )Gc.

Intuitively, this means the gradient of the point xk+1 is equal to zero in the space generated by P ,
and in its orthogonal space the better H̃ approximates Q−1, the smaller the norm of the gradient is.

Before going further, we need to prove the following lemma.
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Lemma 8 There exist a c∗ such that 1T (c∗) = 1 and
(I − P )Gc∗ = Gc∗.

Moreover, if Gk+1 = [G, ∇f(xk+1)] is also full rank then the last coefficient c∗k+1 is nonzero.

Proof If we want (I − P )Gc∗ = Gc∗, it is sufficient to find c∗ such that
PGc∗ = 0, ⇔ c ∈ ker(PG).

However, the matrix PG of size k × k + 1 can be at most of rank k. Thus, the dimension of its
kernel it at least one. Now, we will show by contradiction that, if the vector c∗ sum to 0, then it
cannot be a non-trivial solution of the system.

Indeed, if cT 1 = 0 then there exists a vector v such that Gc = ∆Gv (see proof of Proposition
6). In this case,

PGc∗ = P∆Gv = ∆G(∆G)†∆Gv = ∆Gv = Gc∗.

However, because the matrix G is full column rank, it is impossible to find a non-zero c∗ such that
Gc∗ = 0.

In conclusion, there exists a solution c∗ such that c∗ ∈ ker(PG) and 1T c∗ = 1.
Now, we need to show that its last coefficient is nonzero if∇f(xk+1) is linearly independant of

previous gradients, i.e.,
rank([G,∇f(xk+1)]) = k + 2 ⇒ c∗k+1 6= 0.

We now use the optimal c∗ to write the gradient ∇f(xk+1). Indeed, combined with Proposition 7,
we have

∇f(xk+1) = (I −QH̃)Gc∗.

Writing c(i) the optimal vector obtained for the gradient∇f(xi), we have

G1...k+1 = [∇f(x1), . . . ,∇f(xk+1)] = (I −QH̃)G

[
c(1) c(2) . . . c(k) c(k+1)

0k×1 0(k−1)×1 . . . 01×1

]
.

Clearly, the matrix of c’s is upper-triangular. Thus, if [G,∇f(xk+1)] is full rank, G1...k+1 is also
full rank. Thus, it is necessary to the matrix of c’s to have non-zero elements in the diagonnal, so
c

(k+1)
k+1 = c∗k+1 6= 0.

With this lemma we can now show that qN can be seen as Krylov methods, under some condi-
tions on the matrix H̃ .

Proposition 9 Assume G full column rank. Then,∇f(xk) can be written
∇f(xk+1) = pk+1(I −QH̃)∇f(x0)

where pk+1 is a polynomial of degree k+1 (i.e. its leading coefficient is nonzero) and its coefficients
sum to one (i.e.p(1) = 1).

Proof Using Lemma 8 and Proposition 7, the gradient can be written
∇f(xk+1) = (I −QH̃)Gc∗

for some c such that 1T c∗ = 1 and c∗k+1 6= 0 (i.e, it sums to one and the last coefficient is nonzero).
We show by recursion that

∇f(xk+1) = pk+1(I −QH̃)∇f(x0)
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where pk+1 ∈ P
(1)
k+1, the set of polynomial whose coefficients sum to one with nonzero leading

coefficients. Of couse, the first element satisfies this condition since
∇f(x0) = (I −QH̃)0∇f(x0) = p0(I −QH̃)∇f(x0),

for the particular polynomial p0(z) = 1. Now assume this is true for all∇f(xi) up to i = k. In this
case,

∇f(xk+1) = (I −QH̃)Gc∗

= (I −QH̃)

k+1∑
i=1

c∗i∇f(xi−1)

= (I −QH̃)
k+1∑
i=1

c∗i pi−1(I −QH̃)︸ ︷︷ ︸
=pk+1(I−QH̃)

∇f(x0)

Clearly, pk+1(I − QH̃) is a polynonial of degree at most k + 1 since it corresponds to a linear
combination of polynomials of degree at most k, then multiplied by (I −QH̃). It is easy to see that
the coefficients of pk+1 sum to one, since

pk+1(1) = (1)
k+1∑
i=1

c∗i pi−1(1)

By recurtion, all pi−1(1) = 1 and by assumption 1T c∗i = 1. Now we need to show that the leading
coefficient is nonzero. The highest degree polynomial is the following,

c∗k+1(I −QH̃)pk(I −QH̃)

By recursion, the degree of pk is exactly k, thus its leading coefficient is nonzero. Moreover, it
comes with a non-zero contribution since c∗k+1 is non-zero by Lemma (8). This means that pk+1

has degree exactly k + 1.

This proposition shows us that we are iteratively building a basis of polynomials. This is a
crucial point in our proof, as now we are abble to show that the rate of convergence of multisecants
qN method is similar to the rate of conjugate gradients or GMRES.

Theorem 10 If we use a multisecant qN method, then for all M � 0,
‖∇f(xk)‖M ≤ ‖I −M1/2QH̃M−1/2‖ min

p∈P(1)
k

‖p(I −QH̃)∇f(x0)‖M (17)

Proof We start with the result of Proposition 7,
∇f(xk+1) = (I −QH̃)(I − P )Gc ∀c : cT 1 = 1.

First, we consider the projector
(I − P̃ ) = (I −QH̃)(I − P )(I −QH̃)−1.

Since the formula is valid for all c that sum to one, we can pick c such that
copt = arg min c : cT 1 = 1‖(I −QH̃)(I − P )Gc‖M

17
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for a positive definite matrix M . In this case,
‖∇f(xk+1)‖M (18)

= ‖(I −QH̃(I − P )Gcopt‖M (19)

= min
c:1T c=1

‖(I −QH̃)(I − P )Gc‖M (20)

≤ ‖M1/2(I −QH̃)M−1/2‖2‖M1/2(I − P )M−1/2‖2 min
c:1T c=1

‖Gc‖M (21)

We have that M1/2(I − P )M−1/2 is also a projector, thus its norm is bounded by one. By conse-
quence,

‖∇f(xk+1)‖M ≤ ‖M1/2(I −QH̃)M−1/2‖2 min
c:1T c=1

‖Gc‖M

By Proposition 9, we have that the i − th column of G represent a polynomial of degree exactly
i− 1, whose coefficients sum to one. Thus, by combining the k+ 1 columns of G with coefficients
c that also sum to one, we can build any polynomial of P(1)

k . This means

min
c:1T c=1

‖(I −QH̃)Gc‖M = min
p∈P(1)

k

‖(I −QH̃)p(I −QH̃)∇f(x0)‖M

This prove the desired result.

In the particular case where 0 � I − QH̃ � 1 − κ and M = I , we can show a rate similar to
conjugate gradients method.

Corollary 11 Let ζ the degree of the minimal polynomial of (I−QH̃), and assumeQH̃ invertible.
If (I −QH̃) is symmetric, 0 � I −QH̃ � 1− κ ≺ I and M = I ,

‖∇f(xk+1)‖2 ≤

2(1− κ)
(

1−
√
κ

1+
√
κ

)k
‖∇f(xk+1)‖2 if k ≤ ζ

0 if k > ζ

Proof It suffices to split de norm in Theorem 10 as follow,
‖∇f(xk+1)‖2 ≤ ‖I −QH̃‖2︸ ︷︷ ︸

≤1−κ

‖∇f(x0)‖2 min
p∈P(1)

k

‖p(I −QH̃)‖2

Then, using classical results for minimal polynomial (see for instance [18]), we have that, if k ≤ ζ,

min
p∈P(1)

k

‖p(I −QH̃)‖2 ≤ min
p∈P(1)

k

max
A:0�A�1−κ

‖p(A)‖2 ≤ 2

(
1−
√
κ

1 +
√
κ

)k
.

Otherwise, consider q the minimal polynomial of I − QH̃ . Since QH̃ is invertible, the matrix
I − QH̃ does not have 1 as eigenvalue, thus q(1) 6= 0. In this case, p = q

q(1) is a feasible solution
of (17), so

min
p∈P(1)

k

‖p(I −QH̃)∇f(x0)‖M ≤ ‖q(I −QH̃)∇f(x0)‖M = 0

by definition of the minimal polynomial.
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Appendix D. Symmetric Procrustes Problem

Consider the following problem, known as Symmetric Procrustes.

Theorem 12 Consider the problem

Zλ = min
Z=ZT∈Rd×d

‖ZA− D‖2F +
λ

2
‖Z− Zref‖2F , (22)

where A, C ∈ Rd×m, and Z0 ∈ Rd×d is a symmetric matrix. Assume m < d and rank(A) = m.
The solution of (22) is given by

Zλ = V1Z1VT1 + (I− P)ZTD + ZD(I− P) + (I− P)TZ0(I− P), (23)
where

[U,Σ, V1] = SVD(AT ,’econ’), (24)

Z1 =

(
1

Σ211T + 11TΣ2 + 2λ11T

)
� V T

1

(
ACT + CAT + λ(Z0 + ZT0 )

)
V1, (25)

P = V1V
T

1 ,

ZD = V1

(
Σ>Σ + 2λI

)−1VT1
(
ADT + 2λZref

)
(I− P), A† = V1Σ−1UT ,

where in (25) we used the element-wise division and� is the element-wise multiplication (Hadamard
product). Assuming the matrix Z0 is invertible, the inverse Z−1

∗ is given by
Z−1
λ = QMQT + (I − P )Z−1

0 (I − P ) (26)
where

M =
(
Z1 − ZDZ−1

0 ZTD
)−1

and Q = V1 − (I − P )Z−1
0 ZTD.

Finally, both the SVD in (24) and the matrix-matrix multiplication Z∗D or Z−1
∗ D have a complexity

of the order of O(m2d), for any matrix D ∈ Rd×m.

Proof We begin by deriving the solution of (22). By taking the transposition of the matrices inside
the Frobenius norm of the first term in (22), we obtain the equivalent problem

min
Z=ZT∈Rd×d

‖ATZ − CT ‖2 + λ‖Z − Z0‖2F . (27)

We write the SVD of AT as U[Σ, 0]VT , where U ∈ Rm×m, V ∈ Rd×d are orthogonal matrices,
and Σ ∈ Rm×m is a diagonal matrix with nonnegative entries. Thus, we obtain another problem
equivalent to (22) as follows

min
Z=ZT∈Rd×d

‖[Σ, 0]V TZV − UTCTV ‖2F + λ‖Z − Z0‖2F .

By defining Z̃ = V TZV , (D) can be further written as
min

Z̃=Z̃T∈Rd×d
‖[Σ, 0]Z̃ − UTCTV ‖2F + λ‖Z̃ − V TZ0V ‖2F

= min
Z̃=Z̃T∈Rd×d

‖[Σ, 0]Z̃ − C̃‖2F + λ‖Z̃ − V TZ0V ‖2F , (28)

where

V =
[
V1 V2

]
, Z̃ =

[
Z̃1 Z̃D

(Z̃D)T Z̃2

]
,

D̃ = UTDTV =
[
D̃1 D̃2

]
, Z̃0 = VTZ0V =

[
(Z̃0)1 (Z̃0)D
(Z̃0)TD (Z̃0)2

]
. (29)
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Here Z̃1 = (Z̃1)T ∈ Rm×m, Z̃2 = Z̃T2 ∈ R(d−m)×(d−m), Z̃D ∈ Rm×(d−m), D̃1 ∈ Rm×m,
D̃2 ∈ Rm×(d−m), V1 ∈ Rd×m, and V2 ∈ Rd×(d−m). Hence, we can write the objective of (28) as

‖[ΣZ̃1,ΣZ̃D]− UTDTV‖2 + λ‖Z̃− Z̃0‖2F
= ‖[ΣZ̃1,ΣZ̃D]− D̃‖2 + λ‖Z̃− Z̃0‖2F
= ‖[ΣZ̃1,ΣZ̃D]− [D̃1, D̃2]‖2 + λ‖Z̃− Z̃0‖2F
= ‖ΣZ̃1 − D̃1‖2 + ‖ΣZ̃D − D̃2‖2 + λ‖Z̃− Z̃0‖2F
= ‖ΣZ̃1 − D̃1‖2 + λ‖Z̃1 − (Z̃0)1‖2︸ ︷︷ ︸

(i)

+ ‖ΣZ̃D − D̃2‖2 + 2λ‖Z̃D − (Z̃0)D‖2︸ ︷︷ ︸
(ii)

+ λ‖Z̃2 − (Z̃0)2‖2︸ ︷︷ ︸
(iii)

.

Hence, we derive the solution to (22) by minimizing three independent terms as below.
Term (iii): The term

argmin
Z̃2=(Z̃2)T∈Rd−m×d−m

λ‖Z̃2 − (Z̃0)2‖2 (30)

imposes the constraint Z̃2 = (Z̃0)2. In other words, we have
Z̃2 = VT

2 Z0V2 (31)
Term (i): In what follows, we solve the problem

min
Z̃1=(Z̃1)T∈Rm×m

‖ΣZ̃1 − D̃1‖2 + λ‖Z̃1 − (Z̃0)1‖2, (32)

By writing Z̃1 = (z̃
(1)
ij )i,j∈[d], C̃1 = (cij)i,j∈[d], and noting that Z̃1 is symmetric, we rewrite the

optimization problems in terms of the entries in Z as below.

min
Z̃∈Rd×d

m∑
i=1

(σiz̃
(1)
ii − cii)

2 +
(
(σiz

(1)
ij − cij)

2 + (σjz
(1)
ij − cji)

2
)

+ λ
( m∑
i=1

(z̃
(1)
ii − zii)

2 +
∑
j>i

(
(z̃

(1)
ij − zij)

2 + (z̃
(1)
ij − zij)

2
))
. (33)

By setting the derivative w.r.t. zij , we obtain for λ > 0

z̃
(1)
ij =

σicij + σjcji + λ(zij + zji)

σ2
i + σ2

j + 2λ
, (34)

where we do not need to deal with the case σ2
i +σ2

j = 0 as in the setting λ→ 0. We can equivalently
write

Z̃1 =

(
1

Σ211T + 11TΣ2 + 2λ11T

)
� VT

1

(
ADT + DAT + λ(Zref + ZTref)

)
V1, (35)

(36)
where � is the Hadamard product computing the product element-wise.
Term (ii): In addition, the problem

min
Z̃D∈Rm×d−m

‖ΣZ̃D − C̃2‖2 + 2λ‖Z̃D − (Z̃0)D‖2 (37)
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has a closed form solution given by

Z̃D =
(
Σ>Σ + 2λI

)−1(
Σ>D̃2 + 2λ(Z̃0)D

)
. (38)

ZD = V1Z̃DVT
2

= V1

(
Σ>Σ + 2λI

)−1(
Σ>D̃2 + 2λ(Z̃0)D

)
VT

2 (39)

= V1

(
Σ>Σ + 2λI

)−1(
Σ>UTDTV2 + 2λVT

1 (Z0)DV2

)
VT

2 . (40)

Since we have V2VT
2 = I− V1VT

1 = I− P,

ZD = V1

(
Σ>Σ + 2λI

)−1(
Σ>UTDT + 2λVT

1 Zref
)
(I− P)

= V1

(
Σ>Σ + 2λI

)−1VT
1

(
ADT + 2λZref

)
(I− P) (41)

In the case where Z0 is a diagonal matrix, and since V T
1 (I − P ) = 0,

ZD = V1

(
ΣTΣ + 2λI

)−1VT
1

(
ADT

)
(I− P).

Therefore, the solution can be written as

Zλ =
[
V1 V2

] [ Z̃1 Z̃D
(Z̃D)T Z̃2

] [
V1 V2

]T
= V1Z̃1VT

1 + V1Z̃DVT
2 + V2Z̃TDVT

1 + V2Z̃2VT
2

= Z1 + ZD + ZTD + (I− P)Zref(I− P), (42)

where P = V1VT
1 = I− V2VT

2 and ZD = V1

(
ΣTΣ + 2λI

)−1VT
1

(
ADT + 2λ(Z0)D

)
(I− P), and

Z1 = V1Z̃1VT
1 .

Below we compute the inverse of Z∗. Since

Z∗ = V

[
Z̃1 Z̃D

Z̃D
T Z̃2

]
VT

= VZ̃VT ,

we can write
Z−1
∗ = VZ̃−1VT .

By the Woodbury matrix identity [32] and (29), we have

Z̃−1
=

[
M1 −M1Z̃DZ̃−1

2

−Z̃−1
2 Z̃TDM1 Z̃−1

2 + Z̃−1
2 Z̃TDM1Z̃DZ̃−1

2

]
, (43)

with M1 = (Z̃1 − Z̃DZ̃2
−1Z̃TD)−1. Hence Z−1

∗ = VZ̃−1VT can be rewritten as

Z−1
∗ = V1M1VT

1 + V2Z̃2
−1Z̃TDM1Z̃DZ̃2

−1VT
2

+ V2Z̃2
−1VT

2 − V1M1Z̃DZ̃2
−1VT

2 − V2Z̃2
−1Z̃D

TM1VT
1

= QMQT + (I− P)Z−1
0 (I− P),

(44)

where M =
(
Z1 − ZDZ−1

0 ZTD
)−1 and Q =

(
V1 − (I − P )Z−1

0 ZTD
)
. For a proof that for any

matrix D ∈ Rd×m.
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Appendix E. Numerical Experiment

In this section, we compare our symmetric multisecant algorithm to existing methods in the litera-
ture in different settings. We first compare the quality of the estimate of the Hessian (and its inverse).
Then, we compare the speed of convergence when using this estimate to estimate the Newton-step.

E.1. Hessian Recovery

We analyse the following problem, consisting in the recovery of the inverse of a symmetric Hessian
Q−1 of a quadratic function, that satisfies

Q−1∆G = ∆X, Q = QT .

However, we have only access to ∆̃G, a corrupted version of ∆G. Such case happens in the case
where the oracle is a stochastic gradient, for example.

In our case, we consider the worst-case `2 corruption
∆̃G = U∆G max{Σ∆G − ε · σ1(∆G), 0}VT

∆G,

where U∆GΣ∆GVT
∆G is the SVD of ∆G, and ε is the relative perturbation intensity. When ε = 1,

the matrix ∆̃G is full of zero.
We estimate Q−1 using different techniques, that we compare using the relative residual error

error(Q−1
est ) = ‖Q−1

est ∆G−∆X‖F /‖∆X‖F .
Note that, in our error function, we use the noise-free version of ∆G.

Our baseline is the diagonal estimate, corresponding to the inverse of the Lipchitz constant of Q,
typically used as a step-size in the gradient method. We also use `-BFGS and our Type-1 and Type-
2 multisecant algorithms, solving respectively (Inv-RSP) and (Sol-RSP) with A = ∆̃G, D = ∆X,
B0 = H−1

0 = ‖Q‖, and λ = 10−10 for their regularized version. The number of secant equations is
50. The results are reported in Figure 2.
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Figure 1: Comparison of different methods to estimate a symmetric matrix. We clearly see that
multisecant method perform well in a small-noise regime, but quickly gets out of control
for larger perturbation. This is not the case for their regularized counterpart (λ = 10−10),
whose clearly show a more stable behavior. The performance of BFGS are quite poor
compared to multisecant algorithms, since it can only satisfy one secant equation at a
time. Finally, the type-II multisecant Broyden method seems stable, but does not recover
a symmetric matrix.
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Figure 2: Comparison of the stability of qN methods with stochastic gradients on Madelon dataset.
We report the function value of the average of the iterates. The batch size is 10% of the
number of points. Since the function is stochastic, we used only unitary stepsize. The
memory is 25, and the relative regularization λ̄ = 10−4. The condition number is 103.
The `−BFGS and the multisecant Broyden of type 1 are divergent in this situation. With
unitary stepsize, the regularized symmetric multisecant Type-I method is slightly faster
than stochastic gradient with no extra tuning.
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