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Abstract
Game optimization has been extensively studied when decision variables lie in a finite-dimensional space, of
which solutions correspond to pure strategies at the Nash equilibrium (NE) and the gradient descent-ascent
(GDA) method works widely in practice. In this paper, we consider infinite-dimensional games by a zero-sum
distributional optimization problem over a space of probability measures defined on a continuous variable
set, which is inspired by finding a mixed NE for finite-dimensional games. We then aim to answer a natural
question: Will GDA-type algorithms still be provably efficient when extended to infinite-dimensional games?
To answer this question, we propose a particle-based variational transport algorithm based on GDA in the
functional space. Specifically, the algorithm performs multi-step functional gradient descent-ascent in the
Wasserstein space via alternately pushing two sets of particles in the variable space. By characterizing the
gradient estimation error from variational form maximization and the convergence behavior of each player
with different objective landscapes, we prove rigorously that the generalized GDA algorithm converges to the
NE or the value of the game efficiently for a class of games under the Polyak-Łojasiewicz (PL) condition.
To the best of our knowledge, we provide the first statistical and convergence guarantees for solving an
infinite-dimensional zero-sum game via a provably efficient particle-based method under mild conditions.
Additionally, our work provides the first thorough statistical analysis for the particle-based algorithm to learn
an objective functional with a variational form using universal approximators (i.e., neural networks (NNs)),
which may be of independent interest.

1. Introduction
Recent years have witnessed a resurgence in zero-sum games for machine learning applications, where two
players’ strategies are usually parameterized with two finite-dimensional decision variables. Furthermore, the
optimal strategies define the pure NE in the sense that they identify two deterministic strategies. Motivating
examples include generative adversarial networks (GANs) [23, 47, 57, 59], reinforcement learning [13, 29],
distributionally robust optimization (DRO) [22, 62], and learning exponential families [14], among others.
Such zero-sum games have been extensively analyzed in convex-concave settings, where a global Nash
equilibrium (NE) can be computed efficiently by gradient descent-ascent (GDA) type algorithms [19, 28, 43,
44]. Nonetheless, these methods mostly stagger in nonconvex landscapes for modern applications, for which
a bunch of modified gradient-based methods [32, 57, 58] under different settings relax nonconvexity to find a
first-order NE [50]. Despite the popularity in exploring variants of the pure NE in nonconvex-nonconcave
game settings, another crucial problem arises from a game-theoretic perspective: What if the pure NE does
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not exist [2, 32]? The finite-dimensional formulation naturally excludes a potential better or even the only
existential optimal mixed strategies, and meanwhile is restricted to local convergence without convexity.

To alleviate the concern above and to further understand the difficulty at the boundary of contemporary
game optimization, we consider a class of zero-sum infinite-dimensional games where each decision variable
is a probability measure representing the mixed strategies over the spaces of pure strategies. In addition, we
assume this distributional games to satisfy Riemannian Polyak-Łojasiewicz (PL) conditions and smoothness
assumptions, which are satisfied by a range of nonconvex landscapes and the practical training objectives for
GANs with regularization [2]. A natural approach to distributional optimization problems is the particle-based
method [53, 65, 68], where stochastic gradient Langevin dynamics (SGLD) is usually adopted to draw a
sample from the desired distribution via discretization of stochastic differential equations [31]. However,
SGLD sampling is quite inefficient for reaching a stationary distribution at each step. Meanwhile, from the
view of games, GDA-type algorithms have not been studied in full generality for infinite-dimensional settings.
Motivated by the two facts above, we adapt the multi-step GDA-type algorithm to infinite-dimensional games
through particle-based approximation, and provide the first set of theoretical guarantees by analyzing its new
behavior under infinite-dimensional settings.

We conclude our contributions as follows. (1) To model the mixed NE of finite-dimensional games, we
introduce the generic infinite-dimensional zero-sum games. We establish the GDA-type algorithm in the
Wasserstein space, also named variational transport for infinite-dimensional games (VTIG), for such games
via Riemannian gradient propositions (Proposition 5 and 6). (2) We provide the first thorough analysis of
both statistical and optimization errors for VTIG in two scenarios. One is the convergence to the first-order
NE under a Riemannian PL condition (Theorem 8), and the other is the convergence to the minimax value
under a stronger two-sided PL condition (Theorem 10). (3) As a technical component, we provide statistical
analysis for particle-based gradient estimation via an upper bound of the gradient norm by the generalization
error of an NN.
Related work. Finite-dimensional games under convex-concave settings [28, 33, 43, 44] are adequately
studied with corresponding monotonic variational inequalities [15, 23] and solved by GDA [61]. Meanwhile,
primal-dual schemes and negative momentum [8, 17, 24] are proposed to help GDA on convergence, which
bypasses cyclic dynamics [16, 40, 41]. To tame nonconvexity, [32] proves the O(θ−4) rate in gradient
evaluations is required in the convergence to an θ-first order NE with Max-oracle; [38, 39] reached the same
rate when the objective is concave w.r.t. the max-player strategy; improved rates of O(θ−3.5) and O(θ−2) are
shown in [58] under PL-game conditions, which is similar to our setting. However, our results are derived for
infinite dimensions as a mixed-strategy extension.

In machine learning literature, the notion of mixed NE for GANs was originally presented in [26] without
an algorithm to find it. A line of work [2, 27, 31, 48] seeks to further understand and find mixed NEs of GANs.
Nonetheless, the existing algorithm in [31] using SGLD is computationally demanding at each step and
complicated in the idea of algorithm design without statistical analysis. Our analysis extends the GDA-type
algorithm to the Wasserstein space, and shows the existence of a provably efficient particle-based algorithm
that pushes a fix-sized set of particles instead of running SGLD repeatedly.

Optimizing functionals of probability measures was studied by Frank-Wolfe [21] and steepest descent
algorithms [42] in earlier times. More recently, descent methods in the space of probability measures [20, 54]
are getting popular in machine learning, where particle-based methods [9, 36] approximate measures for
practical implementation. Similarly, two sets of particles in our algorithm also provide the Dirac measure
approximation for probability measures.
Notations. We denote by [n] the set of integers {0, 1, ..., n}. Let C(Rd) be the set of continuous functions
over the d-dimensional real space Rd. Let X be a convex compact set in Rd. Given a nonnegative measure
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µ on X , we define the `p-norm of the function f ∈ C(Rd) on X as ‖f‖Lpµ(X ) = (
∫
X |f |

pdµ)1/p. Let P(X )
denote the collection of all Borel probability measures on the measurable space (X ,B(X )), where B(X ) is
the Borel σ-algebra on X . We denote by P2(X ) ⊆ P(X ) the set of Borel probability measures with finite
second moments. We define the metric space (M, ‖ · ‖) by a vector space M and a metric induced by the
norm ‖ · ‖.
2. Problem Formulation and Optimization over Wasserstein Spaces
Below we state the formulation and assumptions for infinite-dimensional games in the Wasserstein space.

2.1. From Finite-Dimensional to Infinite-Dimensional Games
Consider the classical formulation of a two-player zero-sum game as folows,

min
xµ∈Xµ

max
xν∈Xν

f(xµ, xν), (1)

where Xµ,Xν ⊆ Rd with d > 0 are convex compact sets of pure strategies as d-dimensional vectors with
periodic or zero-flux boundary conditions w.r.t. the vector fields specified in Proposition 6, and f is the
objective function. In nonconvex-nonconcave regimes, as finding local Nash equilibria is NP-hard or even
impossible [32], a weaker notion of first-order NE (FNE) for a pair (xµ∗ , x

ν
∗) ∈ Xµ ×Xν is defined as

〈∇xµf(xµ∗ , x
ν
∗), x

µ − xµ∗ 〉 ≥ 0, (2)

〈∇xνf(xµ∗ , x
ν
∗), x

ν − xν∗〉 ≤ 0, ∀xµ ∈ Xµ, ∀xν ∈ Xν ,

which corresponds to first-order necessary optimality conditions. Observing that without a probability
representation (1) only admits pure Nash strategies, we lift (1) by considering distributions over Xµ and Xν
to allow mixed strategies. The infinite-dimensional distributional two-player zero-sum game is defined as

min
µ∈M(Xµ)

max
ν∈M(Xν)

F (µ, ν). (3)

Here F : M(Xµ)×M(Xν)→ R is the objective functional. Also,M(X ) = (P2(X ),W2) is the Wasserstein
(W2-) space, an infinite-dimensional manifold by [64], with the W2-distance on P2(X ) defined as

W2(µ, ν) = inf
{
E
[
||X − Y ||2

]1/2 | L(X) = µ,L(Y ) = ν
}
,

where the infimum is taken over the random variables X and Y , and we denote by L(X) the law of a random
variable X . Without loss of generality, we set Xµ = Xν = X and writeM =M(X ). Without specification,
the domain of an integral is the set X . We refer to the two players as player µ and player ν, respectively. To
further characterize the properties of such a Wasserstein spaceM, we introduce geodesics, tangent vectors
and tangent spaces below.

Definition 1 Define the smooth curve γ : [0, 1]→ P2(X ). We call the curve γ a geodesic if there exists a
constant v ≥ 0 such that ‖γ(t1)− γ(t2)‖ = v · |t1− t2| for any t1, t2 ∈ [0, 1]. A tangent vector at µ ∈M is
an equivalence class of differentiable curves through µ with a prescribed velocity vector at µ. The tangent
space at µ, denoted by TµM, consists of all tangent vectors at µ.
Furthermore, the manifoldM is equipped with a weak Riemannian structure in the following sense [64].
Given any tangent vectors u, v at µ ∈ M and the vector fields ũ, ṽ satisfying continuity equations u =
−div(µũ) and v = −div(µṽ), respectively, we define the inner product of u and v as 〈u, v〉µ =

∫
〈ũ, ṽ〉 dµ,

where 〈ũ, ṽ〉 is the inner product in X . Such a metric induces a norm ‖u‖µ = 〈u, u〉1/2µ for any u ∈ TµM.
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Under such a structure, we define the directional derivative w.r.t. u ∈ TµM of a differentiable functional
g : M → R as ∇vg(µ) = d

dtg[γ(t)]
∣∣
t=0

, where γ(0) = µ ∈ M, γ′(0) = u. In addition, we say g is
W2-differentiable at µ if there exists u′ ∈ TµM such that∇ug(µ) = 〈u′, u〉µ for any u ∈ TµM, and write
grad g(µ) = u′ as the (weak) Riemannian gradient of g at µ. The partial gradient gradµ F (µ, ν) is defined
similarly for a functional F : M×M → R when fixing ν. The exponential map at µ, denoted by Expµ,
sends any u ∈ TµM to µ′ = γu(1)1, where γu is a geodesic such that γu(0) = µ, γ′u(0) = u. For any
µ, ν ∈ M, the parallel transport Γνµ : TµM → TνM is the map such that 〈u, v〉µ = 〈Γνµu,Γνµv〉ν for any
u, v ∈ TµM. Also, as X is separable and complete,M is geodesically complete [63] in the sense that the
exponential map is defined on the whole tangent space. See §B for more formal definitions.

We also assume the objective functional F in (3) to satisfy the following variational forms,

F (µ, ν) = Fν(µ) = sup
f∈F

{∫
X
fdµ− F ∗ν (f)

}
, F (µ, ν) = Fµ(ν) = − sup

f∈F

{∫
X
fdν − F ∗µ(f)

}
, (4)

where F is the family of square-integrable functions over X , F ∗µ : F → R and F ∗ν : F → R are strongly
convex and smooth functional w.r.t. the `2-norm. In fact, (4) follows from definitions of the conjugate
function, and the example in § 2 shows that a wide class of f -divergences admits such forms.

For theoretical analysis, we impose the following assumptions on the objective functional F .

Assumption 2 We assume that F is Lipschitz continuous and smooth w.r.t. the Wasserstein distance in the
sense that∣∣F (µ1, ν)− F (µ2, ν)

∣∣ ≤ LµW2(µ1, µ2),∣∣F (µ, ν1)− F (µ, ν2)
∣∣ ≤ LνW2(ν1, ν2),

d
(
gradFν(µ1), gradFν(µ2)

)
≤ L1 · W2(µ1, µ2), d

(
gradFµ(ν1), gradFµ(ν2)

)
≤ L2 · W2(ν1, ν2),

d
(
gradFµ1(ν), gradFµ2(ν)

)
≤ L0 · W2(µ1, µ2), d

(
gradFν1(µ), gradFν2(µ)

)
≤ L0 · W2(ν1, ν2)

(5)

for any µ, µ1, µ2, ν, ν1, ν2 ∈ M. Here Lµ, Lν , L1, L2, and L0 are absolute constants and d2(u, v) =〈
u− Γµνv, u− Γµνv

〉
µ

for any µ, ν ∈M, u ∈ TµM, and v ∈ TνM.

Assumption 2 is a natural extension of Lipschitz continuity and smoothness for Euclidean space toM, where
the Euclidean distance is replaced byW2. The following assumption extends the notion of PL condition, also
known as gradient domination [45, 52, 58], to infinite-dimensional spaces.

Assumption 3 (Riemannian PL condition). A W2-differentiable functional g : M → R with minimum
value g∗ = infµ∈M g(µ) is called ξ-PL (ξ-gradient dominated) if for all µ ∈M we have

〈grad g(µ), grad g(µ)〉µ ≥ 2ξ (g(µ)− g∗) . (6)

We call (3) a ξ-PL game, or simply a PL game, if Hµ(ν) , −F (µ, ν) is ξ-PL. We assume (3) to be a ξ-PL
game.

In particular, Assumption 3 implies that if the norm of the gradient is small at µ ∈M, then the functional
value at µ will be close to the optimum. In addition, it is not restrictive since a non-convex functional can
still satisfy the PL condition [34]. To justify all the above assumptions, we provide the following example
stemming from learning GANs, where the pure strategies in (3) correspond to parameters xµ and xν of the
GAN.

1. Hence, for µ1, µ2 ∈M, Exp−1
µ1

(µ2) is an analogy to x2 − x1 for x1, x2 ∈ X .
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Example 1 Consider the mixed NE of WGANs [1] with Kullback-Leibler (KL) divergence regularization,

min
µ∈M

max
ν∈M

Exν∼νEζ∼Preal [hxν (ζ)]− Exν∼νExµ∼µEζ∼Pxµ [hxν (ζ)]− KL(ν‖µ0) + KL(µ‖µ0), (7)

where KL(µ‖λ) =
∫
X log( dµ/ dλ) dµ with Lebesgue measures µ and λ, and µ0 is the probability measure

of standard Gaussian. Also, hv denotes the discriminator parameterized by NNs, of which the input
is ζ ∈ X . Without the expectations of xµ and xν , (7) is reduced to the original regularized WGAN
objective that admits only finite-dimensional pure Nash strategies. Further, we define the linear operator
D : M → F by (Dµ)(xν) = Exµ∼µEζ∼Pxµ [hxν (ζ)] for any xν ∈ X and some continuous function
hxν ∈ F . We also define g(xν) = Eζ∼Preal [hxν (ζ)]. Then the objective F in (7) can be rewritten as
F (µ, ν) = 〈ν, g〉 − 〈ν,Dµ〉 − KL(ν‖µ0) + KL(µ‖µ0), It follows from the logarithmic Sobolev inequality
(LSI) [49] in W2-space that player µ meets the PL condition. Since the KL divergence is an f -divergence,
the variantional forms are guaranteed as follows,

Fν(µ) = sup
f∈F

{∫
fdµ−

∫
exp

{
f(xµ) + Exν∼νEζ∼Pxµ [hxν (ζ)]

}
dµ0(x

µ) + F̂ν

}
, (8)

Fµ(ν) = − sup
f∈F

{∫
fdν −

∫
exp

{
f(xν) + g(xν)− (Dµ)(xν)

}
dµ0(x

ν) + F̂µ

}
. (9)

Here F̂ν = 1 − KL(ν‖µ0) + Exν∼νEζ∼Preal [hxν (ζ)] and F̂µ = 1 − KL(µ‖µ0) are constants when fixing
ν and µ, respectively. See §C.3 for details. We remark that in practical GAN training, KL regulariza-
tion terms exist to prevent the mode collapse. More generally, the KL-regularized distributional bilinear
game minµ∈Mmaxν∈M〈ν,Aµ〉 − KL(ν‖µ0) + KL(µ‖µ0) given a linear operator A :M→ F is widely
studied in games. Similarly, we write its variational forms as Fν(µ) = supf∈F{

∫
fdµ−

∫
exp

{
f(xν)−

A∗ν(xν)
}

dµ0(x
ν)+1−KL(ν‖µ0)} and Fµ(ν) = − supf∈F{

∫
fdν−

∫
exp

{
f(xµ)+Aµ(xµ)

}
dµ0(x

µ)+
1− KL(µ‖µ0)}, where A∗ is the adjoint of A.

2.2. Measurement of Solutions
To quantify the accuracy of solutions to (3), we generalize the NE of finite-dimensional games to our infinite-
dimensional distributional games. Given the numerical accuracy of iterative algorithms in practice, we define
the notion of infinite-dimensional first-order NE (IFNE) as a performance measure.

Definition 4 (IFNE) For any µ1, ν1 ∈M, we define

Jµ(µ1, ν1) , − min
W2(µ,µ1)≤1

〈
gradµ F (µ1, ν1),Exp−1µ1 (µ)

〉
µ1
,

Jν(µ1, ν1) , max
W2(ν,ν1)≤1

〈
gradν F (µ1, ν1),Exp−1ν1 (ν)

〉
ν1

as the first-order errors (FEs). Then a point (µ∗, ν∗) ∈M×M is called a θ-IFNE of (3) if

Jµ(µ∗, ν∗) ≤ θ and Jν(µ∗, ν∗) ≤ θ. (10)

When θ = 0, we call (µ∗, ν∗) an IFNE. Definition 4 characterizes how far the solutions are from the FNE in
the W2-space. Also, we characterize the upper bound θ in terms of the problem parameters for convergence
rates in §4.
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3. Variational Transport Algorithm for Infinite-Dimensional Games
In what follows, we introduce the variational transport algorithm to characterize GDA for the infinite-
dimensional game defined in (3). Our idea is based on the multi-step GDA algorithm in [58] with nested
loops, where multiple gradient ascent steps are run for estimating the gradient of the inner maximization
functional defined as G(µ) = maxν∈M F (µ, ν) w.r.t. µ, which provides a descent direction for the outer
minimization problem. Without specifying, statements below hold for both µ and ν although they are
presented by µ ∈M.

3.1. Gradient Descent beyond the Euclidean Space
We first show the connection between functional gradient descent in the Wasserstein SpaceM and trans-
portation maps in the variable space X . Specifically, we expect to update the current iterate µ ∈M of the
gradient descent in the direction of gradFν(µ) along the geodesic. Therefore, in the ideal case, the gradient
update is given by

µ← Expµ
[
−η · gradFν(µ)

]
, (11)

where η > 0 is the stepsize. The proposition below bridges the Riemannian gradient of a W2-differentiable
functional onM and its functional gradient w.r.t. the `2-norm. We denote by f∗µ ∈ F the optimal solution
to (4) for Fν(µ).

Proposition 5 (Riemannian Gradients to Functional Gradients) LetF :M→ R be aW2-differentiable
functional, with its functional gradient w.r.t. the `2-norm written as δF/δµ. Then, it follows that

gradF (µ) = −div

[
µ · ∇

(
δF

δµ

)]
, (12)

where div is the divergence operator on X . Furthermore, by the variational form of (3), we have δFν/δµ =
f∗µ and gradFν(µ) = −div(µ · ∇f∗µ).

Proof See §C.1 for a detailed proof.

By Proposition 5, to obtain a descent direction in W2-space for Fν(µ), we first solve (4) for f∗µ ∈ F and then,
compute the divergence in (12). Also, Expµ in (11) needs to be specified. As in practice we only have access
to samples, or particles, from µ, we establish the proposition below to perform approximate gradient updates
in (11) via particles.

Proposition 6 (Pushing particles as an exponential map) For any µ ∈ M and any s ∈ TµM, suppose
the elliptic equation −div(µ · ∇u) = s admits a unique solution u : X → R such that ∇u : X → Rd is
h-Lipschitz continuous. Then, for any t ∈ [0, 1/h), we have[

ExpX (t · ∇u)
]
]
µ = Expµ(t · s), (13)

where we use ExpX (t · ∇u) to denote the transportation map on X that sends any x ∈ X to a point
Expx(t · ∇u(x)) ∈ X , which is also the exponential map over X . We denote by T] : P2(X )→ P2(X ) the
push-forward map of a transportation map T : X → X such that for any µ ∈ M and any measurable set
A ∈ X , we have T]µ(A) = µ(T−1(A)).
Proof See §C.2 for a detailed proof.
Hence, if∇f∗µ is h-Lipschitz, by Proposition 5 and 6, for any t ∈ [0, 1/h) we obtain Expµ[−t ·gradF (µ)] =[
ExpX

(
−t · ∇f∗µ)

]
]
µ. given µ ∈M. This identifies the gradient descent update in the Wasserstein spaces
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Figure 1: Equivalence between particle pushing in the Euclidean space X and the exponential map in the Wasserstein
spaceM. The tangent vector v ∈ TxM at x induces the exponential map Expx and its correspondence in X ,
the push-forward map T] =

[
ExpX

(
−t · ∇f∗µ)

]
]
. Xµ

k is the set of µ-particles at timestep k in Algorithm 1.

with the push-forward map of probability measures over the Euclidean space, which can be approximated by
pushing a set of particles. We illustrate such correspondence in Figure 1.

Further, we are left with the variational form maximization (VFM) problem in (4), where difficulties
lie in the following aspects. (i) Firstly, our approach is expected to provide the reasonable statistical error
incurred by estimating f∗µ by f̃∗µ from the empirical version of VFM,

f̃∗µ = argmax
f∈F

{∫
X
f dµ̂− F ∗ν (f)

}
= argmax

f∈F

{ 1

N

N∑
i=1

f(xi)− F ∗ν (f)
}
, (14)

where we replace µ in (4) by the empirical measure µ̂ = 1/N
∑N

i=1 δxi , i.e., an average of Dirac measures
over samples xi’s. (ii) Secondly, maximization over F is computationally intractable. To this end, we perform
stochastic gradient descent (SGD) to learn f∗µ from the following class F̃ of neural networks (NNs) instead
of F , which is a rich class by the universal approximation theorem [12, 30].
Neural Network Parametrization. We consider the following class of NNs,

F̃ =

{
f̃

∣∣∣∣ f̃(x) =
1√
w

w∑
i=1

bi · σ
(
[β]>i x

)}
, (15)

where w is the width of the neural network, [β]i ∈ Rd, β = ([β]>1 , · · · , [β]>w)> ∈ Rwd are input weights,
σ(·) denotes a smooth activation function, and bi ∈ {−1, 1} (i ∈ [w]) are the output weights. As shown
in Algorithm 3, only β is updated during training while bi (i ∈ [w]) is fixed. In addition, at each iteration
we project the input weights β to an `2-ball centered at β(0) with radius rf defined as B0(rf ) = {β :

‖β − β(0)‖2 ≤ rf}. See §D.1 for more details of F̃ .

3.2. Algorithm for Two-Player Infinite-Dimensional Games

We now put together two nested loops of gradient descent/ascent updates approximated by particles as
the variational transport algorithm for infinite-dimensional games (VTIG) in Algorithm 1. In detail, we
maintain two sets of Nµ µ-particles and Nν ν-particles for player µ and player ν. Also, VTIG output the
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corresponding probability measures approximated by these two sets as the solutions to (3), respectively.
At outer-loop timestep k, we denote the set for player µ by Xµ

k = {xµi,k}i∈[Nµ] and the set for player ν at
inner-loop timestep l of outer-loop timestep k by Xν

l (µ̃k) = {xνi,l(µ̃k)}i∈[Nν ]. Here we write Xν
l (µ̃k) and

xνi,l(µ̃k) to emphasize that we fix Xµ
k (resp. µ̃k) when updating Xν

l (resp. ν̃l) in Line 7 of Algorithm 1.
Also, {µ̃k}k≥0 and {ν̃l(µ̃k)}k,l≥0 are sequences of probability measures of {Xµ

k }k≥0 and {Xν
l (µ̃k)}k,l≥0

constructed implicitly by VTIG, which is specified later. Further, the set of µ-particles Xµ
k is updated as

follows given Xµ
0 for k ≥ 1. At the outer-loop timestep k, VTIG computes the solution to (14) following

Line 10 in Algorithm 1

f̃∗k ← VFM
(
Xµ
k , F

∗
ν̃k+1

, Nµ

)
(16)

based on the current µ-particle set Xµ
k , the functional F ∗ν̃k+1

defined in the variational form (4), and the
number of µ-particlesNµ. As shown in Algorithm 3, the VFM problem is solved by learning a neural network
f̃∗k belonging to the class F̃ defined in (15) via SGD. With the obtained ∇f̃∗k , VTIG push µ-particles in this
direction as follows (Line 11 of Algorithm 1),

xµi,k+1 ← Expxµi,k
[
− ηµ · ∇f̃∗k (xµi,k)

]
(17)

for all i ∈ [Nµ]. Here ηµ > 0 are the stepsize specified in Theorem 8. This is equivalent to updating
the empirical measure µ̂ = N−1µ

∑
i∈[Nµ] δxi,k by the pushforward measure [ExpX (−ηµ · ∇f̃∗l,k)]]µ̂, which

approximates the Riemannian gradient update in (11) with stepsize ηµ. Also, the exponential map in
Euclidean space is reduced to a gradient descent step on xµi,k ∈ Rd.

Similarly, to update the set of ν-particles Xν
l (µ̃k), VTIG computes the solution to (14) following Line 6

in Algorithm 1 at inner-loop timestep l of outer-loop timestep k. Then, the ν-particles are pushed by

xνi,l+1(µ̃k)← Expxνi,l(µ̃k)
[
ην · ∇f̃∗l,k

(
xνi,l(µ̃k)

)]
(18)

for all i ∈ [Nν ] in Line 7 of Algorithm 1, with fixed µ̃k. In particular, the sequences of probability
measures {µ̃k}k≥0 and {ν̃l(µ̃k)}k,l≥0 are constructed as below. We define sequences of transportation maps
{Tµk : X → X}Kµk=0 with Tµ0 = id and {T νm : X → X}KµKνm=0 with T ν0 = id, by

Tµk+1 = ExpX (−ηµ · ∇f̃∗k ) ◦ Tµk and T νkl+1 = ExpX (−ην · ∇f̃∗l,k) ◦ T νkl, (19)

respectively for k ∈ [Kµ], l ∈ [Kν ]. Here Kµ and Kν are the numbers of timesteps of the inner and outer
loops, respectively. Then for each k ≥ 1 we define µ̃k = (Tµk )]µ̃0 and ν̃k = (T νk )]ν̃0, where µ0 and ν0
are initial probability measures. Hence, we have ν̃l(µ̃k) = ν̃lk. Also, xµi,k

i.i.d.∼ µ̃k and xνi,l(µ̃k)
i.i.d.∼ ν̃l(µ̃k)

are independent samples. Such implicit construction of transportation maps and probability measures also
induces a theoretical version of VTIG via resampling. See Algorithm 2 for details. Additionally, we adopt the
constructed measure ν̃k+1 to compute F ∗ν̃k+1

in (16) since for most objectives F such as that in Example 1,
we can always sample many enough particles to approximate the expectation terms w.r.t. ν̃k+1 for k ≥ 0.

4. Main Results
To ensure the independence of the particles for statistical analysis, we adopt Algorithm 2 for theoretical
analysis. We characterize the statistical error induced by estimating Riemannian gradients using finite particle
samples in §4.1 for both players. In §4.2 we establish the convergence rate of VTIG to the IFNE under the PL
condition for one player. Furthermore, we present in §4.3 that under a stronger assumption on the objective
F , i.e., the two-sided PL condition, a linear convergence rate to the minimax value of the game is achieved.
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Algorithm 1 Multi-Step Variational Transport Algorithm for Infinite-Dimensional Games (VTIG)
1: Input: Functional F : M×M → R; initial probability measures µ̃0, ν̃0 ∈ M; numbers of particles Nµ, Nν ;

numbers of iterations Kµ,Kν ; and stepsizes ηµ ∈
(
0,min{1/h, 2/L̃}

)
, ην ∈

(
0,min{1/(4L2), 1/h}

)
.

2: Initialize Nµ (Nν) particles Xµ
0 = {xµi,0}i∈[Nµ]

(
Xν

0

)
by drawing Nµ (Nν) i.i.d. samples from µ̃0 (ν̃0).

3: for k = 0, 1, 2, . . . ,Kµ − 1 do
4: Set Xν

0 (µ̃k) = Xν
k

5: for l = 0, 1, 2, . . . ,Kν − 1 do
6: f̃∗l,k ← VFM

(
Xν
l (µ̃k), F ∗µ̃k , Nν

)
7: Push ν-particles: xνi,l+1(µ̃k)← Expxνi,l(µ̃k)

[
−ην · ∇f̃∗l,k

(
xνi,l(µ̃k)

)]
for all i ∈ [Nν ]

8: end for
9: Set Xν

k+1 = Xν
Kν

(µ̃k)

10: f̃∗k ← VFM
(
Xµ
k , F

∗
ν̃k+1

, Nµ
)

11: Push µ-particles: xµi,k+1 ← Expxµi,k [−ηµ · ∇f̃∗k (xµi,k)] for all i ∈ [Nµ]

12: Set Xµ
k+1 = {xµi,k+1}i∈[Nµ]

13: end for
14: Output: µ̃∗ = N−1µ

∑
i∈[Nµ] δxi,Kµ , ν̃∗ = N−1ν

∑
i∈[Nν ] δxi,Kν

4.1. Statistical Analysis
For each player, VTIG can be viewed as a Riemannian gradient descent method with biased gradient estimates.
We characterize the bias in terms of the generalization error of function approximators, where lie the essential
difficulties in theory. In this section, we present the analysis for player µ. The analysis of player ν is similar.
Gradient estimation. Recall that by Proposition 5, the desired descent direction for timestep k ≥ 0 is
gradF (µ̃k) = −div(µ̃k · ∇f∗k ). However, with only finite samples, we obtain an estimator f̃∗k of f∗k . Hence,
the gradient estimate at µ̃k is −div(µ̃k · ∇f̃∗k ), and the difference between gradF (µ̃k) and its estimate is
denoted by δk = −div[µ̃k · (∇f̃∗k −∇f∗k )]. By observing that δk ∈ Tµ̃kM and that the randomness of δk
comes from the intial samples Xµ

0 , we define

ε̄k = EXµ
0
〈δk, δk〉µ̃k = EXµ

0

∫
X

∥∥∇f̃∗k (x)−∇f∗k (x)
∥∥2
2

dµ̃k(x) (20)

as the (expected) gradient error. In general, it is hard to derive upper bounds of gradients for general functions.
Nevertheless, we upper bounds function gradients by function values for a specific function class, F̃ defined
in Section 3.1. Below we provide a generic assumption on F̃ to derive the desired upper bounds of gradients.

Assumption 7 The set ∇F̃ = {∇f : f ∈ F̃} is closed, bounded in (C(X ), `∞). For each ∇f ∈ ∇F̃ , ∇f
is h-Lipschitz for some h > 0.
Such an assumption can be achieved by function classes with uniformly bounded and Lipschitz continuous
gradients, which includes the class of neural networks defined in (15) with bounded parameters. See §D.1 for
more details. In what follows, we use Lemma 21 in the appendix to obtain gradient error bounds.
Generalization error of VFM. By setting p = 2 and f(x) = f̃∗k (x)− f∗k (x) in Lemma 21, we are able to
upper bound the gradient errors by the generalization errors of NNs, which is bounded in §D.3 with the orders
of

ε̄µ = O(N−1/2µ ), ε̄ν = O(N−1/2ν ) (21)
by wide enough NNs for player µ and player ν, respectively. Here Nµ and Nν are the numbers of particles
for player µ and player ν, respectively. Such results are standard for the stochastic gradient descent (SGD)
over neural networks, since the number of iterations t in Algorithm 3 is also the sample size Nµ (resp. Nν) in
our algorithm.
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4.2. Convergence to the IFNE for PL Games
Recall that G(µ) = maxν∈M F (µ, ν). We define LG = maxµ∈M ‖ gradG(µ)‖µ, which is upper bounded
since G is Lipschitz (Lemma E.2) on a compact domain M (Proposition 30). We assume that there
exist constants MH > 0 and MG > 0 such that MH = maxµ,ν0∈M[G(µ) − F (µ, ν0)] and MG =
maxµ0∈MG(µ0) − G(µ∗), where µ∗ ∈ argminµ∈MG(µ). Under Assumption 3 for ξ-PL games, we
characterize the following sublinear rate to find an IFNE defined in Definition 4 by VTIG with sample sizes
Nµ, Nν and numbers of iterations Kµ,Kν . Recall that L0, L1, and L2 are Lipschitz constants defined in
Assumption 2. The constant ξ for the PL condition is defined in Assumption 3. Also, σ = 1− ξην/2 ∈ (0, 1)
is a contraction factor from Lemma 34.

Theorem 8 (Convergence of Infinite-Dimensional PL Games) Suppose that the objective F admits a
variational form under Assumption 2 and 3. Also, the function class F̃ satisfies Assumption 7. We set the
stepsizes to be ηµ ∈

[
0,min{1/h, 2/L̃}

)
and ην ∈

(
0,min{1/(4Lν), 1/h}

)
, where L̃ = L1 + L2

0/ξ. Then,
for any θ > 0, if

Kν ≥ Kν(θ) = O
(

log
(1− σ)M̂H − ην ε̄ν

θ

/
log

1

σ

)
, where M̂H = max

{
MH ,

ην ε̄ν + 1

1− σ

}
, (22)

there exists an iteration k ∈ [Kµ] such that

EX0

[
J 2
µ (µ̃k, ν̃k+1)

]
= O

((
∆ +

√
ε̄µ
)2 · ((∆ +

√
ε̄µ) +

MG

Kµ

))
, EX0

[
Jν(µ̃k, ν̃k+1)

]
= O

(L2∆

L0

)
.

(23)

Here ∆ = L0

√
ην ε̄ν + θ

2ξ(1− σ)
, and the gradient error terms ε̄µ and ε̄ν are characterized in (21).

Proof See §E.4 for a detailed proof and more dependencies on other constants.
The proof of Theorem 8 is based on Lemma 34 and a Danskin-type lemma in §E.2 which ensures an
appropriate estimate of gradG provided by inner loops and the smoothness of the objective defined in
Assumption 2. Such properties imply that VTIG behaves as the gradient descent over the inner maximization
value functional G, which concludes the proof. The bounds for the first-order errors Jµ and Jν are composed
of the optimization error θ of player ν, the optimization error O(K−1µ ) of player µ, and the gradient errors ε̄µ
and ε̄ν characterized in (21) due to finite samples. Specifically, the term ∆ encapsulates both the statistical
error and the optimization error of player ν, which are added to

√
ε̄µ andO(K−1µ ) in the error bound for player

µ. Considering Nµ, Nν ,Kµ, and Kν as dominating terms in the bounds, if we set Nµ = Nν = O(θ−4),
Kµ ≥ Kµ(θ) = O(θ−2), and Kν ≥ Kν(θ) = O(log(θ−1)), by Definition 4 we achieve a θ-IFNE. In this
sense, VTIG converges at a sublinear rate to the IFNE defined in (10) under the PL game condition.

4.3. Convergence to the Minimax Value under the Two-Sided PL Condition
In this section, we aim to achieve a stronger convergence result leading to the minimax value of the game by
a stronger assumption. We give the definition of two-sided Riemannian PL games below.

Assumption 9 (Two-Sided Riemannian PL Game) We define functionalsHµ(ν) = −F (µ, ν) andFν(µ) =
F (µ, ν) for fixed µ and ν, respectively. We assume (3) to be a two-sided Riemannian PL game, or simply a
two-sided PL game, in the sense that Fν(µ) is ξ1-PL and Hµ(ν) is ξ2-PL for some ξ1, ξ2 > 0.
Note that the definition of two-sided PL games relaxes that of the convex-concave games even in infinite-
dimensional spaces. In fact, Example 1 provides a two-sided PL game by KL regularization for both
players, which is ubiquitous in training GANs. Assumption 9 also guarantees a PL condition on G(µ) =
maxν∈M F (µ, ν) according to Lemma 36. By using such a landscape, we establish the linear convergence
rate of finding the minimax value of the game as below.
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Theorem 10 (Convergence to the Minimax Value of Two-Sided PL Games) Let the objectiveF satisfy (4),
Assumption 2 and 9. Suppose that F̃ satisfies Assumption 7. With the outer-loop stepsize ηµ ∈

[
0,min{1/h, 1/(4L̃)}

)
and inner-loop stepsize ην ∈

(
0,min{1/(4Lν), 1/h}

)
, for k ≥ 1 it holds that

EX0

[
F
(
µ̃k, ν

∗(µ̃k)
)]
− F (µ∗, ν∗) ≤ σ̃k ·

(
EX0

[
F (µ̃0, ν̃1)

]
− F (µ∗, ν∗)

)
︸ ︷︷ ︸

(i)

+
1− σ̃k

1− σ̃
· ηµ
(
ε̄µ + ∆̃2

)
︸ ︷︷ ︸

(ii)

,

(24)
where µ̃k and ν̃k+1 are probability measure iterates defined in Algorithm 2, gradient error terms ε̄µ and ε̄ν are
given in (21). The expectation is taken w.r.t. the initial sample X0. The contraction factor is σ̃ = 1− ξ1ηµ/2,
and we define the total error term for player ν as ∆̃2 = L2

0/2ξ2 ·
(
σKν ·MH + ην ε̄ν · 1−σ

Kν

1−σ

)
, where MH

is the upper bound of F (µ, ν∗(µ))− F (µ, ν0(µ)) defined in §4.2, and Kν denotes the number of timesteps
for player ν in Algorithm 2.

Proof See §F.2 for a detailed proof.

The proof of Theorem 10 differs from that of Theorem 8 mainly by the lower bounds of gradient norms
provided by ξ1-PL condition on functionalG. Under the two-sided PL condition in Assumption 9, Theorem 10
characterizes a linear convergence rate for VTIG of the objective functional value to the minimax value
F (µ∗, ν∗) of the game, with an accumulated statistical error term (ii). In detail, the optimization error (i)
decays by a factor of σ̃ linearly. Additionally, our statistical error is composed of the gradient error ε̄µ
of player µ and the error term ∆̃2, which is further decomposed into the linearly decaying optimization
error σKνMH and the gradient error ε̄ν of player ν scaled by (1 − σKν )/(1 − σ). Specifically, in the
total bound (24) ε̄µ scales at a rate of (1 − σ̃k)/(1 − σ̃) with the iteration k and ε̄ν scales at the rate of
(1 − σ̃k)/(1 − σ̃) · (1 − σKν )/(1 − σ), which implies the error accumulation from the the inner loop of
Algorithm 2. Also, we adopt the objective value instead of IFNE in Theorem 8 to measure the error of
convergence to the minimax value. Although we suffer from the finite-sample error to approximate probability
measures, it is flexible to tune parameters Nµ, Nν ,Kµ, and Kν according to their corresponding error terms
in the bound to optimize the algorithm in practice, especially when some parameters are restricted.
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Appendix A. Additional Algorithms

Algorithm 2 Theoretical Version of Multi-Step Variational Transport Algorithm for Infinite-Dimensional
Games (VTIG) with Resampling

1: Input: Functional F : M×M→ R; initial measures µ̃0 ∈M, ν̃0 ∈M; numbers of particles Nµ, Nν ;
numbers of iterations Kµ,Kν ; and stepsizes ηµk ∈

(
0,min{1/h, 2/L̃}

)
, ην ∈

(
0,min{1/(4L2), 1/h}

)
.

2: Initialize the transportation maps Tµ0 ← id, T ν0 ← id.
3: Initialize Nµ particles Xµ

0 = {xµi }i∈[Nµ] by drawing Nµ i.i.d. samples from µ̃0.
4: Initialize Nν particles Xν

0 = {xνi }i∈[Nν ] by drawing Nν i.i.d. samples from ν̃0.
5: for k = 0, 1, 2, . . . ,Kµ − 1 do
6: Generate Nµ particles Xµ

0 = {xµi }i∈[Nµ] by drawing Nµ i.i.d. samples from µ̃0.
7: Push µ-particles by letting Xµ

k ← Tµk (Xµ
0 ).

8: for l = 0, 1, 2, . . . ,Kν − 1 do
9: Generate Nν particles Xν

0 (µ̃k) = {xνi }i∈[N ] by drawing Nν i.i.d. samples from ν̃0.
10: Push ν-particles by letting Xν

l (µ̃k)← T νkKν+l(X
ν
0 (µ̃k)).

11: f̃∗l,k ← VFM
(
Xν
l (µ̃k), F

∗
µ̃k
, Nν

)
.

12: Update the transportation map by letting T νkKν+l+1 = [ExpX (−ην · ∇f̃∗l,k)] ◦ T νkKν+l.
13: end for
14: f̃∗k ← VFM

(
Xµ
k , F

∗
ν̃k+1

, Nµ

)
.

15: Update the transportation map by letting Tµk+1 = [ExpX (−ηµ · ∇f̃∗k )] ◦ Tµk .
16: end for
17: Output: The final transportation maps TµKµ and T νKµKν .

Algorithm 3 Variational Form Maximization via SGD
(
VFM

(
{xi}ti=1, F

∗, t
))

1: Require: Initial weights bi, [β(0)]i (i ∈ [w]), number of iterations t, sample {xi}ti=1, and projection radius rf .
2: Set stepsize η ← t−1/2

3: for s = 0, . . . , t− 1 do
4: x← xi+1

5: β(s+ 1/2)← β(s)− η
(
∇βF ∗(fβ(s)(x))−∇βfβ(s)(x)

)
6: β(s+ 1)← argminβ∈B0(rf )

{
‖β − β(s+ 1/2)‖2

}
7: end for
8: Average over path β̂ ← 1/t ·

∑t−1
s=0 β(s)

9: Output: fβ̂

Algorithm 2 provide the resampling version of VTIG (Algorithm 1) for theoretical analysis in §4. As
mentioned above, here we explicitly use two sequences of transportation maps {Tµk }

Kµ
k=0 and {T νk }

KµKν
k=0 to

record the transportation plans of mapping the initial probability measures to the current iterates of Player
µ and player ν, respectively. For simplicity, we put the particle pushing step before the VFM step, while
the essential difference between Algorithm 2 and Algorithm 1 lies only in the resampling procedures at the
beginning of each player’s loop, i.e., Line 5 and Line 8 in Algorithm 2, after which we adopt the recorded
transportation plan from time-step 0 to the current timestep k, Tµk or T νk , to push the resampled initial
particles into their states at the current timestep through k steps of transportation maps. In contrast, in
Algorithm 1 we push the two sets of particles for one step at each timestep based on their current states, with
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only one sampling procedure before the beginning of the two loops. Hence, We remark that Algorithm 1
is deterministic in essence; the only randomness comes from the initialization of the particles. In addition,
note that even in resampling cases, our algorithm only requires to call an oracle that is able to sample from a
fixed distribution, which is more efficient than SGLD requiring Markov-chain type sampling for different
probability measure iterates. We remark that Algorithm 2 is considered only for the sake of theoretical
analysis; random sampling is unnecessary in practical implementation.

We also remark that the exponential maps ExpX (−ηµ · ∇f̃∗k ) in Algorithm 1 and 2 are essentially
translations of particles in the direction of −∇f̃∗k with a stepsize ην in X , which implies that they are
computationally efficient for infinite-dimensional problems.

Appendix B. Properties of Optimization over Riemannian Manifolds

B.1. Background Details

In this section, we present basic properties of functions and gradient descent on a Riemannian manifold
(M, g) with a Riemannain metric g, supposing that any two points onM uniquely determines a geodesic. By
the nature of Wasserstein spaces, these propositions also apply to our optimization process over the family
of distributions. With such background, we are better prepared to demonstrate the convergence results by
extending the classical optimization arguments to Riemannian manifolds. For further extensions of definitions
and propositions within this section, we refer to other literatures on geodesically convex optimization. See,
e.g., [37, 66, 67] and the references therein.

B.2. Riemannian Manifold

LetM be a d-dimensional differential manifold, i.e., a topological space that is locally homeomorphic to the
Euclidean space Rd and has a globally defined differential structure [10].

Definition 11 (Tangent vector) A tangent vector at x ∈M is an equivalence class of differentiable curves
through x with a prescribed velocity vector at x. The tangent space at x, denoted by TxM, consists of all
tangent vectors at x.

In what follows, we denote by f : M → R a differentiable function overM, and define its directional
derivative as∇vf(x) = d

dtf [γ(t)]
∣∣
t=0

, where γ is any smooth curve such that γ(0) = x and γ′(0) = v.
To compare two tangent vectors in a meaningful way, we consider a Riemannian manifold (M, g), which

is a real smooth manifold equipped with an Riemannian metric gx on the tangent space TxM for any x ∈M
[51]. The inner product of any two tangent vectors u1, u2 ∈ TxM is defined as 〈u1, u2〉x = gx(u1, u2), with

an induced norm ‖u1‖x =
√〈

u1, u1
〉
x
. We specify how to move a point along a direction in the following

definition.

Definition 12 (Exponential map) The exponential map at x, denoted by Expx, sends any tangent vector
u ∈ TxM to y = γu(1) ∈M, where γu : [0, 1]→M is the unique geodesic determined by γu(0) = x and
γ′u(0) = u.

Moreover, since γu is the unique geodesic connecting x and y, the exponential map is invertible and we
have u = Exp−1x (y). The distance between x and y satisfies d(x, y) = [〈Exp−1x (y),Exp−1x (y)〉x]1/2, which
is also called the geodesic distance. For any two points x, y ∈M, the parallel transport Γyx : TxM→ TyM
specifies that how a tangent vector of x is identified with an element in TyM. Moveover, we have 〈u, v〉x =
〈Γyxu,Γ(γ)yxv〉y for any u, v ∈ TxM. For simplicity, we denote d2(u, v) =

〈
u − Γxyv, u − Γxyv

〉
x

for any
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x, y ∈ M and any u ∈ TxM, v ∈ TyM. Below we define the gradient w.r.t. the Riemannian metric, in
contrast with the Euclidean space.

Definition 13 (Gradient) Suppose there exists u ∈ TxM such that ∇vf(x) = 〈u, v〉x for any v ∈ TxM,
then f is differentiable at x, and u is called the gradient of f at x, denoted by grad f(x). We also define partial
gradient of f at (x, y) w.r.t. x by gradx f(x, y) = grad fy(x) as a natural extension, where fy(x) = f(x, y)
for any fixed y ∈M. We call function f W2-differentiable if grad f exists over its domain.

Definition 14 (Geodesic space) A metric space (X , d) consists of a set X and a distance function d : X ×
X → R satisfying a few simple properties [6]. A curve γ on X is a continuous function from [0, 1] to X ,
whose length is defined as L(γ) = sup

∑n
i=1 d[γ(ti−1), γ(ti)], where the supremum is taken over n ≥ 1

and all partitions 0 = t0 < t1 < . . . < tn = 1 of [0, 1]. By this definition, for any curve γ, we have
L(γ) ≥ d[γ(0), γ(1)]. If there exists a constant v ≥ 0 such that, d[γ(t1), γ(t2)] = v · |t1 − t2| for any
t1, t2 ∈ [0, 1], then curve γ is called a geodesic. In this case, for any 0 ≤ t1 < t2 ≤ 1, the length of γ
restricted to [t1, t2] is equal to d[γ(t1), γ(t2)]. Thus, a geodesic is everywhere locally a distance minimizer.
Moreover, (X , d) is called a geodesic space if any two points x, y ∈ X are connected by a geodesic γ such
that γ(0) = x and γ(1) = y.

Definition 15 (Geodesic convexity) A function f : M→ R is called geodesically convex if for any x, y ∈
M and a geodesic γ : [0, 1]→M such that γ(0) = x and γ(1) = y, we have

f [γ(t)] ≤ t · f [γ(0)] + (1− t) · f [γ(1)], ∀t ∈ [0, 1]. (25)

The following lemma characterizes the geodesic convexity using the gradient of f .

Lemma 16 If f :M→ R is differentiable, then it is geodesically convex if and only if

f(y) ≥ f(x) +
〈
grad f(x),Exp−1x (y)

〉
x
, ∀x, y ∈M. (26)

Proof For any x, y ∈M, let let γ : [0, 1]→M be the unique geodesic satisfying γ(0) = x and γ(1) = y.
By the definition of exponential map, we have Expx[γ′(0)] = y, i.e., γ′(0) = Exp−1x (y). In addition, (25)
shows that f [γ(t)] is a convex and differentiable function on [0, 1], which implies

f [γ(1)] ≥ f [γ(0)] +
d

dt
f [γ(t)]

∣∣∣∣
t=0

. (27)

By the definition of directional derivative, we have

d

dt
f [γ(t)]

∣∣∣∣
t=0

= ∇γ′(0)f(x) =
〈
grad f(x), γ′(0)

〉
x

=
〈
grad f(x),Exp−1x (y)

〉
x
. (28)

Thus, combining (27) and (28) we obtain (26).
It remains to show (25) assuming (26) holds. For any geodesic γ : [0, 1]→M, we will show that f [γ(t)]

is convex on [0, 1]. To see this, for any 0 ≤ t1 ≤ t2 ≤ 1, let x = γ(t1) and y = γ(t2). Note that we can
reparametrize γ to obtain a new geodesic γ̂ with γ̂(0) = x and γ̂(1) = y by letting

γ̂(t) = γ[t1 + (t2 − t1) · t]
for any t ∈ [0, 1]. Since γ̂ is a geodesic, by the definition of exponential map, we have

Exp−1x (y) = γ̂′(0) = (t2 − t1) · γ′(t1).
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Thus, by (26), we have

f [γ(t2)] = f(y) ≥ f(x) +
〈

grad f(x),Exp−1x (y)
〉
x

= f [γ(t1)] +
〈
grad f [γ(t1)], (t2 − t1) · γ′(t1)

〉
γ(t1)

= f [γ(t1)] + (t2 − t1) ·
d

dt
f [γ(t)]

∣∣∣∣
t=t1

,

which implies that f [γ(t)] is a convex function on [0, 1]. Thus, (25) holds and we conclude the proof of this
lemma.

In the following, we extend the concepts of strong convexity and smoothness to manifold optimizaiton.

Definition 17 (Geodesic strong convexity and smoothness) For any µ > 0, a differentiable function f : M→
R is called geodesically µ-strongly convex if

f(y) ≥ f(x) +
〈
grad f(x),Exp−1x (y)

〉
x

+ µ/2 · d2(x, y),
where d is the distance function induced by the Riemannian metric. Moreover, f is said to be geodesically
L-smooth if grad f is L-Lipschitz continuous. That is, for any x, y ∈M, we have〈

grad f(x)− Γxy [grad f(y)], grad f(x)− Γxy [grad f(y)]
〉
x
≤ L2 · d2(x, y), (29)

where Γxy : TyM→ TxM is the parallel transport from the tangent space at y to that at x.

Note that we apply the parallel transport in (29) to compare grad f(x) and grad f(y), which belong to two
different tangent spaces. In the following, we introduce the notion of gradient dominated function.

Definition 18 (Gradient dominance) Let µ > 0 and f : M → R be a differentiable function with f∗ =
minx∈M f(x). Then f is µ-gradient dominated if

2µ · [f(x)− f∗] ≤
〈
grad f(x), grad f(x)

〉
x
, ∀x ∈M. (30)

In the following lemma, we show that, similar to functions in the Euclidean space, grad f being Lipschitz
smooth implies that f can be upper bounded by the distance function. More importantly, we show that,
gradient dominance is implied by geodesically strong convexity and thus is a weaker condition.

Lemma 19 If f : M → R is geodesically µ-strongly convex, then f is also µ-gradient dominated. In
addition, if f has L-Lipschitz continuous gradient, then, we have

f(y) ≤ f(x) +
〈

grad f(x),Exp−1x (y)
〉
x

+ L/2 · d2(x, y), ∀x, y ∈M. (31)

Proof For the first part, let f be a geodesically µ-strongly convex function. Since (M, g) is a geodesic space,
we have d2(x, y) = 〈Exp−1x (y),Exp−1x (y)〉x. Thus, by direct computation, we have

f(y) ≥ f(x) +
〈
grad f(x),Exp−1x (y)

〉
x

+ µ/2 ·
〈
Exp−1x (y),Exp−1x (y)

〉
x

= f(x) + µ/2 ·
〈

Exp−1x (y) + 1/µ · grad f(x),Exp−1x (y) + 1/µ · grad f(x)
〉
x

− 1/(2µ) ·
〈
grad f(x), grad f(x)

〉
x

≥ f(x)− 1/(2µ) ·
〈
grad f(x), grad f(x)

〉
x
. (32)

Setting y = x∗ such that f(x∗) = f∗ in (32), we establish (30).
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For the second part of Lemma 19, for any x, y ∈ M, let γ be the unique geodesic satisfying γ(0) = x
and γ(1) = y. Then we have Exp−1x (y) = γ′(0). Moreover, for any t ∈ [0, 1], note that γ′(t) ∈ Tγ(t)M. By
the definition of the parallel transport, we have Γxγ(t)γ

′(t) = γ′(0) = Exp−1x (y). Thus, by (28) it holds that

f(y)− f(x)−
〈
grad f(x),Exp−1x (y)

〉
x

= f [γ(1)]− f [γ(0)]− d

dt
f [γ(t)]

∣∣∣∣
t=0

=

∫ 1

0

{〈
grad f [γ(t)], γ′(t)

〉
γ(t)
−
〈
grad f(x), γ′(0)

〉
x

}
dt

=

∫ 1

0

(〈
Γxγ(t)

{
grad f [γ(t)]

}
− grad f(x),Exp−1x (y)

〉
x

)
dt, (33)

where in the last equality we transport the tangent vectors to TxM. Besides, by (29) and Cauchy-Schwarz
inequality, for any z ∈M, we have∣∣〈grad f(x)− Γxz [grad f(z)],Exp−1x (y)

〉
x

∣∣
≤
{〈

grad f(x)− Γxz [grad f(z)], grad f(x)− Γxz [grad f(z)]
〉
x

}1/2 · [〈Exp−1x (y),Exp−1x (y)
〉
x

]1/2
≤ L · d(x, y) · d(z, x). (34)

Finally, combining (33) and (34), we have

f(y)− f(x)−
〈
grad f(x),Exp−1x (y)

〉
x
≤ L ·

∫ 1

0
d(x, y) · d[γ(t), x] dt = L/2 · d2(x, y),

where the last equality follows from the fact that d[γ(t), x] = d[γ(t), γ(0)] = t · d(x, y). Therefore, we
establish (31) and conclude the proof of Lemma 19.

Appendix C. Auxiliary Results

In this section, we collect a bunch of supportive proofs and concrete examples to characterize gradient
descent over Wasserstein spaces by pushing particles in Euclidean spaces and to illustrate the feasibility of
the variational form. First, we show that the Riemannain gradient in distribution spaces can be expressed in
the functional gradient in vector variable spaces.

C.1. Proof of Proposition 5

Proof We start from the definition of directional derivative to introduce the link between Riemannain
gradients and derivatives w.r.t. `2-norm. For any s ∈ TµM and any µ ∈ M with corresponding density
p, suppose γ : [0, 1] → M represents a curve satisfying γ(0) = p and γ′(0) = s. Then, the directional
derivative of F gives ( Definition 13 )

d

dt
F
[
γ(t)

] ∣∣∣∣
t=0

=
〈
gradF (µ), s

〉
µ
. (35)

Furthermore, by the chain rule of functional gradient of F with respect to the `2-Euclidean structure, the
directional derivative at p in the direction of s can be expressed as

d

dt
F
[
γ(t)

] ∣∣∣∣
t=0

=

∫
X

δF

δp
(x) · s(x) dx. (36)
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On the other hand, let u : X → R be the unique solution to elliptic equation

−div
[
p(x) · (∇u)(x)

]
= s(x), ∀x ∈ X , (37)

where div is the divergence operator on X . Thus, plugging (36) into (37) we have

d

dt
F
[
γ(t)

] ∣∣∣∣
t=0

= −
∫
X

δF

δp
(x) · div

[
p(x) · (∇u)(x)

]
dx (38)

= −
∫
X

{
div

[
p(x) · δF

δp
(x) · (∇u)(x)

]
−
〈
∇
(
δF

δp

)
(x), (∇u)(x)

〉
· p(x)

}
dx,

where the second equation follows from integration by parts and the property of the divergence operator that

div(f · v) = 〈∇f, v〉+ f · div(v)
holds for any scalar function f and any vector field v. It is well known that given some regularity condition,
one can show that the first term on the right-hand side of (38) vanishes. For example, when X is a convex
compact region with periodic boundary condition, this is implied by the divergence theorem [56]. Therefore,
again combining (35) and (38) we obtain that

〈
gradF (µ), s

〉
µ

=

∫
X

〈
∇
(
δF

δp

)
(x), (∇u)(x)

〉
· p(x) dx. (39)

Meanwhile we rewrite (37) in gradF (µ), i.e., another tangent vector at µ, with v : X → R as the solution
to elliptic equation

−div
[
p(x) · (∇v)(x)

]
= [gradF (µ)](x), ∀x ∈ X .

Since both gradF (µ) and s lie in the same tangent space TµM, their inner product is characterized by the
Riemannian metric on (M,W2), that is,

〈
gradF (µ), s

〉
µ

=

∫
X

〈
(∇u)(x), (∇v)(x)

〉
· p(x) dx. (40)

Now combining (39) and (40) we have that∫
X

〈
∇
(
δF

δp

)
(x), (∇u)(x)

〉
· p(x) dx =

〈
gradF (p), s

〉
p

=

∫
X

〈
(∇u)(x), (∇v)(x)

〉
· p(x) dx (41)

holds for any s ∈ TµM. Since s is arbitrarily picked, (41) indicates that ∇(δF/δp) = ∇v. To conclude, we
have

gradF (µ) = −div (p∇v) = −div

[
p · ∇

(
δF

δp

)]
, (42)

which implies the desired result of (12).
In what follows, we turn to obtain the explicit form of δF/δp for F defined in (4), while writing F as

a functional F (p) in p. Following the definition of the functional derivative by limits with respect to the
`2-Euclidean structure, for any square-integrable function ϕ : X → R in F , we can write∫

X

δF

δp
(x) · ϕ(x) dx = lim

ε→0

1

ε
·
[
F (p+ ε · ϕ)− F (p)

]
. (43)

For simplicity of notations, we denote by f∗ε the optimal dual solution to the optimization problem

sup
f∈F

{∫
X
f(x) · [p(x) + ε · ϕ(x)] dx− F ∗(f)

}
(44)
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for any ε sufficiently small. Then by setting f to f∗p in the definition of the variational form for F (p+ ε · ϕ),
the difference in (43) satisfies the following lower bound,

F (p+ ε · ϕ)− F (p)

≥
[∫
X
f∗p (x) · [p(x) + ε · ϕ(x)] dx− F ∗(f∗p )

]
−
[∫
X
f∗p (x) · p(x) dx− F ∗(f∗p )

]
= ε ·

∫
X
f∗p (x) · ϕ(x) dx. (45)

Meanwhile, we obtain an upper bound of F (p+ ε · ϕ)− F (p) by using f∗ε for both variational maximization
objectives as follows,

F (p+ ε · ϕ)− F (p)

≤
[∫
X
f∗ε (x) · [p(x) + ε · ϕ(x)] dx− F ∗(f∗ε )

]
−
[∫
X
f∗ε (x) · p(x) dx− F ∗(f∗ε )

]
= ε ·

∫
X
f∗ε (x) · ϕ(x) dx. (46)

Combining (45) and (46) with the sandwich theorem of limits [60], we obtain that F (p+ ε ·ϕ)− F (p) tends
to zero as ε goes to zero. Nevertheless, to derive a characterization for the right hand side of (43), it remains
to quantify some distance measure between f∗p and f∗ε . Fortunately, since F ∗ is strongly convex, we are able
to set a constant γ > 0 such that, for any two measurable functions f1 and f2, we have∫

X

[
∂F ∗

∂f1
(x)− ∂F ∗

∂f2
(x)

]
· [f1(x)− f2(x)] dx ≥ γ ·

∫
X
|f1(x)− f2(x)|2 dx. (47)

Moreover, since f∗p and f∗ε are maximizers of the optimization problems in (4) and (44), respectively, we
observe that ∂F ∗/∂f∗p = p and ∂F ∗/∂f∗ε = p+ ε · φ. Hence, by applying Cauchy-Schwarz inequality to the
left hand side of (47), we have

γ ·
∫
X

(f∗ε − f∗p )2 dx ≤ ε ·
∫
X
ϕ · (f∗ε − f∗p ) dx ≤ ε ·

(∫
X
ϕ2 dx

)1/2

·
[∫
X

(f∗ε − f∗p )2 dx

]
, (48)

which implies that ‖f∗ε − f∗p ‖`2 ≤ ε · ‖ϕ‖`2 and consequently f∗ε converges to f∗p as ε tends to zero. Then,
the sandwich theorem of limits can be applied to the whole right hand side of (43), by plugging (45) and (46)
into (43), to obtain that∫

X

δF

δp
(x) · ϕ(x) dx = lim

ε→0

1

ε
·
[
F (p+ ε · ϕ)− F (p)

]
=

∫
X
f∗p (x) · ϕ(x) dx

holds for any ϕ ∈ F , which implies the result δF/δp = f∗p .
To conclude, by combining (12) for F defined in (4), we obtain the final explicit form of the Riemannian

gradient gradF = −div[p · ∇(f∗p )]. Therefore, the proof of this proposition is completed.

C.2. Proof of Proposition 6

Proof According to the definition of exponential maps, to prove (13), it is sufficient to show the following
results for a curve γ : [0, 1/h)→M defined by setting γ(t) = [ExpX (t · ∇u)]]µ for all t ∈ [0, 1/h), where
u ∈ F and h denotes the Lipschitz constant of∇u.

(i) γ(0) = µ.
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(ii) γ′(0) = s.

(iii) γ(t) is a geodesic onM for t ∈ [0, 1/h).

Please note that γ(0) = id] µ = µ, where id : X → X is the identity mapping. First of all, we will adopt the
following lemma to demonstrate that γ(t) is a geodesic onM.

Lemma 20 Suppose that X denotes Rd or a closed convex subset of Rd with periodic boundary conditions.
Let u : X → X be a twice continuously differentiable function over X with a h-Lipschitz continuous gradient
∇u : X → X . Then, for any µ ∈ M, a curve γ : [0, 1/h) →M defined by γ(t) = [ExpX (t · ∇u)]]µ is a
geodesic onM.

Proof We consider separately the two cases where (i) X is Rd or (ii) X denotes a subset of Rd with periodic
boundary condition. The former case is first considered, where γ(t) can be formulated as (52).

(i) X is Rd. For completeness, we first need to verify that γ according to the definition is indeed a curve
inM, i.e., the pushforward maps admit γ(t) ∈ M for all t ∈ [0, 1/h). To proceed in this direction, we
define a potential function

ϕt(x) = ‖x‖22/2 + t · u(x) (49)
for all t ∈ [0, 1/h). As a result, we have the corresponding vector field∇ϕt = id +t · ∇u exactly induced
by our pushforward mapping in the definition, which indicates that γ(t) = [∇ϕt]]µ. Since ∇u is h-
Lipschitz continuous, we observe that ϕt is strongly convex for all t ∈ [0, 1/h). In addition, ϕt is also twice
continuously differentiable as u possesses continuous second-order derivative, which implies the Jacobian
of ∇ϕt, i.e.,, ∇2ϕt is continuous and positive definite. Therefore, we conclude that ∇ϕt : Rd → Rd is an
invertible mapping. Thus, [∇ϕt]]µ still lies in the distribution family which admits absolute continuity with
respect to the Lebesgue measure and positive density everywhere. To summarize, it has been shown that
γ(t) ∈M for all t ∈ [0, 1/h).

It follows to prove that the curve γ onM is a geodesic. To show this, we apply the Brenier’s Theorem
(see, for example, Theorem 2.12 in [63]) to conclude that there exists a unique optimal transport plan between
µ and γ(t), which can be written as the gradient of a convex function ϕ. Meanwhile, the theorem further
implies that ∇ϕ serves as the unique gradient of some convex function such that γ(t) can be expressed
as [∇ϕ]]p. Combining with the definition that γ(t) = [∇ϕt]]µ for all t ∈ [0, 1/h), we assert that ∇ϕt
represents the optimal transportation plan between p and γ(t). With such useful characterization, we fix any
t ∈ [0, 1/h) below and show that γ is a geodesic when confined to [0, t]. It is observed that

∇ϕt = id +t · ∇u = [1− (t/t)] · id +(t/t) · ∇ϕt,
holds for any t ∈ [0, t], where ϕt is a strongly convex function. Hence, we can write γ(t) in terms of
{[1− (t/t)] · id +(t/t) · ∇ϕt}]µ. To compute the Wasserstein distance of two points on the curve, for any
0 ≤ t1 < t2 ≤ t, we have

W2[γ(t1), γ(t2)]

=

[∫
X

∥∥∥{[1− (t1/t)]x+ (t1/t) · ∇ϕt(x)
}
−
{

[1− (t2/t)]x+ (t2/t) · ∇ϕt(x)
}∥∥∥2 dp(x)

]1/2
= (t2 − t1)/t ·

[∫
Rd

∥∥x−∇ϕt(x)
∥∥2 dp(x)

]1/2
= (t2 − t1)/t ·W2[µ, γ(t)], (50)
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which implies that {γ(t)}t∈[0,t] is a reparametrized geodesic. Since t is arbitrarily chosen within [0, 1/h), it
then holds that γ(t) is a geodesic for 0 ≤ t < 1/h.

(ii) X denotes a subset of Rd with periodic boundary condition. We are left to prove the lemma
for the case where X is a closed convex subset of Rd with periodic boundary condition. In this case, any
x ∈ X can be identified with an equivalence class of Rd. Moreover, each probability measure µ ∈ P(X )
is unique identified with a periodic measure µ̄ ∈ P(Rd) such that µ̄ coincides with µ on X . We say µ̄ is
the periodic extension of µ. Since µ is absolutely continuous with respect to the Lebesgue measure and
admits positive density, so is µ̄. Moreover, u : X → R can also be extended as a periodic function on Rd, and
ϕt(x) = ‖x‖22/2 + t · u(x) is a strongly convex, twice continuously differentiable, and periodic function on
Rd. Then it can be shown that (id +t · ∇u)]µ̄ is the periodic extension of [ExpX (t · ∇u)]]µ [7]. Thus, these
two measures coincide on X , i.e.,

[ExpX (t · ∇u)]]µ = (id +t · ∇u)]µ̄
∣∣
X , (51)

where ·|X denotes the restriction to X . Note that we have shown that [∇φt]]µ̄ is absolutely continuous with
respect to the Lebesgue measure and has positive density. Thus, by restricting [∇φt]]µ̄ to X , (51) implies
that γ(t) ∈M for all t ∈ [0, 1/h), i.e., γ is a curve onM.

Furthermore, to show that γ is a geodesic, we utilize the generalization of Brenier’s theorem to probability
distributions over a Riemannian manifold [25]. For any t ∈ [0, 1/h), since γ(t) ∈M, there exists a unique
optimal transportation plan Υ: X → X between µ and γ(t) such that γ(t) = Υ]µ. Moreover, Υ takes the
form of Υ(x) = Expx[−∇ψ(x)] for some ψ : X → R such that ‖x‖22/2−ψ(x) is convex. Hence, due to the
uniqueness and the fact that ∇u is h-Lipschitz, ExpX (−t · ∇u) is the optimal transportation plan between µ
and γ(t).

Similarly in what follows we fix any t ∈ [0, 1/H) and show that γ is a geodesic for t ∈ [0, t]. For any
0 ≤ t1 < t2 ≤ t, following the derivations in (50) and combining (51), we have

W2[γ(t1), γ(t2)] = W2

{
[ExpX (t1 · ∇u)]]µ, [ExpX (t2 · ∇u)]]µ

}
= W2

{
(id +t1 · ∇u)]µ̄

∣∣
X , (id +t2 · ∇u)]µ̄

∣∣
X

}
= (t2 − t1)/t ·W2

{
µ̄
∣∣
X , (id +t2 · ∇u)]µ̄

∣∣
X

}
= (t2 − t1)/t ·W2[µ, γ(t)],

where the second and the last equality follows from (51). Thus, we obtain that {γ(t)}t∈[0,t] is a geodesic up
to reparametrization, which concludes the proof of Lemma 20.

With the required Lemma in place, to finish the proof of Proposition 6, it remains to show that γ′(0) = s.
Similar to the proof of the above lemma, we distinguish the two cases where X is Rd and X is a closed
convex subset of Rd with periodic boundary condition. In the former case,

[ExpX (t · ∇u)]]µ = (id +t · ∇u)]µ, ∀t ∈ [0, 1/h). (52)
To simplify the notation, we denote Tt = id +t · ∇u, which is invertible for t ∈ [0, 1/h). By the definition of
pushforward measures, we have

γ(t)(x) =
[
(Tt)]µ

]
(x) = µ

[
T−1t (x)

]
·
∣∣∣∣ d

dx

[
T−1t (x)

]∣∣∣∣,
where the second equality follows from the change-of-variable formula and | d

dx [T−1t (x)]| is the determinant
of the Jacobian. Moreover, when t is sufficiently small, for any x ∈ X , Taylor expansion in t yields that
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T−1t (x) = x− t · (∇u)(x) + o(t), which further implies that

γ(t)(x) = µ
[
x− t · (∇u)(x) + o(t)

]
·
∣∣Id − t · (∇2u)(x) + o(t)

∣∣
=
[
µ(x)− t ·

〈
(∇u)(x), (∇µ)(x)

〉
+ o(t)

]
·
{

1− t · Tr[(∇2u)(x)] + o(t)
}

= µ(x)− t ·
〈
(∇u)(x), (∇µ)(x)

〉
− t · Tr[(∇2u)(x)] · µ(x) + o(t). (53)

where in the second equality we apply Taylor expansion to µ[x− t · (∇u)(x) + o(t)]. Moreover, since〈
(∇u)(x), (∇p)(x)

〉
+ Trace[(∇2u)(x)] · p(x) = div

[
p(x) · (∇u)(x)

]
,

by (53) we obtain that

γ(t)(x) = µ(x)− t · div
[
p(x) · (∇u)(x)

]
+ o(t),

which implies that γ′(0) = −div(p · ∇u) = s.
It remains to show γ′(0) = −div(p · ∇u) = s when X is a closed compact subset of Rd with periodic

boundary condition. As shown in the proof of Lemma 20, p can be periodically extended to a measure µ̄ on Rn
and that such an extension is unique. Furthermore, the solution u to the elliptic equation −div(−p · ∇u) = s
can also also be viewed as a periodic function on Rd. Then it can be shown that (id +t ·∇u)]µ̄ is the periodic
extension of [ExpX (t · ∇u)]]µ and that (51) holds. Note that we have shown that γ̃(t) = (id +t · ∇u)]µ̄
satisfies that γ̃(0) = µ̄ and γ̃′(0) = s. Therefore, restricting to X , we conclude that γ′(t) = s, which
completes the proof of the proposition.

C.3. Examples for functionals with the variational form

The following example shows that if the entropy functional is f-divergence, the conjugate function F ∗ will be
strongly smooth when the link function ψ is strongly convex, with respect to `2-norm.

Example 2 Let p, q be two density function over a compact domain X , then the f -divergence

Iψ(p, q) =

∫
X
p(x) · ψ

(
p(x)

q(x)

)
dx (54)

with a strongly convex and smooth function ψ admits the following variational forms (as functionals of p and
q respectively),

Iψ(p, q) = Iψ,q(p) = sup
f∈Fp

{∫
X
f(x)p(x) dx− F ∗q (f)

}
, (55)

Iψ(p, q) = Iψ,p(q) = sup
f∈Fq

{∫
X
f(x)q(x) dx− F ∗p (f)

}
, (56)

where

F ∗q (f) =

∫
X
−(ψ∗)−1(−f(x))q(x) dx (57)

and

F ∗p (f) =

∫
ψ∗(f(x))p(x) dx (58)

are strongly convex and smooth functionals, Fp and Fq are the same set of all measurable functions on X .
We denote by γ its strong convexity parameter and by L the smoothness parameter.
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Proof Following [46], Fenchel convex duality [55] ensures that we have Iψ(p, q) in the form of the conjugate
of ψ as:

Iψ(p, q) = sup
g

{∫
g(x)q(x) dx−

∫
ψ∗(g(x))p(x) dx

}
, (59)

where ψ∗ is a strongly convex and smooth function since the convexity and smoothness of ψ, and the
superemum is taken over all measurable function g : X → R. Hence by replacing g with f formally we
obtain (56).

Moreover, by letting f(x) = −ψ∗(g(x)), we have

Iψ(p, q) = sup
f

{∫
f(x)p(x) dx−

∫
−(ψ∗)−1(−f(x))q(x) dx

}
. (60)

By setting F ∗(f) =
∫
−(ψ∗)−1(−f(x))q(x) dx, which can be verified to be strongly convex and smooth

w.r.t. function f , we show the desired result in (55).

Please note that by convex duality and optimality condition in Lemma 1 of [46], the function class Fp (Fq)
over which the superemum is taken can be restricted to a smaller one F̃ as long as F̃ contains the differential
∂Iψ(p, q)/∂p (∂Iψ(p, q)/∂q), In this sense, Assumption 7 for a smaller function class F̃ is feasible since
it is natural for the smooth (with continuous first-order gradient and Hessian) function ∂Iψ(p, q)/∂q over
a compact domain X to possess a closed, bounded and equicontinuous gradient mapping by Weierstrass
theorem [11].

Appendix D. Proof of Convergence of Variational Form Maximization

We first illustrate our reverse Poincaré inequality with more details. To this end, we restate Lemma 21 and
prove with a compact domain X as follows.

D.1. Approximation function class and reverse Poincaré inequality

Recall that F̃ is the function class of NNs, defined in (15).

Lemma 21 We consider a function class F̃ such that ∇F̃ is closed, bounded, and equicontinuous. More
precisely,

(a) “∇F̃ is bounded” means that there exists a positive constant M <∞ such that ‖∇f(x)‖ ≤M for
each x ∈ X and each f ∈ F̃ .

(b) “∇F̃ is equicontinuous” implies that for every ε > 0 there exists δ > 0 (which depends only on ε)
such that for any x, y ∈ X with the metric d(·, ·), if d(x, y) < δ, then it follows that

‖∇f(x)−∇f(y)‖ < ε, ∀f ∈ F̃ . (61)

Then we have for every p ≥ 1, there exists a constant K̃ such that∫
X
‖∇f(x)‖pdµ ≤ K̃

∫
X
|f(x)|pdµ, (62)

for any f ∈ F̃ , where X is a compact subset of a metric space, µ is a nonnegative measure over X .
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Proof of Lemma 21
Proof With the notations of Lpµ(X ) norm, (62) can be rewritten as

‖∇f‖Lpµ(X ) ≤ K̃‖f‖Lpµ(X ), (63)
On the other hand, Poincaré inequality (See, e.g., Chapter 5 of [18]) claims that there exists some constant
K ′ such that

‖f − 1

µ(X )

∫
X
fdµ‖Lpµ(X ) ≤ K ′‖∇f‖Lpµ(X ), (64)

We define an equivalence relation ∼ on Lpµ(X ) such that for any f, g ∈ Lpµ(X ), we have

f ∼ g if and only if f − g = C (65)
for some constant C. Then we denote by L̃pµ(X ) = Lpµ(X )/ ∼ the new function space consisting of
equivalence classes f̃ ’s of locally summable functions f : X → R. Consequently, we define the norm
in L̃pµ(X ) as ‖f̃‖

L̃pµ(X )
= ‖f‖Lpµ(X ), and a new gradient operator ∇̃ : L̃pµ(X ) → L̃pµ(X ) such that for any

f̃ ∈ L̃pµ(X ), ∇̃ acts as ∇̃f̃ = ∇f . Moreover, the inverse of ∇̃ exists, denoted by ∇̃−1.
Therefore, (64) implies that the inverse gradient operator ∇̃−1 is continuous. Our goal is reduced to

showing that the gradient operator is continuous, i.e., the preimage of open sets in L̃pµ(X ) under such mapping
are also open in L̃pµ(X ).

According to (62) and the properties of continuous mappings between topological spaces (See, e.g.,
Appendix of [35]), for every compact subset X ⊆ L̃pµ(X ), the image (preimage of ∇̃) under ∇̃−1, i.e.,
∇̃−1(X), is compact in L̃pµ(X ), and closed in L̃pµ(X ) since L̃pµ(X ) is a Hausdorff space. On the other hand,
by Arzela-Ascoli Theorem the set L̃pµ(X )∩∇F̃ is compact. Then for every closed subset Y ⊆ L̃pµ(X )∩∇F̃ ,
we have Y is also a compact subset, of which the image under ∇̃−1 is closed in L̃pµ(X ). According to the
definition the continuity of ∇̃ is shown, hence (62) is proved.

Remark 22 Specifically, we remark that the conditions above which enable the gradient bound (Lemma 21)
to hold keep consistent with all the other restrictions on function class F̃ , and can be easily realized by a
general class of neural networks.

First, the small function class F̃ is designed to solve VFM defined in (4) numerically efficiently and
meanwhile to provide a decent characterization of Riemannian gradient estimation error bounds. We
also observe that to achieve an equivalence between pushing particles and the exponential map, functions
in this smaller class are also required to admit uniformly h-Lipschitz continuous gradients. Fortunately,
the equicontinuity of ∇F̃ can be implied by h-Lipschitzness of ∇f ∈ ∇F̃ . In other words, the overall
assumptions of function class F̃ for our whole analysis are concluded as below.

Assumption 23 (Overall assumptions of approximation function class) The class of functions F̃ over a
compact domain X satisfies the condition that∇F̃ is closed, bounded, and for each f ∈ F̃ ,∇f is h-Lipschitz
continuous with h > 0.

Then we check that our neural network parametrized function class is indeed qualified for such F̃ . Recall
that without loss of generality, we parametrize a function f : X → R, i.e., the decision variable for VFM, by
the class of two-layer neural networks below, which is denoted as NN(β;w), with each member function as

fβ(x) =
1√
w

w∑
i=1

bi · σ([β]>i x), (66)
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where x ∈ X denotes the input data point, w gives the width of the neural network, bi ∈ {−1, 1} for i ∈ [w]
denotes the output weights, σ(·) is a smooth activation function, and β = ([β]>1 , . . . , [β]>w)> ∈ Rwd with
[β]i ∈ Rd (i ∈ [w]) are the overall input weights. For initialization, we consider the random strategy

bi
i.i.d.∼ Unif({−1, 1}), [β(0)]i

i.i.d.∼ N(0, Id/(wd)), for all i ∈ [w]. (67)
Note that for technical analysis reason, we restrict the input weights β to an bounded `2-ball centered
at the initializer β(0) by an additional projection step ΠB0(rf )(β̄) = argminβ∈B0(rf ){‖β − β̄‖2}, where
B0(rf ) = {β : ‖β − β(0)‖2 ≤ rf}. During the training process, we only backpropagate w.r.t. β, while
keeping bi (i ∈ [w]) intact at the initialization which accounts for the feasibility to omit the dependency
on bi (i ∈ [w]) in NN(β;w) and fβ(x) in what follows. Therefore, we can directly observe that each
fβ ∈ NN(β;w) is closed, and the `2-norm of the gradient∇βfβ is always bounded over a compact domain
X . Furthermore, we require the Hessian for fβ w.r.t. parameter β ∈ Rwd to possess a bounded norm, which
is easy to check for neural networks. It turns out that the qualified function class encompasses a wide range
of normal neural networks without “sharp points” or “high frequency oscillation” as functions.

D.2. Statistical error of approximating the solution of VFM

In what follows, we proceed to derive the gradient error bound. According to (62) of Lemma 21, we turn to
bound the approximation error of a two-layer neural network for the following variational form maximization
(VFM) problem defined in (14),

max
β∈Rwd

{ 1

N

N∑
i=1

fβ(xi)− F ∗(fβ)
}
. (68)

Note that for notational simplicity and applicability of results to both players, in this section we omit
the references to µ and ν. To emphasize we fixed the bi’s throughout the training, we write fβ(x) while
omitting the dependency on bi’s. We first show that the overparameterization of the NN, fβ parametrized by
β, guarantees that it bahaves as its local linearization at the random initialization β(0). To this end, we define

f0β(x) =
1√
w

w∑
i=1

bi · σ′([β(0)]>i x) · [β]>i x, (69)

whereby the linear structure of f0β(x) indicates

f0β(x) = 〈∇βf0β(x), β〉. (70)
We write β(s) as the value of the parameter β at the s-th iteration of VFM (Algorithm 3). For the simplicity
of notations, we denote by

Gβ(s)(x) = −∇βfβ(s)(x) +∇βF ∗(fβ(s)) (71)
the stochastic gradient vector. Similarly, we also define

G0
β(s)(x) = −∇βf0β(s)(x) +∇βF ∗(f0β(s)). (72)

Furthermore, let µ be the probability measure corresponding to input data distribution for the NNs. We
denote by

Ḡβ(s) = Eµ
[
Gβ(s)(x)

]
=

∫
X
Gβ(s)(x)dµ(x) (73)

the population mean of the stochastic gradient vector at the s-th iteration, and by Ḡ0
β(s) its localization version.

Without loss of generality, we assume ‖x‖ ≤ 1 for the data.
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We first present the following assumption for bounding the variance of the stochastic gradient vector
Gβ(s)(x), which casts the analysis of global convergence into tracking the mean of the gradient vector. We
denote by Einit[·] the expectation over the random initialization for neural network parameter β, and Eµ[·] the
expectation over the input x ∈ X conditioned on the random initialization.

Assumption 24 (Variance of the Stochastic Update Vector) For any s ≤ t, there exists a constant C2
G =

O(r2f ) independent of s such that

Einit‖Gβ(s) − Ḡβ(s)‖2L2
µ(X ) ≤ C

2
G. (74)

The following theorem provides the final characterization of the gradient error. Recall that in Algorithm 3,
t is the number of iterations as well as the sample size denoted by N for either Nµ or Nν , w is the width of
neural networks, and rf is the projection radius.

Furthermore, to formalize the smoothness of the activation function, we have the following assumption.

Assumption 25 (Smooth Activation Function) There exits an absolute constant h > 0 such that for any
x1, x2 ∈ Rd we have

|σ′(x1)− σ′(x2)| ≤ h‖x1 − x2‖. (75)
For technical consideration, we also assume σ(0) = 0.

The following lemma quantifies the variance by the introduced function f0β and the generic function fβ in
terms of rf and w.

Lemma 26 Under Assumption 24 and 25, given β ∈ B0(rf ), we have

Einit‖fβ − f0β‖2L2
µ(X ) = O(w−1r4f ). (76)

Proof By the definition of fβ and f0β , we have∣∣fβ(x)− f0β(x)
∣∣

≤ 1√
w

∣∣∣∣ w∑
i=1

(
σ([β]>i x)− σ′([β(0)]>i x)[β]>i x

)∣∣∣∣
≤ 1√

w

w∑
i=1

∣∣∣∣σ([β]>i x)− σ′([β(0)]>i x)[β]>i x

∣∣∣∣
≤ 1√

w

w∑
i=1

∣∣∣∣σ([β(0)]>i x)− σ′([β(0)]>i x)[β(0)]>i x

∣∣∣∣
+

1√
w

w∑
i=1

∣∣∣∣(∫ 1

0

(
σ′
(
(1− η)[β(0)]>i x+ η[β]>i x

))
· dη
)
· x>

(
[β]i − [β(0)]i

)∣∣∣∣, (77)

where the last inequality holds by the Taylor expansion, the second last inequality follows from the triangle
inequality, and the second equality holds as |bi| = 1. The first term on the right-hand side of (77) is bounded
by

1√
w

w∑
i=1

∣∣∣∣σ([β(0)]>i x)− σ′([β(0)]>i x)[β(0)]>i x

∣∣∣∣ ≤ O( 1√
w
Einit

w∑
i=1

‖[β(0)]i‖2
)

= O
(

1√
w

)
, (78)

30



where we use the Taylor expansion of σ at 0 and the fact that σ(0) = 0.
By squaring both sides of (77) and applying Assumption 25 to the right-hand side of (77), we obtain

Einit,µ
∣∣fβ(x)− f0β(x)

∣∣2 = O
(

1

w

)
+O

(( h√
w
Einit

w∑
i=1

‖[β]i − [β(0)]i‖2
)2)

= O
(( h√

w

w∑
i=1

‖[β]i − [β(0)]i‖2
)2)

= O
(
h

w
‖β − β(0)‖4

)
,

= O
(
r4f
w

)
. (79)

Hence, it follows that

Einit‖fβ − f0β‖2L2
µ(X ) = O(w−1r4f ), (80)

which concludes the proof.

The following lemma characterizes the difference between the expected gradients of the the original
neural network approximator and the locally linearized one.

Lemma 27 For any 0 ≤ s ≤ t, we have the following linear approximation error at each iteration:

Einit‖Ḡβ(s) − Ḡ0
β(s)‖

2
2 = O(w−1r4f + w−1r2f ). (81)

Proof By the definition of Ḡβ(s) and Ḡ0
β(s), we have

Einit‖Ḡβ(s) − Ḡ0
β(s)‖

2
2

≤ Einit,µ‖ − ∇βfβ(s)(x) +∇βF ∗(fβ(s)) +∇βf0β(s)(x)−∇βF ∗(f0β(s))|
2
2

≤ 2Einit,µ‖∇βfβ(s)(x)−∇βf0β(s)(x)‖22︸ ︷︷ ︸
(i)

+2Einit,µ‖∇βF ∗(fβ(s))−∇βF ∗(f0β(s))‖
2
2︸ ︷︷ ︸

(ii)

. (82)

In what follows, we upper bound term (i) and (ii) respectively.
Upper Bounding (i): Recall that

∇βfβ(x) = 1/
√
w ·
(
b1 · σ′([β]>1 x) · x>, . . . , bw · σ′([β]>wx) · x>

)>
,

and

∇βf0β(x) = 1/
√
w ·
(
b1 · σ′([β(0)]>1 x) · x>, . . . , bw · σ′([β(0)]>wx) · x>

)>
.

We have

‖∇βfβ(s)(x)−∇βf0β(s)(x)‖22 =
1

w

w∑
i=1

(
σ′([β]>i x)− σ′([β(0)]>i x)

)2 · ‖x‖2
≤ h2

w

w∑
i=1

‖[β]i − [β(0)]i‖2

=
h2r2f
w

. (83)
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Here the last inequality follows from the condition ‖x‖2 ≤ 1, which is also used to derive (77). By taking
expectation on (83) we obtain

Einit,µ‖∇βfβ(s)(x)−∇βf0β(s)(x)‖22 = O(w−1r2f ). (84)
Therefore, we have bounded term (i) in (82).
Upper Bounding (ii): By the L-smoothness of the dual functional F ∗, it follows that

Einit,µ‖∇βF ∗(fβ(s))−∇βF ∗(f0β(s))‖
2
2

≤ Einit,µ‖fβ(x)− f0β(x)‖22, (85)
where the right-hand side of (85) is exactly the left-hand side of (76). Hence by Lemma 26, the term (ii) is
bounded by O(w−1r4f ). Combining (i) and (ii) concludes the proof for Lemma 27.

In what follows, with the explicit linearized learning target f0β∗ , we are able to characterize the global
convergence of Algorithm 3 by the difference between output estimated function and f0β∗ .

Lemma 28 Suppose that t > 64 iterations of Algorithm 1 are run, and the stepsize is set to be η = t−1/2.
Then, under Assumption 24 and 25 we have

Einit‖fβ̂ − f
0
β∗‖2L2

µ(X ) = O(r2f t
−1/2 + w−1/2r3f + w−1r4f ), (86)

where β∗ is the approximate stationary point such that

β∗ = ΠB0(rf )(β
∗ − ηḠ0

β∗), (87)

and β̂ = 1/t ·
∑t−1

s=0 β(s).

Proof First we bound the progress of the one-step update. By the convexity of B0(rf ) and the approximate
stationary condition (87), for each s < t we have

Eµ[‖β(s+ 1)− β∗‖22|β(s)]

= Eµ
[∥∥∥ΠB0(rf )

(
β(s)− ηGβ(s)

)
−ΠB0(rf )

(
β∗ − ηḠ0

β∗
)∥∥∥2

2
|β(s)

]
≤ Eµ

[∥∥(β(s)− β∗)− η
(
Gβ(s) − Ḡ0

β∗
)∥∥2

2
|β(s)

]
= ‖β(s)− β∗‖22 − 2η〈β(s)− β∗, Ḡβ(s) − Ḡ0

β∗〉+ η2‖Gβ(s) − Ḡ0
β∗‖2L2

µ(X ). (88)
Then our target is reduced to upper bound the last two terms above. For the inner product term, by applying
Hölder’s inequality we have

〈β(s)− β∗, Ḡβ(s) − Ḡ0
β∗〉 = 〈β(s)− β∗, Ḡβ(s) − Ḡ0

β(s)〉+ 〈β(s)− β∗, Ḡsβ(s) − Ḡ
0
β∗〉

≥ −‖Ḡβ(s) − Ḡ0
β(s)‖2 · ‖β(s)− β∗‖2 + 〈β(s)− β∗, Ḡ0

β(s) − Ḡ
0
β∗〉

(a)

≥ −rf‖Ḡβ(s) − Ḡ0
β(s)‖2 + 〈β(s)− β∗, Ḡ0

β(s) − Ḡ
0
β∗〉, (89)

where (a) uses the fact that ‖β(s)− β∗‖2 ≤ rf . For the rest inner product term in (89), by plugging in the
definition of stochastic gradient vectors we obtain

〈β(s)− β∗, Ḡ0
β(s) − Ḡ

0
β∗〉 = Eµ

〈
β(s)− β∗,∇βf0β∗(x)−∇βf0β(s)(x)

〉
+ Eµ

〈
β(s)− β∗,∇βF ∗

(
f0β(s)

)
−∇βF ∗

(
f0β∗
)〉

= Eµ
〈
β(s)− β∗,∇βF ∗

(
f0β(s)

)
−∇βF ∗

(
f0β∗
)〉
, (90)
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where we use the fact that∇βf0β(x) is independent of the value of β. We proceed to derive the lower bound
of (??) by the explicit functional gradient form:

Eµ
〈
∇βF

(
f0β(s)

)
−∇βF

(
f0β∗
)
, β(s)− β∗

〉
= Eµ

〈(
δF ∗

δf

(
f0β(s)

)
− δF ∗

δf

(
f0β∗
))
· ∇βf0β , β(s)− β∗

〉
= Eµ

〈
δF ∗

δf

(
f0β(s)

)
− δF ∗

δf

(
f0β∗
)
, f0β(s) − f

0
β∗

〉
(b)

≥ γ‖f0β(s) − f
0
β∗‖2L2

µ(X ), (91)
where (b) is due to the γ-strong convexity of functional F ∗.

On the other hand, the third norm term in (88) is estimated using the Cauchy-Schwarz inequality as
follows,

‖Gβ(s) − Ḡ0
β∗‖2L2

µ(X ) ≤ 2‖Gβ(s) − Ḡβ(s)‖2L2
µ(X ) + 2‖Ḡβ(s) − Ḡ0

β∗‖2L2
µ(X )

≤ 2Einit‖Gβ(s) − Ḡβ(s)‖2L2
µ(X ) + 4‖Ḡβ(s) − Ḡ0

β(s)‖
2
2 + 4‖Ḡ0

β(s) − Ḡ
0
β∗‖22 (92)

where the first term herein is upper bounded by the variance of Gβ(s) in (74) of Assumption 24, and the
second one is controlled by lemma 26. Thus it suffices to upper bound the last term, i.e., the squared difference
between the expected gradient of time-step s and the optimal one of linearization approximation. We have

‖Ḡ0
β(s) − Ḡ

0
β∗‖22 = ‖∇βEf0β∗ −∇βEf0β(s) +∇βF ∗(f0β(s))−∇βF

∗(f0β∗)‖22
≤ 2‖∇βEf0β∗ −∇βEf0β(s)‖

2
2 + 2‖∇βF ∗(f0β(s))−∇βF

∗(f0β∗)‖22
≤ 2‖f0β∗ − f0β(s)‖

2
L2
µ(X ) + 2L‖f0β∗ − f0β(s)‖

2
L2
µ(X ) (93)

= 2(1 + L)‖f0β∗ − f0β(s)‖
2
L2
µ(X ), (94)

where (93) follows from the L-smoothness of the entropy dual functional by Example 2. To conclude, we
have

Eµ[‖β(s+ 1)− β∗‖22 | β(s)]

≤ ‖β(s)− β∗‖22 + 2ηrf‖Ḡβ(s) − Ḡ0
β(s)‖2

+ 2η2Einit‖Gβ(s) − Ḡβ(s)‖2L2
µ(X ) + 4η2‖Ḡβ(s) − Ḡ0

β(s)‖
2
2

+ 2η(4η(1 + L)− γ)‖f0β(s) − f
0
β∗‖2L2

µ(X ). (95)
By rearranging (95), we have

‖fβ(s) − f0β∗‖2L2
µ(X ) ≤ 2‖fβ(s) − f0β(s)‖

2
L2
µ(X ) + 2‖f0β(s) − f

0
β∗‖2L2

µ(X )

≤
(
γη − 4η2(L+ 1)

)−1(‖β(s)− β∗‖22 − Eµ[‖β(s+ 1)− β∗‖22 | β(s)]

+ 2C2
Gη

2 +O
(
w−1/2r3f + w−1r4f

))
, (96)

where the second inequality follows from lemma 26 and 27, as well as the fact η < γ/8(L + 1) resulted
from t > 64(L + 1)2/γ2 and η = t−1/2. We proceed to take total expectation on both sides of (96) and
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telescoping for s+ 1 ∈ [t] (t ≥ 1) to obtain

Einit‖fβ̂ − f
0
β∗‖2L2

µ(X ) = Einit,µ
[(
f
β̂
(x)− f0β∗(x)

)2]
≤ 1

t

t−1∑
s=0

Einit,µ
[(
fβ(s)(x)− f0β∗(x)

)2]
≤ t−1 ·

(
γη − 4η2(L+ 1)

)−1 · (Einit
[(
‖β(0)− β∗‖22

]
+ 2tC2

Gη
2

+O
(
w−1/2r3f + w−1r4f

))
. (97)

By plugging the conditions on t and η, we have

t−1 ·
(
γη − 4η2(L+ 1)

)−1
= t−1/2 · 1

γ − 4η(L+ 1)

η<γ/8(L+1)

≤ t−1/2 · 1

γ − γ/2

=
2

γ
√
t
, (98)

Then, we obtain the following bound,

Einit‖fβ̂ − f
0
β∗‖2L2

µ(X )

≤ 2

γ
√
t

(
Einit[‖β(0)− β∗‖22] + 2C2

G

)
+O(r

5/2
f w−1/4 + r3fw

−1/2) (99)

≤
2(r2f + 2C2

G)

γ
√
t

+O(r
5/2
f w−1/4 + r3fw

−1/2)

= O
(
r2f t
−1/2 + w−1/2r3f + w−1r4f

)
. (100)

Hence we complete the proof.

Now it is straightforward to prove the main theorem for VFM with neural network parametrized function
class as follows.

D.3. Gradient Error of Neural Networks

Theorem 29 Under Assumption 7, 24 and 25, within the k-th iteration of Algorithm 2, the gradient error ε̄k
defined in (20) satisfies

ε̄k = ε̄k(N) = O
(
ε̄(N)

)
= O

(
K̃

(
r2f

N1/2
+

r3f

w1/2
+
r4f
w

))
. (101)

We remark that the order of the gradient error is independent of iteration k and can be decomposed into the
generalization error of O(r2f/N

1/2) for SGD over the neural tangent kernel and the error of O(r3f/w
1/2),

O(r4f/w) for approximating the neural network by a linear function. In particular, the overall gradient errors
decay to zero at the rate of 1/

√
N with a sufficiently large width w of the neural network.
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Proof By Jensen’s inequality with respect to squared L2
µ-norm, we have

Einit‖fβ̂ − fβ∗‖
2
L2
µ(X )

≤ 2Einit‖fβ̂ − f
0
β∗‖2L2

µ(X ) + 2Einit‖f0β∗ − fβ∗‖2L2
µ(X ). (102)

On one hand, by Lemma 28 the first term above can be bounded with O(r2f t
−1/2 + w−1/2r3f + w−1r4f ). On

the other hand, the second term in (102) is bounded by O(r4fw
−1) through setting β = β∗ in Lemma 26. To

conclude, the total bound for (102) turns out to be O(r2f t
−1/2 + w−1/2r3f + w−1r4f ), which completes the

proof for the first part of the theorem.
To verify (101), we invoke Lemma 21 by setting f to f̃∗k − f̂∗k with all possible iteration k for both players

and p to 2, combining with (20) to obtain for any k ∈ N, we have

ε̄k = EX0

∫
X

∥∥∇f̃∗k (x)−∇f̂∗k (x)
∥∥2
2

dρ̃k

(62)
≤ K̃EX0

∫
X

∣∣f̃∗k (x)− f̂∗k (x)
∣∣2
2

dρ̃k

= K̃EX0Einit‖fβ̂ − fβ∗‖
2
L2
ρ̃k

(X )

= O

(
K̃

(
r2f

N1/2
+

r3f

w1/2
+
r4f
w

))
, (103)

where the last equality follows from (102) and the measure ρ̃k accounts for either distribution iterates at some
iteration k, µ̃k or ν̃k in the paper. Therefore, we conclude the whole proof of the theorem for the statistical
errors of VFM steps.

Appendix E. Proof of Convergence for Distributional Game Optimization

In this section, we layout the complete proof needed to reach the convergence rate of particle-based infinite-
dimensional game optimization, for which some intermediate lemmas are also listed below. We define
ν∗(µ) ∈ IF (µ) , argmaxν F (µ, ν) for simplicity. Also note that according to the definition in Algorithm 1,
we have νk+1 = νKν (µk) as the last iterate of the inner loop for the k-th outer loop. Moreover, in the formal
description of VTIG in Algorithm 1, we adopt sets of discrete particles to represent the underlying distribution
iterates being updated, where Xν

l (µ̃k) denotes the set of particles for player ν at the l-th iteration given µ̃k as
the current distribution iterate for player µ. Similarly for the formal proof, we will use the distrubtion notation
νl(µ̃k) indicating the distribution iterate derived from constructed transportation maps {Tk,l}k∈[Kµ],l∈[Kν ]
given µ̃k.

E.1. Proof of Proposition 30

Considering the interaction of the two players, our algorithm runs multiple gradient ascent steps in the inner
loop to estimate the inner maximization value functional defined as G(µ) , maxν∈M(Xν) F (µ, ν), of which
the Riemannian gradient w.r.t. µ at the optimum ν∗(µ) is adopted to estimate the Riemannian gradient of
G(µ). Inspired by this, we rewrite (3) as minµ∈M(Xµ)G(µ) and observe that the overall VTIG behaves
as a gradient descent-like algorithm over the inner maximization value functional G. Hence we can make
use of nonconvex optimization techniques to analyze the overall convergence properties of such zero-sum
two-player games. For simplicity we define Hµ(ν) , −F (µ, ν). The following proposition identifies that
M(X ) is well defined.
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Proposition 30 The manifoldM(X ) is compact, that is, there exists R > 0 such that for any µ1, µ2 ∈
M(X ) we have W2(µ1, µ2) ≤ 2R.

Proof Since X is defined as a compact domain, according to the topological properties in Theorem 6.16
of [64], the manifoldM(X ) is also compact. Also, as the underlying variable space X is bounded, the
Wasserstein distance defined overM(X ) over X is bounded, by setting 2R = supµ1,µ2∈M(Xµ)W2(µ1, µ2)
we arrive at the conclusion.

Before proceeding, we first state the following additional definitions and lemmas.

Definition 31 We say that a function G :M(X )→ R satisfies the Quadratic Grouth (QG) condition w.r.t.
W2 metric with constant γ > 0 if

G(µ)−G(µ∗) ≥ γ

2
W 2

2 (µ, µ∗), ∀µ ∈M(X ), (104)
where µ∗ is the minimizer of the function. Note that if function G is PL with constant ξ, then G satisfies the
QG condition with constant γ = 4ξ.

The next lemma demonstrates the stability of ν∗(µ) controlled by the variation of µ.

Lemma 32 Given that IF (µ) is closed, then for any µ1, µ2 and ν1 ∈ IF (µ1), there exists a ν2 ∈ IF (µ2)
such that

W2(ν1, ν2) ≤
L0

2ξ
W2(µ1, µ2). (105)

Proof By the Lipchitzness condition 2 and the PL condition of F , we have

G(µ2)− F (µ2, ν1) ≤
L2
0

2ξ
W 2

2 (µ1, µ2). (106)

Moreover, by the QG property of Hµ(ν) it follows that there exists a ν2 ∈ IF (µ2) such that

W2(ν1, ν2) ≤
L0

2ξ
W2(µ1, µ2), (107)

which concludes the result.

At the two-player game optimization scale (VFM not involved), Considering the interaction of the two
players, our algorithm runs multiple gradient ascent steps in the inner loop to estimate the inner maximization
value functional defined as G(µ) , maxν∈M(Xν) F (µ, ν), of which the Riemannian gradient w.r.t. µ at the
optimum ν∗(µ) is adopted to estimate the Riemannian gradient of G(µ). Inspired by this, we rewrite (3) as
minµ∈M(Xµ)G(µ) and observe that the overall VTIG behaves as a gradient descent-like algorithm over the
inner maximization value functional G. Hence we can make use of nonconvex optimization techniques to
analyze the overall convergence properties of such min-max two-player games. For simplicity we define
Hµ(ν) , −F (µ, ν). The following proposition identifies thatM(X ) is well defined.

It is not straightforward to see gradG(µ) = gradµ F (µ, ν∗(µ)) as there may be multiple ν∗(µ)’s under
Assumption 3, breaking the condition of Danskin’s theorem [5] even for finite cases. Fortunately, we show in
the following with Riemannian PL condition, we can still prove a Danskin-type result as the generalization of
the original theorem. In a nutshell, our proposed algorithm is a gradient descent-like algorithm on the inner
maximization value function. To proceed with two-player game of in a higher hierarchy for Problem (3), we
follow the standard assumptions of smoothness in different aspect of F and provide a Danskin-type lemma in
the following section.
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E.2. Danskin-type Lemma

Lemma 33 Under Assumption 2 and 3, we have

gradG(µ) = gradµ F
(
µ, ν∗(µ)

)
, ν∗(µ) ∈ argmin

ν∈M(Xν)
Hµ(ν).

In addition, G is L̃1-Lipschitz and L̃-smooth with L̃1 = Lµ + LνL0/(2ξ), L̃ = L1 + L2
0/(2ξ).

Proof By the definition of the directional derivative and gradient in Section B.2, we take the curve, which
starts with γ(0) = µ ∈M(X ) and γ′(0) = u ∈ TµM(X ), as the geodesic. Then by Taylor series expansion
at γ(0), we have for any scalar τ :

G[γ(τ)]−G(µ) = F (γ(τ), ν∗(γ(τ)))− F (µ, ν∗(µ))

=
〈
gradµ F (µ, ν∗(µ)), τu

〉
µ

+
〈

gradν F (µ, ν∗(µ)),Exp−1ν∗(µ)
(
ν∗
(
γ(τ)

))〉
ν∗(µ)

+O(τ2)

=
〈
gradµ F (µ, ν∗(µ)), τu

〉
µ

+O(τ2). (108)
where the last equality follows from the optimal condition on ν: gradν F (µ, ν∗(µ)) = 0, and the additional
higher order term in τ integrates terms in W2(ν

∗(γ(τ)), ν∗(µ)) since by (107) there exists ν∗(γ(τ)) ∈
IF (γ(τ)) such that

W2(ν
∗(γ(τ)), ν∗(µ)) ≤ L0

2ξ
τ‖u‖. (109)

On the other hand, by the limit form of directional derivative we have

〈gradG(µ), u〉µ = ∇uG(µ)

=
d

dτ
G [γ(τ)]

∣∣
t=0

= lim
τ→0+

G[γ(τ)]−G[γ(0)]

τ

=
〈
gradµ F (µ, ν∗(µ)), τu

〉
µ
. (110)

Due to the arbitrarity of u, we conclude that gradG(µ) = gradµ F (µ, ν∗(µ)).
In what follows we show the Lipschitzness and smoothness of G. For µ1, µ2 ∈ M(X ), let ν∗(µ1) ∈

IF (µ1) and ν∗(µ2) ∈ argminν∈IF (µ2)W
2
2 (ν, ν∗(µ1)), then

|G(µ1)−G(µ2)|
= |F (µ1, ν

∗(µ1))− F (µ2, ν
∗(µ1)) + F (µ2, ν

∗(µ1))− F (µ2, ν
∗(µ2))|

≤ LµW2(µ1, µ2) + LνW2(ν
∗(µ1), ν

∗(µ2))

≤
(
Lµ +

LνL0

2ξ

)
W2(µ1, µ2), (111)

37



where the last inequality holds by (107). Hence by setting L̃1 = Lµ + LνL0/(2ξ) we obtain that function G
is L̃1-Lipschitz. In addition, for the difference between gradients we have

d (gradG(µ1), gradG(µ2)) = d
(
gradµ F (µ1, ν

∗(µ1)), gradµ F (µ2, ν
∗(µ2))

)
≤ d

(
gradµ F (µ1, ν

∗(µ1)), gradµ F (µ2, ν
∗(µ1))

)
+ d

(
gradµ F (µ2, ν

∗(µ1)), gradµ F (µ2, ν
∗(µ2))

)
≤ L̃1W2(µ1, µ2) + L0W2(ν

∗(µ1), ν
∗(µ2))

≤
(
L̃1 +

L2
0

2ξ

)
W2(µ1, µ2), (112)

where the second inequality holds by Assumption 2, and the last inequality still follows from (107). Therefore,
by setting L̃ = L̃1 + L2

0/(2ξ) we concludes the proof.

E.3. Convergence Results for Player ν

Considering the nested loops in Algorithm 2, we first present the following linear convergence rate with
statistical errors for player ν. Recall that F̃ defined in (15) is the function class over which we solve (4). We
define ν∗(µ) = argmaxν∈M F (µ, ν) given µ ∈ M. Also, we write ν̃l(µ̃k) as ν̃l given any fixed k ≥ 0 for
notational simplicity.

Lemma 34 Let F admit the variational form under Assumptions 2 and 3. Suppose that F̃ satisfies Assump-
tion 7. Also, we set the stepsize ην ∈

(
0,min{1/(4Lν), 1/h}

)
. Then, for any l ≥ 1 and a fixed µ ∈M, we

have

F
(
µ, ν∗(µ)

)
− E

[
F (µ, ν̃l)

]
≤ σl ·

[
F (µ, ν∗(µ))− F (µ, ν̃0)

]
+ ηνσl

l−1∑
m=0

ε̄mσ
−(m+1), (113)

where σ = 1− ξην/2 ∈ (0, 1) is the contraction coefficient, the expectation is taken w.r.t. the initial samples
Xν

0 = {xνi,0}i∈[Nν ], and ε̄m (m ∈ [l − 1]) is the (expected) gradient error at timestep m defined in (20).

Proof Our proof is based on quantifying some contraction between errors of adjacent iterates. Recall that we
denote Hµ(ν) = −F (µ, ν), and for fixed µ ∈ M(X ), We write Hµ(ν) as H(ν) below. To begin with, by
Proposition 6, we can equivalently write the iteration of VTIG for l ≥ 0 and ν̃l as

ν̃l+1 = Expν̃l
{
−ην · [gradH(ν̃l) + δl]

}
, δl = −div

[
ν̃l · (∇f̃∗l −∇f∗l )

]
. (114)

Notice that δl ∈ Tν̃lM is a tangent vector at point ν̃l. Moreover, by Assumption 2 on F function H is
L2-smooth. Combining this property with (114), we have

H(ν̃l+1) ≤ H(ν̃l)− ην ·
〈
gradH(ν̃l), gradH(ν̃l)

〉
ν̃l
− ην

〈
gradH(ν̃l), δl

〉
ν̃l

+
(ην)2L2

2

〈
gradH(ν̃l) + δl, gradH(ν̃l) + δl

〉
ν̃l

= H(ν̃l)−
(
ην − (ην)2L2

2

)
·
〈
gradH(ν̃l), gradH(ν̃l)

〉
ν̃l

+
(
ην + (ην)2 · L2

)
·
∣∣〈gradH(ν̃l), δl

〉
ν̃l

∣∣+
(ην)2L2

2

〈
δl, δl

〉
ν̃l
, (115)

where 〈·, ·〉ν̃l is the Riemannain metric ofM at ν̃l. By basic inequality 2ab ≤ a2 + b2, we have∣∣〈gradH(ν̃l), δl
〉
ν̃l

∣∣ ≤ 1

2

〈
gradH(ν̃l), gradH(ν̃l)

〉
ν̃l

+
1

2

〈
δl, δl

〉
ν̃l
. (116)
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Thus, plugging (116) into (115), we obtain

H(ν̃l+1) ≤ H(ν̃l)−
ην(1− 2ηνL2)

2
·
〈
gradH(ν̃l), gradH(ν̃l)

〉
ν̃l

+
ην(1 + 2ηνL2)

2
·
〈
δl, δl

〉
ν̃l
. (117)

Furthermore, since H is ξ-gradient dominated under Assumption 3, based on (117) we have

H(ν̃l+1) ≤ H(ν̃l)− ξην · (1− 2ηνL2) ·
[
H(ν̃l)− inf

ν∈M(X )
H(ν)

]
+
ην(1 + 2ηνL2)

2
·
〈
δl, δl

〉
ν̃l
. (118)

As we have introduced in Section 2.1 and 4.1, 〈δl, δl〉ν̃l is equal to εl defined in (20). Thus, (118) can be
equivalently written as

H(ν̃l+1)− inf
ν∈M(X )

H(ν) ≤ [1− ξην · (1− 2ηνL2)] ·
[
H(ν̃l)− inf

ν∈M(X )
H(ν)

]
+
ην(1 + 2ηνL2)

2
· εl. (119)

Hence, we have derived the performance of a single step of variational transport with regard to the objective
value.

Moreover, recall that we set the stepsize for player ν to be a constant ην ≤ 1/(4L2), which guarantees

1− ξ · ην · (1− 2ηνL2) ≤ 1− ην · ξ/2 ∈ (0, 1), (1 + 2ηνL2)/2 ≤ 1. (120)
For simplicity of the notation, we define σ = 1− ην · ξ/2. Thus, by (120), it follows that

H(ν̃l+1)− inf
ν∈M(X )

H(ν) ≤ σ ·
[
H(ν̃l)− inf

ν∈M(X )
H(ν)

]
+ ηνεl. (121)

By multiplying σ−(l+1) to both sides of (121), we obtain

σ−(l+1) ·
[
F (ν̃l+1)− inf

ν∈M(X )
H(ν)

]
≤ σ−l ·

[
H(ν̃l)− inf

ν∈M(X )
H(ν)

]
+ σ−(l+1) · ηνεl. (122)

Therefore, {σ−l · [H(ν̃l)− infν∈M(X )H(ν)]}l≥0 admits a telescoping sequence and thus by summing (122)
over l it holds that

σ−l ·
[
H(ν̃l)− inf

ν∈M(X )
H(ν)

]
≤

l−1∑
m=0

σ−(m+1) · ην · εm +
[
H(ν̃0)− inf

ν∈M(X )
H(ν)

]
, (123)

which is equivalent to

σ−l ·
[
F (µ, ν̃∗(µ))− F (µ, ν̃l)

]
≤

l−1∑
m=0

σ−(m+1) · ην · εm +
[
F (µ, ν̃∗(µ))− F (µ, ν̃0)

]
(124)

for all l ≥ 1, which implies the desired result by taking expectation with respect to the intial particle sampling
Xν

0 for player ν.

Lemma 34 characterizes the expected error of the inner loop by the sum of an optimization error decaying
at a linear rate and a statistical error term of the orderO(N

−1/2
ν ) according to §4.1. Moreover, (113) justifies

that the particle-based functional gradient descent in W2-space for a Riemannian PL objective behaves
similarly as in finite-dimensional spaces [58] up to a scaled statistical error.

By Integrating the convergence result for one-player variational transport processes, together with the
properties of relation between the inner loop and outer loop as well as objective landscape, we are now ready
to demonstrate the main theorem for infinite-dimensional distributional game optimizaiton.
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E.4. Proof of Theorem 8

Theorem 35 (Convergence of Infinite-Dimensional PL Games, Formal) Suppose that the objective F
admits a variational form under Assumption 2 and 3. Also, the function class F̃ satisfies Assumption 7. We
set the stepsizes to be ηµ ∈

[
0,min{1/h, 2/L̃}

)
and ην ∈

(
0,min{1/(4Lν), 1/h}

)
, where L̃ = L1 + L2

0/ξ.
Then, for any θ > 0, if

Kν ≥ Kν(θ) = O
(

log
(1− σ)M̂H − ην ε̄ν

θ

/
log

1

σ

)
, where M̂H = max

{
MH ,

ην ε̄ν + 1

1− σ

}
, (125)

there exists an iteration k ∈ [Kµ] such that

EX0

[
J 2
µ (µ̃k, ν̃k+1)

]
= O

(
2

L̂

(
∆ +

√
ε̄µ + 2L̃R+ LG

)2 · (2R(∆ +
√
ε̄µ) +

MG

Kµ

))
, (126)

EX0

[
Jν(µ̃k, ν̃k+1)

]
= O

(L2∆

L0

)
. (127)

Here ∆ = L0

√
ην ε̄ν + θ

2ξ(1− σ)
, L̂ = 1/ηµ− L̃/2, R = supµ1,µ2∈MW2(µ1, µ2)/2, and the gradient error terms

ε̄µ and ε̄ν are characterized in (21).

Proof [Proof of Theorem 8 ] We write ĝradµF (µ̃k, ν̃k+1) = −div
(
µ̃k · ∇f̃∗k ), where ∇f̃∗k is the solution to

the VFM problem in timestep k, as the gradient estimate w.r.t. µ at timestep k. By the particle pushing step
in Algorithm 2 we have〈

ĝradµF (µ̃k, ν̃k+1),Exp−1µ̃k (µ̃k+1)
〉
µ̃k

= − 1

ηµ
〈
Exp−1µ̃k (µ̃k+1),Exp−1µ̃k (µ̃k+1)

〉
µ̃k
. (128)

It follows that 〈
gradµ F (µ̃k, ν

∗(µ̃k)),Exp−1µ̃k (µ̃k+1)
〉
µ̃k

=
〈
gradµ F (µ̃k, ν̃

∗(µ̃k))− ĝradµF (µ̃k, ν̃k+1),Exp−1µ̃k (µ̃k+1)
〉
µ̃k

− 1

ηµ
〈
Exp−1µ̃k (µ̃k+1),Exp−1µ̃k (µ̃k+1)

〉
µ̃k

=
〈
∆k − δk,Exp−1µ̃k (µ̃k+1)

〉
µ̃k
− 1

ηµ
〈
Exp−1µ̃k (µ̃k+1),Exp−1µ̃k (µ̃k+1)

〉
µ̃k
, (129)

where ν∗(µ̃k) ∈ IF (µ̃k) and

δk = −div
[
µ̃k · (∇f̃∗k −∇f∗k )

]
, (130)

∆k = gradG(µ̃k)− gradµ F (µ̃k, ν̃k+1). (131)
Hence, we have ∆k − δk = gradµ F (µ̃k, ν

∗(µ̃k))− ĝradµF (µ̃k, ν̃k+1) = gradG(µ̃k)− ĝradµF (µ̃k, ν̃k+1)
for any k ∈ [Kµ]. Note that the error term ∆k is incurred by using ν̃k+1 to approximate ν∗(µ̃k).

By Assumption 7, ∇f is h-Lipschitz continuous on X for all f ∈ F̃ . Since ηµ < 1/h, by Proposition 6,
we can equivalently write one timestep of the outer loop in VTIG as

µ̃k+1 = Expµ̃k
{
−ηµk · ĝradµF (µ̃k, ν̃k+1)

}
= Expµ̃k

{
−ηµk · [gradµ F (µ̃k, ν̃k+1) + δk]

}
(132)

= Expµ̃k
{
−ηµ · [gradG(µ̃k)−∆k + δk]

}
, (133)
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Note that δk ∈ Tµ̃kM is a tangent vector at point µ̃k. Since G is L̃-smooth under Lemma 33, combining
(129) and (132), we obtain

G(µ̃k+1) ≤ G(µ̃k) +
〈
gradµ F (µ̃k, ν

∗(µ̃k)),Exp−1µ̃k (µ̃k+1)
〉
µ̃k

+
L̃

2

〈
Exp−1µ̃k (µ̃k+1),Exp−1µ̃k (µ̃k+1)

〉
µ̃k

(134)

(129)
= G(µ̃k) +

〈
∆k − δk,Exp−1µ̃k (µ̃k+1)

〉
µ̃k
−

(
1

ηµ
− L̃

2

)〈
Exp−1µ̃k (µ̃k+1),Exp−1µ̃k (µ̃k+1)

〉
µ̃k
.

Since ηµ < 2/L̃, a lower bound of ‖Exp−1µ̃k (µ̃k+1)‖ is needed. On the other hand, we have for any µ ∈M,〈
ĝradµF (µ̃k, ν̃k+1),Exp−1µ̃k (µ)

〉
µ̃k
≥ −‖ĝradµF (µ̃k, ν̃k+1)‖µ̃k · ‖Exp−1µ̃k (µ)‖µ

≥ −‖ĝradµF (µ̃k, ν̃k+1)‖µ̃k
(
‖Exp−1µ̃k+1

(µ)‖µ + ‖Exp−1µ̃k (µ̃k+1)‖µ̃k+1

)
≥ − 1

ηµ
‖Exp−1µ̃k (µ̃k+1)‖µ̃k+1

‖Exp−1µ̃k+1
(µ)‖µ

−
(
‖∆k‖+ ‖δk‖+ ‖ gradG(µ̃k)‖

)
‖Exp−1µ̃k (µ̃k+1)‖µ̃k+1

, (135)
where the first inequality follows from Cauchy-Schwartz inequality (135) is implied by triangle inequality
w.r.t. Riemannian metric, and the last one follows from (128) and (129). Then by definitions ‖ gradG(µ̃k)‖ ≤
Gmax and ‖Exp−1µ̃k (µ̃k+1)‖ ≤ 2R. Additionally, by Theorem 34 using fixed Eεm = ε̄ν with expectation w.r.t.
initial sampled particles, we have

E‖∆k‖ ≤ L0EW2(ν̃k+1, ν
∗(µ̃k))

≤ L0

√
σKν [F (µ̃k, ν∗(µ̃k))− F (µ̃k, ν̃0)] + ην ε̄ν · 1−σ

Kν

1−σ
2ξ

≤ L0

√
ην ε̄ν + θ

2ξ(1− σ)
, (136)

where the second inequality holds by applying Definition 31 to the gradient dominated function Hµ(ν) =
−F (µ, ν) together with Theorem 34, and the last inequality follows from the choice of Kν in the theorem.
Then by ‖ gradG(µ̃k)‖ ≤ Gmax and ‖Exp−1µ̃k (µ̃k+1)‖ ≤ 2R, combining (135) we obtain

−Jµ(µ̃k, ν̃k+1) ≥ − (‖∆k‖+ ‖δk‖+Gmax + 2R/ηµ) ‖Exp−1µ̃k (µ̃k+1)‖, (137)
that is,

‖Exp−1µ̃k (µ̃k+1)‖ ≥
Jµ(µ̃k, ν̃k+1)

‖∆k‖+ ‖δk‖+Gmax + 2L̃R
. (138)

Plugging (138) into (134), we obtain the following progress made by pushing µ-particles in the outer loop.

G(µk+1) ≤ G(µ̃k) +
〈
∆k − δk,Exp−1µ̃k (µ̃k+1)

〉
µ̃k
−

(1/ηµ − L̃/2)J 2
µ (µ̃k, ν̃k+1)(

‖∆k‖+ ‖δk‖+Gmax + 2L̃R
)2

≤ G(µ̃k) + 2R (‖∆k‖+ ‖δk‖)−
(1/ηµ − L̃/2)J 2

µ (µ̃k, ν̃k+1)(
‖∆k‖+ ‖δk‖+Gmax + 2L̃R

)2 , (139)

where the last inequality holds by applying the Cauchy-Schwartz inequality to the inner product term〈
∆k − δk,Exp−1µ̃k (µ̃k+1)

〉
µ̃k

and µ̃k’s lie in a ball of radius R.
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Therefore, we have a telescoping sequence and by summing (139) over k for the whole loop while taking
expection with respect to initial sampled particles on both sides we get

1

Kµ

Kµ∑
k=0

EJ 2
µ (µ̃k, ν̃k+1)

≤ 2

1/ηµ − L̃/2
E
(

2L̃+Gmax + ‖∆k‖+ ‖δk‖
)2
·
(

2R (‖∆k‖+ ‖δk‖) +
G(µ̃0)−G(µ̃Kµ)

Kµ

)
≤ O

(
2

1/ηµ − L̃/2

(
∆ +

√
ε̄µ + 2L̃R+Gmax

)2
·
(

2R(∆ +
√
ε̄µ) +

MG

Kµ

))
, (140)

(141)
where the last inequality follows from (136). Here

∆ = L0

√
ην ε̄ν + θ

2ξ(1− σ)
, (142)

and

√
ε̄k = O


√√√√K̃

(
r2f

N1/2
+

r3f

w1/2
+
r4f
w

) .

Therefore, by the Pigeonhole principle there must exists k ∈ [Kµ] such that

EJ 2
µ (µ̃k, ν̃k+1) = O

(
2

1/ηµ − L̃/2

(
∆ +

√
ε̄µ + 2L̃R+Gmax

)2
·
(

2R(∆ +
√
ε̄µ) +

MG

Kµ

))
.

Hence we complete the proof of the first term in (23) of Theorem 8.
For the second result onJν(µk, νk+1), we follow the similar technique by the Cauchy-Schwartz inequality

and smoothnes of function F with respect to ν in Assumption 2 to obtain

EJν(µ̃k, ν̃k+1) ≤ E‖ gradν F (µ̃k, ν̃k+1)‖ν̃k+1

= Ed
(

gradν F (µ̃k, ν
∗(µ̃k)), gradν F (µ̃k, ν̃k+1)

)
≤ L2EW2

(
ν̃k+1, ν̃

∗(µk)
)

(104)
≤ L2

√
F (µ̃k, ν̃∗(µk))− EF (µ̃k, ν̃k+1)

2ξ

≤ L2

√
σKν [F (µ̃k, ν∗(µ̃k))− F (µ̃k, ν̃0)] + ην ε̄ν · 1−σ

Kν

1−σ
2ξ

≤ L2

L0
·∆, (143)

where (104) relates Wasserstein distance to the objective difference, the last but one inequality follows from
Theorem 34, the last inequality holds by the definition of ∆ in (142) and the same choice of Kµ in the proof
for a desired Jµ(µ̃k, ν̃k+1) (k ∈ [Kµ]). Therefore, the second term in (23) of Theorem 8 is proved.

To sum up, we conclude the proof of our main theorem and the sketch of proof ideas.

We additionally remark that for our convergence rate to the approximate IFNE coincides with the finite-
dimensional case regardless of the order of numbers of particles adopted. More clearly, we resort to writing
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our result in terms of the θ-IFNE for some θ > 0. First, we can alternatively claim that there exists k ∈ [Kµ]
such that the following equivalent result holds,

EJµ(µ̃k, ν̃k+1) = O

((
∆ +

√
ε̄µ + 2L̃R+Gmax

)
·
√

2

1/ηµ − L̃/2

(
2R(∆ +

√
ε̄µ) +

MG

Kµ

))
, (144)

EJν(µ̃k, ν̃k+1) = O
(
L2

L0
·∆
)
. (145)

By fixing Nµ and Nν for any θ > 0, we observe that when we set Kµ ≥ Kµ(θ) = O(θ−2) and Kν ≥
Kν(θ) = O(2 log(θ−1)) simultaneously, we are able to obtain a θ-IFNE in expectation since

EJµ(µ̃k, ν̃k+1) ≤ θ, (146)

EJν(µ̃k, ν̃k+1) ≤ θ, (147)
which is exactly the order in [58], implying the PL-condition and smoothness in infinite-dimensional settings
work similarly as in finite-dimensional problems.

On the other hand, when the order of Nµ and Nν dominate, we can compute that when Nµ ≥ Nµ(θ) =
O(θ−4) and Nν ≥ Nν(θ) = O(θ−4) for any θ > 0, we obtain the θ-IFNE in expectation. Such a result
implies that we need more particles than timesteps to guarantee a given precision of the solution. This also
implies that the statistical error induced by measure approximation in infinite-dimensional spaces is more
prominent than the optimization error.

Appendix F. Proof of Convergence to the Minimax Value of Two-Sided PL Games

F.1. PL Condition on the Inner Maximization Functional

Lemma 36 For a two-sided PL-game depicted by Assumption 9, the functional G(µ) = maxν∈M F (µ, ν)
satisfies the ξ1-PL condition.

Proof Since Fν(µ) = F (µ, ν) satisfies the ξ1-PL condition for any given ν ∈M(Xν), we have

2ξ1 ·
(
F (µ, ν∗(µ))− min

µ̃∈M(Xµ)
F
(
µ̃, ν∗(µ)

))
≤
〈
gradF (µ, ν∗(µ)), gradF (µ, ν∗(µ))

〉
µ

=
〈
gradG(µ), gradG(µ)

〉
µ
, (148)

where the last equality follows from Lemma 33. On the other hand, we have by definition

min
µ̃∈M(Xµ)

F (µ̃, ν∗(µ)) ≤ min
µ̃∈M(Xµ)

max
ν∈M(Xν)

F (µ̃, ν) = min
µ∈M(Xµ)

G(µ). (149)

By plugging (149) into (148), we arrive at

2ξ1 ·
(
G(µ)− min

µ∈M(Xµ)
G(µ)

)
≤
〈
gradG(µ), gradG(µ)

〉
µ
, (150)

which implies that G(µ) satisfies ξ1-PL condition.

F.2. Proof of Theorem 10

Proof The proof is based on Lemma 34 while different from the proof of Theorem 8 by the fact that we are
now able to bound the norm of the Riemannian gradient of G(µ) from below. By the smoothness of G under
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Lemma 33, we have

G(µ̃k+1) ≤ G(µ̃k) +
〈
gradµ F (µ̃k, ν

∗(µ̃k)),Exp−1µ̃k (µ̃k+1)
〉
µ̃k

+
L̃

2

〈
Exp−1µ̃k (µk+1),Exp−1µ̃k (µk+1)

〉
µ̃k

(151)
(132)
= G(µ̃k)− ηµ

〈
gradG(µ̃k), gradG(µ̃k)

〉
µ̃k
− ηµ

〈
gradG(µ̃k), δk −∆k

〉
µ̃k

+
L̃

2

〈
gradG(µ̃k)−∆k + δk, gradG(µ̃k)−∆k + δk

〉
µ̃k

≤ G(µ̃k)−

(
ηµ − (ηµ)2 · L̃

2

)
·
〈
gradG(µ̃k), gradG(µ̃k)

〉
µ̃k

+
(
ηµ + L̃(ηµ)2

) ∣∣〈gradG(µ̃k), δk −∆k

〉
µ̃k

∣∣+
(ηµ)2L̃

2

〈
δk −∆k, δk −∆k

〉
µ̃k
. (152)

Here δk = ĝradµF (µ̃k, ν̃k+1)− gradµ F (µ̃k, ν̃k+1) = −div
[
p̃k · (∇f̃∗k −∇f∗k )

]
and ∆k = gradG(µ̃k)−

gradµ F (µ̃k, ν̃k+1) are defined in (130). Since
〈
·, ·
〉
µ̃k

serves as the Riemannian metric ofM(Xµ) at µ̃k,
then by the Cauchy-Schwartz inequality we obtain

2
∣∣〈gradG(µ̃k), δk −∆k

〉
µ̃k

∣∣ ≤ 〈gradG(µ̃k), gradG(µ̃k)
〉
µ̃k

+
〈
δk −∆k, δk −∆k

〉
µ̃k

≤
〈
gradG(µ̃k), gradG(µ̃k)

〉
µ̃k

+ 2
〈
δk, δk

〉
µ̃k

+ 2
〈
∆k,∆k

〉
µ̃k
. (153)

Hence by plugging (153) into (151), we have

G(µ̃k+1) ≤ G(µ̃k) +
ηµ(2ηµL̃− 1)

2
·
〈
gradG(µ̃k), gradG(µ̃k)

〉
µ̃k

+ ηµ
(

1 + 2(ηµ)2L̃
)
·
(〈
δk, δk

〉
µ̃k

+
〈
∆k,∆k

〉
µ̃k

)
. (154)

Since ηµ ≤ 1/(2L̃), we require a lower bound on
〈
gradG(µ̃k), gradG(µ̃k)

〉
µ̃k

. Following from the ξ1-PL
condition of G in Lemma 36, we can further obtain

G(µ̃k+1) ≤ G(µ̃k) + ξ1η
µ(2ηµL̃− 1) ·

(
G(µ̃k)− min

µ∈M(Xµ)
G(µ)

)
+ ηµ

(
1 + 2(ηµ)2L̃

)
·
(〈
δk, δk

〉
µ̃k

+
〈
∆k,∆k

〉
µ̃k

)
, (155)

which can be rewritten as

G(µ̃k+1)− min
µ∈M(Xµ)

G(µ) ≤ [1− ξ1ηµ(1− 2ηµL̃)] ·
(
G(µ̃k)− min

µ∈M(Xµ)
G(µ)

)
+ ηµ

(
1 + 2(ηµ)2L̃

)
·
(〈
δk, δk

〉
µ̃k

+
〈
∆k,∆k

〉
µ̃k

)
. (156)

Now we invoke the upper bounds on ‖δk‖µ̃k in (101) and ‖∆k‖µ̃k in (136) to further develop a contraction
for the value of G at each timestep,

EG(µ̃k+1)− min
µ∈M(Xµ)

G(µ) ≤ [1− ξ1ηµ(1− 2ηµL̃)] ·
(
EG(µ̃k)− min

µ∈M(Xµ)
G(µ)

)
+ ηµ

(
1 + 2ηµL̃

)
·
(
E
〈
δk, δk

〉
µ̃k

+ ∆̃2
)
, (157)

where we define

∆̃2 = L2
0 ·
σKν ·MH + ην ε̄ν · 1−σ

Kν

1−σ
2ξ2

, (158)
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with ξ2 as the parameter of PL condition for the inner-loop player, Kν as the number of timesteps for the
inner-loop player defined in Algorithm 1, and the expectation is taken with respect to the randomness of
initial particles. Also, by the definitions of L̃, ξ1, and ηµ ∈

(
0, 1/(4L̃)

)
, we have 1− ξ1ηµ(1− 2ηµL̃) <

1− ξ1ηµ/2 < 1. For simplicity, let σ̃ = 1− ξ1ηµ/2, by multiplying σ̃−(k+1) to (157) we have

σ̃−(k+1) · [EG(µ̃k+1)− min
µ∈M(Xµ)

G(µ)] ≤ σ̃−k · [EG(µ̃k)− min
µ∈M(Xµ)

G(µ)]

+ σ̃−(k+1) · ηµ ·
(
E
〈
δk, δk

〉
µ̃k

+ L2
0 ·

ην ε̄ν + θ

2ξ(1− σ)

)
, (159)

Note that E〈δk, δk〉µ̃k = ε̄k, which is bounded in (101).. Then by summing up over the telescoping sequence
{σ̃−k · [EG(µ̃k) −minµ∈M(Xµ)G(µ)]}k≥0 in (159), we obtain the following optimization error bound at
iteration k for k ≥ 1,

EG(µ̃k)− min
µ∈M(Xµ)

G(µ) ≤ σ̃k · [G(µ̃0)− min
µ∈M(Xµ)

G(µ)]

+

k−1∑
m=0

σ̃k−(m+1) · ηµ ·
(
ε̄m + L2

0 ·
ην ε̄ν + θ

2ξ(1− σ)

)
(101)
≤ σ̃k · [G(µ̃0)− min

µ∈M(Xµ)
G(µ)]

+
1− σ̃k

1− σ̃
· ηµ ·

(
ε̄µ + L2

0 ·
ην ε̄ν + θ

2ξ(1− σ)

)
, (160)

where

ε̄µ = O

(
K̃

(
r2f

N
1/2
µ

+
r3f

w1/2
+
r4f
w

))
,

∆̃2 = L2
0 ·
σKν ·MH + ην ε̄ν · 1−σ

Kν

1−σ
2ξ2

. (161)

By the definition of G, we have minµ∈M(X )G(µ) = F (µ∗, ν∗). As a result, (160) gives the error bound in
objective value F at iteration k. Hence we conclude the proof of Theorem 10.

Appendix G. Toy Experiments

In this section we report some results for a toy experiment with a Gaussian mixture model with 8 Gaussian
distributions. For simplicity, we drop the regularizer terms from WGAN loss and consider a mixture of
8 generators and discriminators corresponding to the particles for parameters of the generator and the
discriminator of WGAN. Both generators and discriminators are MLP with 3 layers. We also don’t tune
the learning rate and set it to be 10−4. We run the model for 20000 iterations which is small compared to
the typical number of iterations used in practice to train a WGAN model. In our experiment we reused the
code provided by [31] with some simple modification. We present some samples generated from trained
generators in Figure 2. The blue dots are generated from real mixture models and the red ones are generated
from generators. We observe that the distribution generated by our generator matches the groundtruth after a
short training period.
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Figure 2: Toy experiment results: blue dots represent samples from the gaussian mixture and the red dots
represent the samples generated from generators.
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