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Abstract

We propose a stochastic variant of the classical Polyak step-size [44] commonly used in the subgra-
dient method. Although computing the Polyak step-size requires knowledge of the optimal function
values, this information is readily available for typical modern machine learning applications. Conse-
quently, the proposed stochastic Polyak step-size (SPS) is an attractive choice for setting the learning
rate for stochastic gradient descent (SGD). We provide theoretical convergence guarantees for SGD
equipped with SPS in different settings, including strongly convex, convex and non-convex functions.
Furthermore, our analysis results in novel convergence guarantees for SGD with a constant step-size.
We show that SPS is particularly effective when training over-parameterized models capable of
interpolating the training data. In this setting, we prove that SPS enables SGD to converge to the
true solution at a fast rate without requiring the knowledge of any problem-dependent constants or
additional computational overhead. We experimentally validate our theoretical results via extensive
experiments on synthetic and real datasets. We demonstrate the strong performance of SGD with
SPS compared to state-of-the-art optimization methods when training over-parameterized models.

1. Introduction

We solve the finite-sum optimization problem:

1 n
min [f(l‘) = ; fz(:v)] : (1
This problem is prevalent in machine learning tasks where = corresponds to the model parameters,
fi(x) represents the loss on the training point ¢ and the aim is to minimize the average loss f(x)
across training points. We denote X* C R? to be the set of optimal points z* of (1) and assume that
X'* is not empty. We use f* to denote the minimum value of f, obtained at a point * € X*. For
eachi € {1,...,n}, we denote the infimum of function f; by f; := inf, f;(z). Depending on the
model under study, the function f can either be strongly-convex, convex, or non-convex.
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1.1. Background and Main Contributions

Stochastic gradient descent (SGD) [15, 38-40, 49, 53], is the workhorse for training supervised
machine learning problems that have the generic form (1).

Step-size selection for SGD. The main parameter for guaranteeing the convergence of SGD is
the step-size or the learning rate. In recent years, several ways of selecting the step-size have
been proposed. Gower et al. [14], Moulines and Bach [35], Needell and Ward [36], Needell et al.
[37], Nguyen et al. [41] propose a non-asymptotic analysis of SGD with constant step-size for convex
and strongly convex functions. For non-convex functions, such an analysis can be found in Bottou
et al. [6], Ghadimi and Lan [12]. Using a constant step-size for SGD guarantees convergence to
a neighbourhoood of the solution. A common technique to guarantee convergence to the exact
optimum is to use a decreasing step-size [12, 14, 22, 40, 49]. More recently, adaptive methods
[3, 11, 23-25, 60, 61] that adjust the step-size on the fly have become wide-spread and are particularly
beneficial when training deep neural networks.

Contributions: Inspired by the classical Polyak step-size [44] commonly used with the determin-
istic subgradient method [7, 17], we propose a novel adaptive learning rate for SGD. The proposed
step-size is a natural extension of the Polyak step-size to the stochastic setting. We name it stochastic
Polyak step-size (SPS). Although computing SPS requires knowledge of the f;"; we argue that this
information is readily available for modern machine learning applications (for example, f; = 0 for
most standard surrogate losses), making SPS an attractive choice for SGD.

In Section 3, we provide theoretical guarantees for the convergence of SGD with SPS in different
scenarios including strongly convex, convex and non-convex smooth functions. Although SPS
is provably larger than the typically used constant step-size, we guarantee its convergence to a
reasonable neighborhood around the optimum. We note that in the modern machine learning tasks
that we consider, it is enough to converge to a small neighbourhood and not the exact minimizer
to get good generalization performance. We also establish a connection between SPS and the
optimal step-size used in sketch and project methods for solving linear systems. Furthermore, in
Appendix C, we provide convergence guarantees for convex non-smooth functions. We also show
that by progressively increasing the batch-size for computing the stochastic gradients, SGD with SPS
converges to the optimum.

Technical assumptions and challenges for proving convergence. Besides smoothness and con-
vexity, several papers [18, 46, 47, 54] assume that the variance of the stochastic gradient is bounded;
that is there exists a c such that E;||V fi(x)||> < c. However, in the unconstrained setting, this
assumption contradicts the assumption of strong convexity [14, 41]. In another line of work, growth
conditions on the stochastic gradients have been used to guarantee convergence. In particular, the
weak growth condition has been used in [5, 6, 41]. It states that there exist constants p, § such that
E; ||V fi(2)||?> < pE||Vf(2)||? + d. Its stronger variant (strong growth condition) when 6 = 0 has
been used in several recent papers [8, 51, 59, 60]. These conditions can be relaxed to the expected
smoothness assumption recently used in [14].

Contributions: Our analysis of SGD with SPS does not require any of these additional assumptions
for guaranteeing convergence'. We also note that our theoretical results do not require the finite-sum
assumption and can be easily adapted to the streaming setting.

1. Except for our analysis for non-convex smooth functions where the weak growth condition is used.
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In addition, unlike standard analysis for constant step-size SGD, the use of SPS requires an
adaptive step-size that uses the loss and stochastic gradient estimates at an iterate, resulting in
correlations. One of the main technical challenges in the proofs is to carefully analyze the SGD
iterates taking these correlations into account. Furthermore, since we need to be adaptive to the
Lipschitz constant, we can not use the descent lemma (implied by smoothness and SGD update).
This makes the convex proof more challenging than the standard analysis.

Novel analysis for constant SGD. In the existing analyses of constant step-size SGD, the neighbor-
hood of convergence depends on the variance of the gradients at the optimum, 22 := E; ||V f;(z*) ||
which is assumed to be finite.

Contributions: The proposed analysis of SGD with SPS gives a novel way to analyze constant
step-size SGD. In particular, we prove convergence of constant step-size SGD (without SPS), to a
neighbourhood that depends on o2 := f(z*) — E[f{] < oo (finite optimal objective difference).

Over-parametrized models and interpolation condition. Modern machine learning models such
as non-parametric regression or over-parametrized deep neural networks are highly expressive and
can fit or interpolate the training dataset completely [33, 62]. In this setting, SGD with constant step-
size can been shown to converge to the exact optimum at the deterministic rate [4, 14, 33, 51, 59, 60].
Contributions: As a corollary of our theoretical results, we show that SPS is particularly effective
under this interpolation setting. Specifically, we prove that SPS enables SGD to converge to the true
solution at a fast rate matching the deterministic case. Moreover, SPS does not require the knowledge
of any problem-dependent constants or additional computational overhead.

Experimental Evaluation. In Section 4, we experimentally validate our theoretical results via
experiments on synthetic datasets. We also evaluate the performance of SGD equipped with SPS
relative to the state-of-the-art optimization methods when training over-parameterized models for
deep matrix factorization, binary classification using kernels and multi-class classification using deep
neural networks. For each of these tasks, we demonstrate the superior convergence of the proposed
method.

2. SGD and the Stochastic Polyak Step-size

The optimization problem (1) can be solved using SGD: z¥! = z¥ — 4, V f;(2¥), where example
i € [n] is chosen uniformly at random and -y, > 0 is the step-size in iteration k.

2.1. The Polyak step-size

Before explaining the proposed stochastic Polyak step-size, we first present the deterministic variant
by Polyak [44]. This variant is commonly used in the analysis of deterministic subgradient methods
[7, 17].

The deterministic Polyak step-size. For convex functions, the deterministic Polyak step-size at
iteration k is the one that minimizes an upper-bound Q(+y) on the distance of the iterate x 1 to the
optimal solution: [[zx+1 —2*[13 < Q(y), where Q(v) = [|2* —*||* =27 [f(z*) — f*)] ++*[lg"]*.
That is, v, = argmin,, [Q(k)] = %. Here ¢* denotes a subgradient of function f at point z*
and f* the optimum function value. For more details and a convergence analysis of the deterministic

subgradient method, please check Appendix A.2. Note that the above step-size can be used only
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when the optimal value f* is known, however Boyd et al. [7] demonstrate that f* = 0 for several
applications (for example, finding a point in the intersection of convex sets, positive semidefinite
matrix completion and solving convex inequalities).

Stochastic Polyak Step-size. It is clear that using the deterministic Polyak step-size in the update
rule of SGD is impractical. It requires the computation of the function value f and its full gradient in
each iteration.

To avoid this, we propose the stochastic Polyak step-size (SPS) for SGD:

_ fildh) — fF

SPS: = - ‘'t
TE= VA

2

Note that SPS requires the evaluation of only the stochastic gradient V f;(2*) and of the function
fi(z*) at the current iterate (quantities that can be computed in the update rule of SGD without
further cost). However, it requires the knowledge of f;*. An important quantity in the step-size is
the parameter 0 < ¢ € R which can be set theoretically based on the properties of the function
under study. For example, for strongly convex functions, one should select ¢ = 1/2 for optimal
convergence.

In addition to SPS, in some of our convergence results we require its bounded variant:

fil@*) — f; ’v}
c|[Vfi(zF)[]P" "

3)

SPShax : Y, = min {

Here ~, > 0 is a bound that restricts SPS from being very large and is essential to ensure convergence
to a small neighborhood around the solution. If 7, = oo then SPS,,,.x is equivalent to SPS. For
closely related work see Appendix A.3.

Though SPS and SPS,,.« require knowledge of f;*, this information is often readily available.
For machine learning problems using standard unregularized surrogate loss functions (e.g. squared
loss for regression, logistic loss for classification), f = 0 [2]. In the presence of an additional
regularization term (e.g. {2 regularization), f;* can be obtained in closed form for these standard
losses. We emphasize that since f;* = inf, f;(x), the functions f; are not required to achieve the
minimum. This is important when using loss functions such as the logistic loss for which the infimum
is achieved at infinity [55]. Furthermore, we note that the deterministic Polyak step-size requires
knowledge of f* which is a much stronger assumption than the knowledge of f;*.

2.2. Optimal Objective Difference

Unlike the typical analysis of SGD that assumes a finite gradient noise 22 := E[||V f;(z*)||*], in all
our results, we assume a finite optimal objective difference.

Assumption 1 (Finite optimal objective difference)
o = Eilfi(x") = fi] = f(2*) = Eilf{] < o0 4)

This is a very weak assumption. Moreover when (1) is the training problem of an over-parametrized
model such as a deep neural network or involves solving a consistent linear system or classification
on linearly separable data, each individual loss function f; attains its minimum at x*, and thus
fi(z*) — f¥ = 0. In this interpolation setting, it follows that o = 0.
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3. Convergence Analysis

In this section, we present the main convergence results. For the formal definitions and properties of
functions see Appendix A.l. Proofs of all key results can be found in the Appendix B.

Upper and Lower Bounds of SPS. If a function g is p-strongly convex and L-smooth the fol-
lowing bounds hold: 5-||Vg(z)||> < g(z) — inf, g(z) < iHVg(m)H2 Using these bounds and by
assuming that the functions f; in problem (1) are y;-strongly convex and L;-smooth, it is straight
forward to see that SPS can be lower and upper bounded as follows:

1 1 (xF) — fF 1
< S'Yk:f(x) Ji < , 5)
2cLmax — 2¢L |V fila®)? ~ 2ep

where Loy = max{L;}!" ;.

Sum of strongly convex and convex functions. In this section, we assume that at least one of the
components f; is u; strongly convex function, implying that the function f is p-strongly convex.

Theorem 1 Let f; be L;-smooth convex functions with at least one of them being a strongly convex
Sfunction. SGD with SPSyax with ¢ > 1/2 converges as:

. 2, o
Ella® — 2% < (1 - pe)* [l — 2|* + —2—, (6)
Jite!
where o := min{ 2cle Y, b B = E[u;] is the average strong-convexity of the finite sum and

Liax = max{L;}!" | is the maximum smoothness constant. The best convergence rate and the
tightest neighborhood are obtained for ¢ = 1/2.

Note that in Theorem 1, we do not make any assumption on the value of the upper bound ~,. However,
it is clear that for convergence to a small neighborhood of the solution * (unique solution for strongly
convex functions) v, should not be very large®. Another important aspect of Theorem 1 is that it
provides convergence guarantees without requiring strong assumptions like bounded gradients or
growth conditions. We do not use these conditions because SPS provides a natural bound on the
norm of the gradients. In Appendix B.1.1, we present several corollaries of Theorem 1, where we
make additional assumptions to better understand the convergence of SGD with SPS,,x.

Sum of convex functions. Here, we derive the convergence rate when all component functions f;
are convex without any strong convexity and obtain the following theorem.

Theorem 2 Assume that f; are convex, L;-smooth functions. SGD with SPSymax with ¢ = 1
converges as:
2= a2 | 20%,

aK o

— mi = K- 1 k.
Herea—mln{ch ,vb}andz =+

2. Note that neighborhood 2

2
7%, . = 5er
- has +, in the numerator and for the case of large ,, & = 57—
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Analogous to the strongly-convex case, the size of the neighbourhood is proportional to «y,. When
interpolation is satisfied and o = 0, we observe that the unbounded variant of SPS with v, = oo
converges to the optimum at a O(1/K) rate. This rate is faster than the rates in [4, 60] and we refer
the reader to the Appendix for a detailed comparison. As in the strongly-convex case, by setting
v, < m, we obtain the convergence rate obtained by constant step-size SGD.

Additional Convergence Results. Due to space limitation, we include further convergence results
in the Appendix. In particular, in Appendix B.3 we show how SPS can be seen as an optimal
step-size for methods solving consistent linear systems and in Appendix B.4 and B.5 we present
additional convergence results of SGD with SPS for the non-convex setting. In Appendix C, we prove
a O(1/v/K) convergence rate for non-smooth convex functions. Furthermore, similar to [52], we
propose a method to increase the mini-batch size for evaluating the stochastic gradient and guarantee
convergence to the optimal solution without interpolation.

4. Experimental Evaluation

We validate our theoretical results using synthetic experiments in Section 4.1. In Section 4.2, we
evaluate the performance of SGD with SPS when training over-parametrized models. In particular,
we compare against state-of-the-art optimization methods for deep matrix factorization, binary
classification using kernel methods and multi-class classification using standard deep neural network
models.

4.1. Synthetic experiments

We use a synthetic dataset to validate our theoretical results. Following the procedure outlined
in [42], we generate a sparse dataset for binary classification with the number of examples n = 1k
and dimension d = 100. We use the logistic loss with and without ¢5 regularization. The data is
generated to ensure that the function f is strongly convex in both cases. We evaluate the performance
of SPSpax and set set ¢ = 1/2 as suggested by theorem 1. We experiment with three values of
v, = {1,5,100}. In the regularized case, f; can be pre-computed in closed form for each ¢ using
the Lambert W function [10] (see Appendix D); while f;* is simply zero in the unregularized case.
A similar observation has been used to construct a “truncated” model for improving the robustness
of gradient descent in [1]. In both cases, we benchmark the performance of SPS against constant
step-size SGD with v = {0.1,0.01}. From Figure 1, we observe that constant step-size SGD is not
robust to the step-size; it has good convergence with step-size 0.1, slow convergence when using
a step-size of 0.01 and we observe divergence for larger step-sizes. In contrast, all the variants of
SPS converge to a neighbourhood of the optimum and the size of the neighbourhood increases as -,
increases as predicted by the theory.

4.2. Experiments for over-parametrized models

In this section, we consider training over-parameterized models that (approximately) satisfy the
interpolation condition. Following the logic of the previous section, we evaluate the performance of
both the SPS and SPS,,,« variants with f = 0. Throughout our experiments, we found that SPS
without an upper-bound on the step-size is not robust to the misspecification of interpolation and
results in large fluctuations when interpolation is not exactly satisfied. For SPSy, ., the value of
7, that results in good convergence depends on the problem and requires careful parameter tuning.
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Figure 1: Synthetic experiment to benchmark SPS against constant step-size SGD for binary classifi-
cation using the (left) regularized and (right) unregularized logistic loss.
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Figure 2: Comparing the performance of optimizers on deep matrix factorization (top left) and binary
classification using kernels (top right) and multi-class classification on CIFAR-10 and CIFAR-100
with ResNet34.

This is also evidenced by the highly variable performance of ALI-G [4] that uses a constant upper-
bound on the step-size. To alleviate this problem, we use a smoothing procedure that prevents large
fluctuations in the step-size across iterations. This can be viewed as using an adaptive iteration-
dependent upper-bound fyf where 'yf = 7b/7 k=1 Here, 7 is a tunable hyper-parameter set to 2
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in all our experiments, b is the batch-size and n is the number of examples. We note that using an
adaptive ~, can be easily handled by our theoretical results. A similar smoothing procedure has been
used to control the magnitude of the step-sizes when using the Barzilai-Borwein step-size selection
procedure for SGD [58] and is related to the “reset* option for using larger step-sizes in [60]. We
set ¢ = 1/2 for binary classification using kernels (convex case) and deep matrix factorization
(non-convex PL case). For multi-class classification using deep networks, we empirically find that
any value of ¢ > 0.2 results in convergence. In this case, we observed that across models and datasets,
the fastest convergence is obtained with ¢ = 0.2 and use this value.

We compare our methods against Adam [23], which is the most common adaptive method, and
other recent methods that report better performance than Adam: (i) stochastic line-search (SLS)
in [60] (ii) ALI-G [4]? (iii) rectified Adam (RADAM) [25] (iv) Look-ahead optimizer [63]. We use
the default learning rates and momentum (non-zero) parameters and the publicly available code for
the competing methods. All our results are averaged across 5 independent runs.

Deep matrix factorization. In the first experiment, we use deep matrix factorization to examine
the effect of over-parametrization for the different optimizers. In particular, we solve the non-
convex regression problem: minyy, w, E,n(o.1) [|[W2W1z — Az||? and use the experimental setup
in [45, 50, 60]. We choose A € R19%6 with condition number x(A) = 10'° and generate a fixed
dataset of 1000 samples. We control the degree of over-parametrization via the rank % of the matrix
factors W, € R¥*6 and W, € R'0%* 1In Figure 2, we show the training loss as we vary the rank
k € {4,10} (additional experiments are in Appendix E). For k = 4, the interpolation condition is not
satisfied, whereas it is exactly satisfied for £ = 10. We observe that (i) SPS is robust to the degree of
over-parametrization and (ii) has performance equal to that of SLS. However, note that SPS does not
require the expensive back-tracking procedure of SLS and is arguably simpler to implement.

Binary classification using kernels. Next, we compare the optimizers’ performance in the convex,
interpolation regime. We consider binary classification using RBF kernels, using the logistic loss
without regularization. The bandwidths for the RBF kernels are set according to the validation
procedure described in [60]. We experiment with four standard datasets: mushrooms, rcv1, ijcnn, and
w8a from LIBSVM [9]. Figure 2 shows the training loss on the mushrooms and ijenn for the different
optimizers. Again, we observe the strong performance of SPS compared to the other optimizers.

Multi-class classification using deep networks. We benchmark the convergence rate and gen-
eralization performance of SPS methods on standard deep learning experiments. We consider
non-convex minimization for multi-class classification using deep network models on the CIFAR10
and CIFAR100 datasets. Our experimental choices follow the setup in [32]. For CIFAR10 and
CIFAR100, we experiment with the standard image-classification architectures: ResNet-34 [19] and
DenseNet-121 [20]. For space concerns, we report only the ResNet experiments in the main paper
and relegate the DenseNet and MNIST experiments to Appendix E. From Figure 2, we observe
that SPS results in the best training loss across models and datasets. For CIFAR-10, SPS results in
competitive generalization performance compared to the other optimizers, whereas for CIFAR-100,
its generalization performance is better than all optimizers except SLS. Note that ALI-G, the closest
related optimizer results in worse generalization performance in all cases. We note that SPS is able

3. With ALI-G we refer to the method analyzed in [4]. This is SGD with step-size the one described in Section 2. We
highlight that the experiments in [4] used momentum on top of the analyzed method but without any convergence
quarantees. To ensure a fair comparison with SPS, we do not use such momentum.
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to match the performance of SLS, but does not require an expensive back-tracking line-search or
additional tricks.

For this set of experiments, we also plot how the step-size varies across iterations for SLS, SPS
and ALI-G. Interestingly, for both CIFAR-10 and CIFAR-100, we find that step-size for both SPS
and SLS follows a cyclic behaviour - a warm-up period where the step-size first increases and then
decreases to a constant value. Such a step-size schedule has been empirically found to result in good
training and generalization performance [31] and our results show that SPS is able to simulate this
behaviour.

5. Conclusion

We proposed and theoretically analyzed a stochastic variant of the classical the Polyak step-size. We
quantified the convergence rate of SPS in numerous settings and used our analysis techniques to
prove new results for constant step-size SGD. Furthermore, via experiments on a variety of tasks
we showed the strong performance of SGD with SPS as compared to state-of-the-art optimization
methods. There are many possible interesting extensions of our work: using SPS with accelerated
methods, studying the effect of mini-batching and non-uniform sampling techniques and extensions
to the distributed and decentralized settings.
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Supplementary Material

The Supplementary Material is organized as follows: In Section A, we provide the basic definitions
mentioned in the main paper. We also present the convergence of deterministic subgradient method
with the classical Polyak step-size. In Section B we present the proofs of the main theorems and
in Section C we provide additional convergence results. In Section D, we provide the closed form
solutions for f;* for standard regularized binary surrogate losses. Finally, additional numerical
experiments are presented in Section E.

Appendix A. Technical Preliminaries
A.1. Basic Definitions

Let us present some basic definitions used throughout the paper.

Definition 3 (Strong Convexity / Convexity) The function f : R™ — R, is p-strongly convex, if
there exists a constant pn > 0 such that Vx,y € R™:

@) 2 f) + (V@) —y) + 4 o=yl ™
for all x € R%. If inequality (7) holds with 1w = 0 the function f is convex.

Definition 4 (Polyak-Lojasiewicz Condition) The function f : R — R, satisfies the Polyak-
Lojasiewicz (PL) condition, if there exists a constant . > 0 such that Vx € R™:

IVF@)I? = 2u(f(x) - f*) ®)

Definition 5 (L-smooth) The function f : R™ — R, L-smooth, if there exists a constant L > 0 such
thatVx,y € R":

IVf(z) = VIl < Lilz -yl ©)

or equivalently:

F(&) < F) + (VT )a — )+ 5 o — ol (10)

A.2. The Deterministic Polyak step-size

In this section we describe the Polyak step-size for the subgradient method as presented in [44] for
solving min,cra f(x) where f is convex, not necessarily smooth function.
Consider the subgradient method:

aF = 2b — gt
where 7y, is the step-size (learning rate) and ¢* is any subgradient of function f at point z*.
k *
Theorem 6 Let f be convex function. Let vy, = % be the step-size in the update rule of

subgradient method. Here f(x*) denotes the optimum value of function f. Let G > 0 such that

1g%11> < G2. Then,
G|lz® — z*| ( 1 >
k *
s —f@) < —=0(—],
fo = 1) Vk+1 Vk
where fF =min{f(z") :i=0,1,...,k}.
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Proof

= 2% — pg® —2*|?

= |la¥ —2*|? = 29 (a” — 2%, gF) + 2Nl g" I

2% — 2*||* — 27, [f(xk) — f@)| +illg"|? (11)

IN

where the last line follows from the definition of subgradient:
f@®) = f@ah) + (" —a”, g")

Polyak suggested to use the step-size:

k *
Ve = W (12)
which is precisely the step-size that minimize the right hand side of (11). That is,
= LI EE) —rgmin, (1% — 2717 = 230 1608 = 0] + 22101
. By using this choice of step-size in (11) we obtain:
L e A L R (R Al
© k- 22 - HCOR (GOl (13)

g™ 17

From the above note that ||z — 2*||? is monotonic function. Now using telescopic sum and by
assuming ||g*|?> < G? we obtain:

k
1 .
lah*t 2t < Jla® —at2 - = Y [f6) - @) (14)
=0
Thus,
k
1 )
cr DL = FE] < = 27 = a5 = o < o o

Il
=)

7

Let us define f* = min{f(z%) :4 =0,1,...,k} then: [f¥ — f(2*)]? < Gz’ ypg

k+1
ey < S (1)
Lo I@ ==t =9\

|
For more details and slightly different analysis check [44] and [7]. In [17] similar analysis to

the above have been made for the deterministic gradient descent (¢¥ = V f(z¥)) under several
assumptions. (convex, strongly convex , smooth).
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A.3. Closely related work

We now briefly compare against the recently proposed stochastic variants of the Polyak step-size
[4, 43, 50]. In Section 3, we present a detailed comparison of the theoretical convergence rates.

In Rolinek and Martius [50], the L4 algorithm has been proposed showing that a stochastic
variant of the Polyak step for SGD achieves good empirical results for training neural networks.
However it has no theoretical convergence guarantees. The step-size is very similar to SPS (2)
but each update requires an online estimation of the f; which does not result in robust empirical
performance and requires up to three hyper-parameters.

Oberman and Prazeres [43] use a different variant of the stochastic Polyak step-size: v, =
2[f (z*)— f*]
B[V fi(a®)[12
the evaluation of f(z*) in each step, making it impractical for finite-sum problems with large 7.
Moreover, their theoretical results focus only on strongly convex smooth functions.

In the ALI-G algorithm proposed by Berrada et al. [4], the step-size is set as:

This step-size requires knowledge of the quantity IE; ||V f;(2*)||? for all iterates 2* and

Vi = min {%, 77} , where § > 0 is a positive constant. Unlike our setting, their theoretical
analysis relies on an e-interpolation condition. Moreover, the values of the parameter § and 7 that
guarantee convergence heavily depend on the smoothness parameter of the objective f, limiting
the method’s practical applicability. In Section 3, we show that as compared to [4], the proposed
method results in both better rates and a smaller neighborhood of convergence. For the case of
over-parameterized models, our step-size selection guarantees convergence to the exact solution
while the step proposed in [4] finds only an approximate solution that could be § away from the
optimum. In Section 4, we also experimentally show that SPS,,,,x results in better convergence than
ALI-G.

Appendix B. Proofs of Main Results

In this section we present the proofs of the main theoretical results presented in the main paper.
That is, the convergence analysis of SGD with SPS,,,x and SPS under different combinations of
assumptions on functions f; and f of Problem (1).

First note that the following inequality can be easily obtained by the definition of SPSy,.x (3):

Tk *
RIVAE? < 2 | fiah) - 7] (1)
We use the above inequality in several parts of our proofs. It is the reason that we are able to obtain an

upper bound of vZ||V f;(«*)||? without any further assumptions. For the case of SPS (2), inequality
(15) becomes equality.
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B.1. Proof of Theorem 1
Proof
[ — 22 = 2 — WV fi(2¥) — %2
= a* — a*||* = 295 (a® — 2%, V £i(2F)) + RV fi(2P)||?

soug comexiy (1 = ) l|2* — 2*|2 = 2y [fi(xk) - fi(.%'*)] + IV fi(a®)]?
(g) (1 — i) || 2% — 2% — 2y [fi(xk) - fi($*)]

+2 M) - 7]
= Ol — I 2 [ i) - £+ S il
+ 2 Ak - ]
= (1 = piye)l|=* — 2*|* + (-2% + lf) [fi(xk) - f{‘}
+27 [fi(2™) — f7]

c>1/2 & 112 . N

< (1 — pye)||2® — *)|? + 2y [fi(x*) — f7]

(5),3) . 1 *

< 1 — p; min o ¢ ) 2" =212+ 29, [fi(z") = £7]
2¢Lmax

taking expectation condition on z*

* . 1 * * *
Eillz" — 2> < (1-Eip]min§ -——,7, ¢ ) ll2* — 2*|]> + 29, E [fi(2*) — f;]
2¢Lmax

1
@ (1 — [imin { 5oL v%}) 2% — 2*||? + 27, 0° (16)
max

Taking expectations again and using the tower property:

E||zF T — 2*? < (1 — ﬂmin{

k * (|2 2
s Bl s P an

Recursively applying the above and summing up the resulting geometric series gives:

k
1
IE||:U’€ —|? < <1 — [min { 20Lmax’%}> 20 — z*|?
k—1 1 g
) _ .
+2v,0 E (1 — [min { QCLmax’%}>
=0

k
. 1 0 _ %2 2
< <l—umln{20LmaX,'yb}> |lz” — 2™ ||* + 27,0

Let o« = min {m, ’}/b} then,

.

1

_ . 1
Mmm{mﬁb}

. B . 27, 02
Blaf — ol < (1= o)t o — 2| + =2 (18)
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From definition of « is clear that having small parameter c improves both the convergence rate

1 — ficr and the nerghborhoo the best selection would be
1
Cc = 5- |

B.1.1. COROLLARIES OF THEOREM 1

In our first corollary, we assume that our model is able to interpolate the data (each individual loss
function f; attains its minimum at £*). This condition is satisfied for unregularized least-squares
regression on a realizable dataset, or when using the squared-hinge loss on a linearly-separable
dataset. The interpolation assumption enables us to guarantee the convergence of SGD with SPS,
without an upper-bound on the step-size (7, = 00).

Corollary 7 Assume interpolation (¢ = 0) and let all assumptions of Theorem 1 be satisfied. SGD
with SPS with ¢ = 1/2 converges as: E||z* — z*||? < (1 - ) |20 — 2]

We compare the convergence rate in Corollary 7 to that of stochastic line search (SLS) proposed in
ﬁ? - 7bﬂ} :

In Berrada et al. [4], ALI-G is analyzed under the strong assumption that all functions f; are
p-strongly convex and L-smooth. In the next corollary, in order to compare against the results for
ALI-G from Berrada et al. [4], we make the strong assumption that all functions f; have the same
properties. We note that such an assumption in the interpolation setting is quite strong and reduces
the finite-sum optimization to minimization of a single function in the finite sum.

Lrnax

[60]. In the same setting, SLS achieves the slower linear rate max {1 —

Corollary 8 Let all the assumptions in Theorem 1 be satisfied and let all f; be u-strongly convex
and L-smooth. SGD with SPSy,ax with ¢ = 1/2 converges as:

k * K k * 202L
Blaf — ol < (1-F) e =P+ =5

For the interpolated case we obtain the same convergence as Corollary 7 with j1 = p and Ly = L.

1

Note that, the result of Corollary 8 is obtained by substituting -, Q) ﬁ = i into (6).

For the setting of Corollary 8, Berrada et al. [4] show the linear convergence to a much larger
neighborhood than ours and with slower rate. In particular, their rate is 1 — ¢ and the neighborhood
is %(f + 4L2 + 3,;) where § > 2Le and € is the e-interpolation parameter € > max;[f;(z*) — f7]
which by definition is bigger than o2. Under interpolation where ¢ = 0, our method converges
linearly to the x* while the algorithm proposed by Berrada et al. [4] still converges to a neighborhood
that is proportional to the parameter 4.

An interesting outcome of Theorem 1 is a novel analysis for SGD with a constant step-size.
In particular, note that if the bound in SPS,,,, is selected to be vy, < m, then using the lower

bound of (5), it can be easily shown that our method reduces to SGD with constant step-size

YV%=7=% < 300 L . In this case, we obtain the following convergence rate.
Corollary 9 Let all assumptions of Theorem 1 be satisﬁed SGD with SPSyax with ¢ = 1/2 and
v, < L — becomes SGD with constant step-size y < ¢—— and converges as:
202
Ellz* — 2| < (1= py)* [|2° — 27| + —
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If we further assume mterpolatton (o = 0), the iterates of SGD with constant step-size v <
satisfy: Bl|z* — 2|2 < (1 = )" [ — 27||2.

max

To the best of our knowledge, this is the first result that shows convergence of constant step-size SGD
to a neighborhood that depends on the optimal objective difference o (4) and not on the variance

= E[||V fi(z*)||>. If we assume that all function f; are p-strongly convex and L-smooth functions
then the two notions of variance satisfy the following connection: 5-2? < 0% < izQ.

B.2. Proof of Theorem 2

Proof
[+ =2 ? = e = Vi) — 2|
= |laf =2 — 2t — 2, V() + 22V fi(2M) )P
convexity . .
< et =@ = 2 [fie") — Si@h)| ARV St

15)

<l -2t 2 [i@h) — fi@)] + B A8 - 5]
= feF =P =2 [fih) = £+ = A+ 2 f@N) - ]

= koo (2o 1) [ - ] ven (e - 5] a9
>0 >0

Let & = min { el %} and recall that from the definition of SPS,,,.« (3) we obtain:

$5),3)
@ < %< (20)

From the above if & = o L then the step-size is in the regime of the stochastic Polyak step (5). In
the case that o = ~, then the analyzed method becomes the constant step-size SGD with stepsize

Ye = Y-
Since ¢ > 1 it holds that (2 — 1) > 0. Using (20) into (19) we obtain:

ka+l _x*H2 < |

—ot P (2 1) [H - ] 4 2wl - £

et e o (2= 1) [A6H - £+ 2, e - £

= kP -a (2 1) [ - A+ i) - £]
2, [ - £]

= ke P oa (22 1) [A6H - )] - (22 2) ) - £
42, [£(@) - £]

< et -a(2-2) [A6H - 6]+ 8D - 8T @D
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where in the last inequality we use that o (2 — 2) [f;(z*) — f7] > 0.
By rearranging:

a(2-2) [ - 5] = Nt P -t -t 2 ) - £ D
. . .o . k. T 1 .
By taking expectation condition on z" and dividing by « (2 — E)'

* c * * C
fak) = 1) < (I =P = Bl = a2) + 29, o =

a(2e - a(e—1)
Taking expectation again and using the tower property:

Cc

ELf) = f) < Sy (Bl =P = Bl = o) 4+ 29, o

a(2c—1)

Summing from £ = 0 to K — 1 and dividing by K:

= . =
k * _ k *1(12 k+1 * (12
KZ;)E[f(x)—f(x )| = Q(%_DK;)(EW —a*|]2 — Efla* — ")
+ 1= QC'yb
k—O a(2c—1)
2¢c 1 0 w2 K %2 2¢y,0°
= - - i o) _ _2ChY
al2c—1) K (" =27 I 7+ a(2c—1)
c 1 2¢cy, 0
< 14,0 * (|2 b 23
S Seenr® It Sae oo 23)
Let 2% sz o %, then
K-1
Jensen 1 c 1 2¢cy. 0
_K z L [ ky *} A0 w2 b
Forc=1
B N 20 — %2 2~ o2
E[fG") - f(z)] < | — L . (24)
and this completes the proof. |

At this point we highlight that ¢ = 1 is selected to simplify the expression of the upper bound in
(24). This is not the optimum choice (the one that makes the rate and the neighborhood of the upper
bound smaller). In order to compute the optimum value of ¢ one needs to follow similar procedure to
[14] and [37]. In this case ¢ will depend on parameter ¢ and the desired accuracy € of convergence.

However as we show bellow having ¢ = 1 allows SGD with SPS to convergence faster than the
ALI-G algorithm [4] and the SLS algorithm [60] for the case of smooth convex functions.
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Comparison with other methods Similar to the strongly convex case let us compare the above
convergence for smooth convex functions with the convergence rates proposed in [60] and [4].
For the smooth convex functions, Berrada et al. [4] show the linear convergence to a much

larger neighborhood than ours and with slower rate. In particular, their rate is % <12§L€> and the
-5

neighborhood is where > 2Le and ¢ is the e-interpolation parameter € > max;[f;(z*) —

f7] which by definition is bigger than o2. Under interpolation where o = 0, our method converges
with a O(1/K) rate to the x* while the algorithm proposed by Berrada et al. [4] still converges to a
neighborhood that is proportional to the parameter .

In the interpolation setting our rate is similar to the one obtain for the stochastic line search (SLS)

proposed in [60]. In particular in the interpolation setting, SLS achieves the following O(1/K) rate

E[f(z%) - f(z)] < wﬂxo — 2*||? which has slightly worse constants than SGD
with SPS.

B.3. SPS on Methods for Solving Consistent Linear Systems
B.3.1. CONSISTENT LINEAR SYSTEMS

In [48], given the consistent linear system Ax = b, the authors provide a stochastic optimization
reformulation of the form (1) which is equivalent to the linear system in the sense that their solution
sets are identical. That is, the set of minimizers of the stochastic optimization problem X* is equal to
the set of solutions of the stochastic linear system £ := {x : Az = b}. An interesting property of
this stochastic optimization problem is that*:

fila) - £ 720 fia) = %HVfi(x)HQ vz e RY.

Using the special structure of the problem, SPS (2) with ¢ = 1/2 takes the following form:
'Yk:@ 2[fz<xk>_fz*] -1
IV fi(2®)II? ’

which is the theoretically optimal constant step-size for SGD in this setting [48]. This reduction
implies that SPS results in an optimal convergence rate when solving consistent linear systems.

B.3.2. MORE DETAILS AND CONVERGENCE ANALYSIS

Recently several new randomized iterative methods (sketch and project methods) for solving large-
scale linear systems have been proposed [13, 27, 29, 48]. The main algorithm in this literature is the
celebrated randomized Kaczmarz (RK) method [21, 56] which can be seen as special case of SGD
for solving least square problems [37]. In this area of research, it is well known that the theoretical
best constant step-size for RK method is v = 1.

As we have already mentioned in Section B.3.1, given the consistent linear system

Az =0, (25)

Richtarik and Takac [48] provide a stochastic optimization reformulation of the form (1) which is
equivalent to the linear system in the sense that their solution sets are identical. That is, the set of

4. For more details on the stochastic reformulation problem and its properties see Appendix B.3.2.
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minimizers of the stochastic optimization problem X* is equal to the set of solutions of the stochastic
linear system £ := {z : Az = b}.

In particular, the stochastic convex quadratic optimization problem proposed in Richtarik and
Takac [48], can be expressed as follows:

min f(z) := Es.pfs(). (26)
zER™
Here the expectation is over random matrices S drawn from an arbitrary, user defined, distribution D
and fg is a stochastic convex quadratic function of a least-squares type, defined as

1 1
fs(@) =S| Az —blffy = 5 (Aw —b) "H(Az — ). @27)

Function fs depends on the matrix A € R™*™ and vector b € R™ of the linear system (25) and
on a random symmetric positive semidefinite matrix H := S(STAATS)'ST. By { we denote the
Moore-Penrose pseudoinverse.

For solving problem (26), Richtérik and Tak4¢ [48] analyze SGD with constant step-size:

a" = 2F — VY fs, (2"), (28)

where V fs, (x*) denotes the gradient of function fg .- In each step the matrix Sy, is drawn from the
given distribution D.

The above update of SGD is quite general and as explained by Richtdrik and Takac¢ [48] the
flexibility of selecting distribution D allow us to obtain different stochastic reformulations of the
linear system (25) and different special cases of the SGD update. For example the celebrated
randomized Kaczmarz (RK) method can be seen as special cases of the above update as follows:

Randomized Kaczmarz Method: Let pick in each iteration the random matrix S = ¢; (random
coordinate vector) with probability p; = ||A;.||*/||A||%. In this setup the update rule of SGD (28)
simplifies to

R+l _ ok wAz‘:l"k — b

Al

[Az]> "

Many other methods like Gaussian Kacmarz, Randomized Coordinate Descent, Gaussian Decsent
and their block variants can be cast as special cases of the above framework. For more details on the
general framework and connections with other research areas we also suggest [28, 30].

xT

Lemma 10 (Properties of stochastic reformulation [48]) For all x € R™ and any S ~ D it holds
that:
* f§ =0 1 2 1 *
fs(z) = fs(a®) =" fs(z) = S Vis(2)lg = 5(Vfs(z), 2 —a")m. (29)
Let x* is the projection of vector x onto the solution set X* of the optimization problem min,cgn f(x)
(Recall that by the construction of the stochastic optimization problems we have that X* = L). Then:
A$ln(w)

e = < fa). (30)

where A\t denotes the minimum non-zero eigenvalue of matrix W = E[A THA].
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As we will see in the next Theorem, using the special structure of the stochastic reformulation
(26), SPS (2) with ¢ = 1/2 takes the following form:

2 2 [fs(@®) — Js] @0 |
BTV s (R ’

which is the theoretically optimal constant step-size for SGD in this setting [48]. This reduction
implies that SPS results in an optimal convergence rate when solving consistent linear systems. We
provide the convergence rate for SPS in the next Theorem.

Though a straight forward verification of the optimality of SPS, we believe that this is the first
time that SGD with adaptive step-size is reduced to constant step-size when is used for solving linear
systems. SPS does that by obtaining the best convergence rate in this setting.

Theorem 11 Let Ax = b be a consistent linear system and let x* is the projection of vector x
onto the solution set X* = L. Then the SGD with SPS (2) with ¢ = 1/2 for solving the stochastic
optimization reformulation (26) satisfies:

Ellz* — 2*|? < (1 - AL

min

(W))* |2 — z*||? 31)
_l’_

where A\t denotes the minimum non-zero eigenvalue of matrix W = E[ATHA].

Proof
lah =2t B ot — Vs, (aF) — 2|
— k *((2 k * k 2 k\|12
= 2" =277 = 29 (" — 2", Vs, (27)) + %l Vs, @) (32
Let us select 7, such that the RHS of inequality (32) is minimized. That is, let us select:

e Vs M) e 2(fs() — S5
IV 7s, )] IV fs, (=)

Substitute this step-size to (32) we obtain:
(a* — 2%,V f5,(a"))

[ G [F e A ) (a* — 2,V fs, (M)

IV fs, ()2
2
(z* — a2,V fs, (2")) k(2
ZcaE R
* * 2
B N (it 4 - ) N 07 N i)
IV fs,. («%)]]? IV fs, («%)]?
_ ”fL’k _ (L’*HZ _ [<xk — 2", Vs, (xk>>]2
IV fs, («%)]]?
29 «
2ok — 2| - 2s (") (33)
By taking expectation with respect to Sy and using quadratic growth inequality (30):
Es,[lz"* — 2*|”] = [la* - 2*|* - 2f(a")
(30
<l = 2P = A (W)l — 2
= [ AL (W)] [l — a2, (34)
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Taking expectation again and by unrolling the recurrence we obtain (31). |

We highlight that the above proof provides a different viewpoint on the analysis of the optimal
constant step-size for the sketch and project methods for solving consistent liner systems. The
expression of Theorem 11 is the same with the one proposed in [48].

B.4. SGD with SPS for Sum of Non-convex Functions with PL. Objective
B.4.1. SUM OF NON-CONVEX FUNCTIONS: PL OBJECTIVE

We first focus on a special class of non-convex functions that satisfy the Polyak-Lojasiewicz (PL)
condition [44]. The PL inequality is a generalization of strong-convexity and is satisfied for matrix
factorization [57] or when minimizing the logistic loss on a compact set [22]. In particular, we assume
that function f satisfies the PL condition but do not assume convexity of the component functions f;.
The function f satisfies the PL condition if there exists p1 > 0 such that: ||V f(2)||? > 2u(f(z)— f*).

Theorem 12 Assume that function f satisfies the PL condition with parameter i, and let f and f;
be smooth functions. SGD with SPSy,ax with ¢ > L%lj" and vy, > m converges as:

0_2
BUf(a4) — £a")] < G0 - 1) + 5

where v = 7, (l —2u 4+ Léf‘;") € (0,1 and o = miﬂ{mﬁb}-

«

Under the interpolation setting, o = 0, and SPS,,,,, converges to the optimal solution at a linear rate.

If v, < min { % leax, 4MC_22MX } using the lower bound in (5), the analyzed method is SGD with

constant step-size and we obtain the following corollary.

Corollary 13 Assume that f satisfies the PL condition and let f and f; be smooth functions. SGD

with constant step-size 7y, = 7 < LQ“ — converges as:
BIf(a) — 1)) < /¥ [£(a) — £(a")] + 522
- 2(1—v)c

To the best of our knowledge this is the first result for the convergence of SGD for PL functions
without assuming bounded gradient or bounded variance (for more details see results in [22] and
discussion in [14]). In the interpolation case, we obtain linear convergence to the optimum with a
constant step-size [59].

B.4.2. PROOF OF THEOREM 12

Proof By the smoothness of function f we have that

Pt < FaR) + (V7 R), 25— ob) 4 Dokt a2
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Combining this with the update rule of SGD we obtain:

F@*Y) < fEh) + <vf(xk)’mk+1 _ $k> 1 §||xk+1 — k)2
k k k Loy, NI
= J@") =9 (VI VD)) + SV i) (35)
By rearranging:
Fa*h) — f(a*)
Yk

< (VIR VAED) + D)

< (N, V) + o [ - 5]
= (VI VRE) + o [ - 5G] + o ) - 7]

and by taking expectation condition on z*:

g, [t = /1a")

| = (V) + g [1) - )] + B - £

Vi 2
< IV + o [ - )] + o
< o [f*) - @] 4 o[£ - @] + o

Let @ = min {m,'yb}. Then,

. [f@:k“l 1)

IA
=
| —
=
8
5
!
=
8
*
S~—

F [~ @) + 2o
1) - )] - 2u [ - 1)
P2 1)~ fah)] + 2o
= (o) [reh - s6n)] + 5o
S (; —2p+ L;‘;) Fa*) = £ + %02 (36)

B[ - )] < a (F-ams )R] - sen] + 22 oo
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By having v € (0, 1] and by recursively applying the above and summing the resulting geometric
series we obtain:

Lo?y L
E[f@") - f@)] < v [Fa") - f@)] + =22 Y v
j=0
0,2
< [ 16 + g (8)

In the above result we require that 0 < v =, (é —2u 4+ Lg—‘g") < 1. In order for this to hold
we need to make extra assumptions on the values of v, and parameter c. This is what we do next.
Let us divide the analysis into two cases based on the value of parameter . That is:

o (i) If 57— <, then,

1 1 1
= mi = d = 2c+ —)L —2u .
“ o { 2¢Lmax’ ’yb} 2¢Lmax ner=h <( ¢ 20) e ,u>

By preliminary computations, it can be easily shown that v > 0 for every ¢ > 0. However

for v < 1 we need to require that 7, < W and since we are already assume that
a 2c

1
3ol < 7, we need to force

1 1
<
2eLmax — (5 — 20+ F52)

to avoid contradiction. This is true only if ¢ > L%;‘ which is the assumption of Theorem 12.

o (i) If 7, < 57— then,

]. 1 Lmax LmaX

= mi = and = — =2 =1-2 ——",.
Note that if we have ¢ > L%/j" (an assumption of Theorem 12) it holds that v < 1. In addition,
by preliminary computations, it can be shown that v > 0 if 7, < 4Mc_2+max. Finally, for

c> L%}j" it holds that 5 leax < 4l1/c_22max’ and as aresult v > 0 for all 7, < m

By presenting the above cases on bound of  we complete the proof. |

Remark 14 The expression of Corollary 13 is obtained by simply use ¢ = LS—E" in the case (ii) of
the above proof. In this case we have v <

Lg’: andv =1 — p.

ax

B.5. SGD with SPS for General Non-Convex Functions

In this section, we assume a common condition used to prove convergence of SGD in the non-convex
setting [6].
E(IVfi@)?] < plVf(@)|* + 6 (39)

where p, § > 0 constants.
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Theorem 15 Let f and f; be smooth functions and assume that there exist p,§ > 0 such that the

condition (39) is satisfied. SGD with SPSyax with ¢ > Lpi and 7y, < max {Llp, Vb} converges as:

ax

2 0y g
C(f()f( )

(% —a+L7§) 1
C M

[nin, [V f(z")" <

+

wherea:min{m,%}a C:(%Jfa)*p(%*ajLL%z) and

4Lp(p+1
o1+ -1+ D
o 2¢cLmax

From the above theorem, we observe that SGD with SPS results in O(1/K) convergence to a
neighborhoud governed by §. For the case that § = 0, condition (39) reduces to the strong growth
condition (SGC) used in several recent papers [51, 59, 60]. It can be easily shown that functions that
satisfy the SGC condition necessarily satisfy the interpolation property [59]. In the special case of
interpolation, SGD with SPS is able to find a first-order stationary point as efficiently as deterministic

gradient descent. Moreover, for ¢ € ( i L, 5 L, }, the lower bound ﬁ of SPS lies in the

range [/%L, p%) and thus the step-size is larger than p%’ the best constant step-size analyzed in this
setting [59].

B.5.1. PROOF OF THEOREM 15
Proof First note that:
g gl i
— (VI VEED) = DIV = VI = ZIVAGE 2 = SV

(20)
<

= RIVLEIP + 2NV -5, (V") Vb))
—SIVEEHIP = SIVFEh)?

= (B - waEh I+ (T - S) I9sEh?
—, (VI ("), Vfilab) ) (40

2Vfiah) = VP = SIVAEIP = SIVFEH)?

By the smoothness of function f we have that

f(:Ek_H) < f(l‘k) 4+ <Vf($k),$k+1 . :Ck> + gngck—i-l . xk||2
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Combining this with the update rule of SGD we obtain:
k+1 k k k+1 k L k+1 k|2
F@Y) < f@) + (V)R ok 4 et - ok
L 2
< flah) = (VIR VEN) + TV
Ly?
< IR = (VAN Vi) + V)
2

D pe+ (2o D) uneh 2+ (2 - Q) vt
2 2 2 2 2

~%, <Vf(93k), sz'(l‘k)> 41)

By taking expectation condition on z*:

(41)

L 2
Ef(@ ) < f")+ (”2 -S4k ) BV AGIE+ (2 - 5) IVFEH)?

—, (V") BV fi(ah))
2

- f(x)+<%_a+L7

EVAEH?+ (2 - ) IVFEHI?

2 2 2 2

IV f())?

= fh+ ('; o, D

S+ 5 | EIVAGHI2 - (2 +5) IVAEHI? @2

2

L 2
Since 0 < o < v, we have that (2" — % + 7b) > (. Thus, we are able to use (39):

2

Eif () < f(az’“>+<”; 0 )Enw O = (2 +5) IVFEH)?

2
< f(a:’f>+<”;—j+L )[pHVf( W +8] = (2 4+ ) Iv s
= @)+ 5 [ —a+ L) p— Gy + )] IVF@IP + 5 (3 — o+ I2) 6

By rearranging and taking expectation again:

[ +0) = (3 = a + 102) p] E[IVF(@) 2] < 2 (BIf(2")] - ELf (")) + (3, =+ L47) 6
¢
If ¢ > O then:

E[IVf("))?] < (43)
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By summing from £ = 0 to K — 1 and dividing by K:

K-1 K1 K )
% E[|Vf(x ] < 2[1{ (E[f(xk)] _]E[f(mk+1)]> _i_% Z (71; Z‘L’Yb)
k=0 =0 —
21 0y R (K (v, —a+ L))o
< i UG -EFE") :
20— pp (v —+1L72)6
< o (1) = ) + 2= )

In the above result we require that ¢ = (v, + ) — (% —o+ vaz ) p > 0. In order for this to
hold we need to make extra assumptions on the values of v, and parameter c. This is what we do
next.

Let us divide the analysis into two cases. That is:

o () If 577 — <, then & = min {72@1“)% . ’Yb} = 7QCleax and

1 1
_ B _ I~2) p = - — Ly ) p.
(=(y+a) ('Vb a+ Vb) p <7b + 2CLmaX> (7" 2¢cLmax * 71’) P

By solving the quadratic expression of ¢ with respect to , , it can be easily shown that ¢ > 0 if

-1+ o174 Y

0<ny, <9, = 2Lp

To avoid contradiction the inequality 57— L < 7, needs to be true, where 7, is the above

upper bound of ~,. This is the case of ¢ > 3 ]f n’;x which is the assumption of Theorem 15.

o (i) Ifv, < ~ then a = mln{m’%} — 4, and

C=(7b+a>—(%—04+L73)P=<%+%)—(%—%+va)0=2%—va[)

In this case, by preliminary computations, it can be shown that ¢ > 0if 7, < Llp. For

2
c > 4L 1t also holds that - < Ip:
[ |

B.5.2. ADDITIONAL CONVERGENCE RESULT FOR NONCONVEX SMOOTH FUNCTIONS:
ASSUMING INDEPENDENCE OF STEP-SIZE AND STOCHASTIC GRADIENT

Let us now present an extra theoretical result in which we assume that the step-size 7y, and the
stochastic gradient V f;(x*) in each step are not correlated. Such assumption has been recently used
to prove convergence of SGD with the AdaGrad step-size [61] and for the analysis of stochastic line
search in [60]. From a technical viewpoint, we highlight that for the proofs in the non-convex setting,
we use the lower and upper bound of SPS rather than its exact form. This is what allows us to use
this independence.

Let us state the main Theorem with the extra condition of independence and present its proof.
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Theorem 16 Let f and f; be smooth functions and assume that there exist p,§ > 0 such that the
condition (39) is satisfied. Assuming independence of the step-size ;. and the stochastic gradient

) k . . , . pL 2 1
V fir (z¥) at every iteration k, SGD with SPSmax with ¢ > f~— and v, < max {L—p, m}
converges as:

0y _ * LS 2
. ky(12 < f(2?) — f(x*) Y
mip BI V|7 < S

pc LLpax ’yg pLy, . B1
where f1 =1 — ———="and o = 1 — —*, @ = min L Vo Ba ¢

Proof By the smoothness of function f we have that

f(:Ek_H) < f(l‘k) 4+ <Vf(l‘k),xk+1 . l‘k> + gngck—i-l . xk||2

Combining this with the update rule of SGD we obtain:

Y < Fah) + (TR, 2 - ak) 4 bk

2
<) = (V) Vi) + DR s P @)

Taking expectations with respect to i;, and noting that -y, is independent of V f;(z*) yields:

2
By S@) < @) = (VIR BV ) + TR [V £

= ky — k2 4 D, (kY12

= @) -V + R V)

L’y,?

B
L 2

3 IV + 23 (AT S @I + 9

< S@P) =l VEEIE+ E [pIV (@)1 + 6]

< " k :
( ) { 26Lmax ’
2

L? L
: f(wk)<min{ : 7}72'”> IV + s e

2¢Lmax '®

By rearranging and taking expectations again:

2 2
<min{262max,vb}—L;bp> EIVAEH)Z < E[f()] - E[f)] + 2ts @)

o
Let o > O then:

Lybz(s

B[V < o

(L") - ELF ")) + (48)

Q| m
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By summing from k£ = 0 to K — 1 and dividing by K:

K—1 K—1 K1
& LBV < S 3 (BUEHI- B + .
< 1L (1) - By + 22
< = (fE) - F@) + L;f (49)
In the above result we require that o = (min {m, %} - ﬂ ) > 0. In order for this to hold

we need to make extra assumptions on the values of vy, and parameter c. This is what we do next.
Let us divide the analysis into two cases. That is:

o (NIf 57— < 7, then,

. 1 L’yb2 1 Lyf
a = | min - = — :
2L ® 2 P %L 2 "

. . . . . . 1 .
By preliminary computations, it can be easily shown that o« > 0 if 7, < Tl To avoid
contraction the inequality leax <7 chleax needs to be true. This is the case of ¢ > LL,:;X
which is the assumptions of Theorem 16.

o (i) If 5, < 57— then,

C

2 2
o = | min 1 o —Lﬁybp :ry_L’ybp:fy l—ﬂp
2¢Lmax '° 2 b 2 b 2
2

In this case, by preliminary computations, it can be shown that o > 0 if 7, < Ip: For

2
c > 4L 1t also holds that 2cL - < Ip

Appendix C. Additional Convergence Results

In this section we present some additional convergence results. We first prove a O(1/v/K) con-
vergence rate of stochastic subgradient method with SPS for non-smooth convex functions in the
interpolated setting. Furthermore, similar to [52], we propose a way to increase the mini-batch size
for evaluating the stochastic gradient and guarantee convergence to the optimal solution without
interpolation.
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C.1. Non-smooth Convex Functions

In all of our previous results we assume that functions f; are smooth. As a result, in the proofs of
our theorems we were able to use the lower bound (5) of SPS. In the case that functions f; are not
smooth using this lower is clearly not possible. Below we present a Theorem that handles the case
of non-smooth function for the convergence of stochastic subgradient method?. For this result we
require that a constant G exists such that ||g;(z)||> < G? for each subgradient of function f;. This is
equivalent with assuming that functions f; are G-Lipschitz. To keep the presentation simple we only
present the interpolated case. Using the proof techniques from the rest of the paper one can easily
obtain convergence for the more general setting.

Theorem 17 Assume interpolation and that f and f; are convex non-smooth functions. Let G be a
constant such that || g;(x)||> < G%,¥i € [n] and x € R". Let v* be the subgradient counterpart
of SPS (2) with ¢ = 1. Then the iterates of the stochastic subgradient method satisfy:

_ . G||z° — z*|| B 1
E[f(xK)—f(x )] S\/E_O<\/F>

K _ 1 xK-1k
where T% = > 1 x”.

Proof The proof is similar to the deterministic case (see Theorem 6). That is, we select the ~;, that
minimize the right hand side of the inequality after the use of convexity.

I =2 = la® - gl — 2

% — 2|2 — 2 (a* — 2%, gF) + ARl gF]I?

convexity

< ek -t -2 [£ia) - £ +AEIGEE 60

fi(z®)—fi(z*) 6

Using the subgradient counterpart of SPS (2) with ¢ = 1, that is, v, = PAE we obtain:
e I e e e P KGR R
w2
lgf 1>
12
_ b gz LfiGEF) — fi(a®)]
= [ AT
g7
llgi()|*<G? (2R — fi(x* 2
£ ot g2 - B 5D

5. Note that for non-smooth functions, it is required to have stochastic subgradient method instead of SGD. That is, in
each iteration we replace the evaluation of V f;(x) with its subgradient counterpart g;(x)
6. Recall that in the interpolation setting it holds that f" = f* = f(z™).
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taking expectation condition on z*:
. e B [fiah) — fia)]”
Bl o < ot -t - S A
2
sensen o [BUAEH) — fiGa)]
L =
2
) fa*) — fa")
et oarpp- L = } (52)
Taking expectation again and using the tower property:
2
) a2 E[f(@") — f(=¥)
Bl - P < Bt o7 - SO S (53)
By rearranging, summing from k£ = 0 to K — 1 and dividing by K:
K—1 k w12 K-1
1 E|f(z") — f(z*) 1 . N
LS BV T o L Tk - o2 - Bk - o7
k=0 k=0
1 * *
= |l - =Bl o]
1 0 *|2
= % |lx” — ¥ (54)
Taking square roots and using Jensen’s inequality:
K-1 K-1
1 Jensen 1 1 9 1
S B [fa) - ra)] " B - @ < |l - ol
GK k=0 k:O \/E
Thus,
K—1
B Jensen 1 GH(IZO — q;*H
E[f(@") - f(a") E[f@) - fan] = T 66
| VK
where 25 = 4 LSy o ” [

C.2. Increasing Mini-batch Size

We propose a way to increase the mini-batch size for evaluating the stochastic gradient and guarantee
convergence to the optimal solution without interpolation. We present two main Theorems. In the
first Theorem we assume that functions f; of problem (1) are u;-strongly convex functions and in the
second that each function f; satisfies the PL condition (8) with p; parameter.

Theorem 18 Let us have the same assumptions as in Theorem I and let all f; be p;-strongly convex
Sfunctions then SGD with SPS and increasing the batch-size progressively such that the batch-size by,
at iteration k satisfies:

b > |t ! mMﬂCWﬂﬁwyr
n

2Ymaz 22 Lax L
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converges as.

— k
* M *
Bt o[ < (1= 57— ) la® - o'
max

Proof Following the proof of Theorem 1 for the batch b. From Equation 16,
2Pt —2*)2 < <1 — 1 min{

Taking expectation,

sz} ) 8 =P 2 ") = £

1
2CLmax

Ejle* P < E (1 . mm{ 7}) ot — 2|2 + 20,E [fi(a®)  £7]

By strong-convexity of f;,

1
B - 5] < B |5 VAP
< 5 1. E||V fo(z*)|1> (57)

By the assumption that the gradients at the optimum have bounded variance, from [16, 26],

N n—>ob
EIVAE)IP < 202
— Elfa) - fy] < — "0
b\® b = 2uy nb i

2¢Lmax ’

— Ellz** -2 < E (1 — Wi min{
Hmin 1

v, n—>b
%}) ||fU]c - fL’*H2 + - —77
If we set the batch-size in iteration k& such that,

% m=b, _ @ <||Vf<wk>u>2

Lomin nb T 4dcLpax L
L1 e (IVF@Y]
:> b > 4 min 58
a [n * Ymazx 22 4cLiax < L ) ] >
2
: o qey B (19FEH]
E|zF*t —2*|? < E <1 —Mimm{umx,%}) " —a|” + 4cLmax ( L
_ f

1
1 1 3 k _ ¥ 2 k ok 2
( ,umln{ZCLmax,%}> ||l — z*||* + 746Lmax||x x|

1 1
]E k+1 ok 2 < 1 = . o k ek 2
ot = < (1= amind e = ) et -

Following the remaining proof of Theorem 1,

k
x o 1 1 »
E|jzF — %> < <1—umm{4cL o~ To }) |20 — z*|2
max max
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If v, = oo,

_ k
Bt - o < (1o ) - ot (59)
max

Theorem 19 Assume that all functions f; satisfy the PL inequality (8) and let f and f; be smooth
Sfunctions. SGD with SPSyax and increasing the batch-size progressively such that the batch-size by,
at iteration k satisfies:

S T P ) (60)
~ n Ymar 2?2 cL
convergesas
E[f(a¥) — f(2*)] < (1 —v/2)" (f(2° — f(2"))) (61)

where v =1 —~, (é—?u—i—LrQ“ijx) € (0,1).

Proof Following the proof of Theorem 12, from Equation 37,

B[ - )] < o (5 -2 52 B[ - )] + SEE LG - £

1—v

Similar to the proof of Theorem 18, since each function f; is PL,

1
B - 5] < B |5 VAP
< S EIVAE)P
Bl - ] € 5o ot (©2)
From the above relations,
Ly, 1 n-—b
B - f@)] < -nE[fEh - fe)] - G- TR @)
If we set the batch-size b s.t.
Ly, 1 n—b, v k .
2 Yimm nb i[f(x G )]
1 2 min * -1
— bz (Lo e g
— E[f") - f@0)] < (- v2)E[1E8) - 1) (64)
Following the remaining proof in 12,
[/ - f@)] < 0-v/2)! [f°) - f@")] (65)
m
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Appendix D. Computing f; for /,-regularized standard surrogate losses

In this section, we explain how the values of f;" can be computed in closed form expressions for some
standard binary surrogate losses from Bartlett et al. [2] with /o-regularization. These closed form
expressions are using the Lambert W function [10] or the more general r-Lambert function [34].
While these functions have efficient numerical routines to compute them (see e.g. [10]), we note
that we can also compute easily f;" for the cases in this section by solving simple strongly convex
minimization problems in 1 dimension (see (71) and (75) below). This can be done efficiently to
machine precision using Newton’s method for example, and could be used to pre-compute f;* for
each 7 in our synthetic experiments of Section 4.1.

Following [34], we first start by presenting the definition of the Lambert W function and its
recent generalization, the r-Lambert function.

Definition 20 (Lambert W function) Consider the transcendental equation
ze’ = a. (66)

The inverse of the function on the left-hand side of the above equation (xe®) is called the Lambert W
function and is denoted by W. In general, W is a multivalued function on complex numbers. But
for a > 0, there is a unique real solution (called the principal branch) and this is the one that we
will consider in this paper, i.e. the unique real solution of (66) for a > 0 is given by v = W (a). We
note that W (a) is a strictly increasing function for a > 0 with W (0) = 0, and that there are efficient
numerical routines to compute it [10].

Definition 21 (r-Lambert function) The r-Lambert function is a direct generalization of the Lam-
bert W function first proposed by Mezd and Baricz [34]. It is used to express the solution of the
transcendental equation

xe® +rx = a, 67)

where 1 is a fixed real number. The inverse of the function xe® + rx is called the r-Lambert function
and is denoted by W,. Again, there are multiple possible inverses in general; we will consider the
principal branch in this paper, which is a strictly increasing function on its domain of definition
(which always includes R — see Theorem 4 in [34]). Thus x = W,.(a) solution of (67), at least
valid for a > 0

From the above definitions, it is clear that the classical Lambert W function is a special case of the
r-Lambert function when r = 0. In this case we write Wj.

Manipulating the transcendental equation (67), we can easily solve the slightly more general
equation as given in the following Theorem.

Theorem 22 (Variant of Theorem 3 from [34]) Let ¢ € R. The equation xe“* + rx = a can be
resolved by the r-Lambert function and the solution can be expressed as:

x = %WT(ca) (68)

In the rest of this section, we provide the analytical derivations of the closed form expression of
f; when the given losses are {o-regularized version of:
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1. the binary log-loss. We show that in this case that f* can be computed in closed form
expression using the r-Lambert function.

2. the binary exponential loss. As mentioned by Bartlett et al. [2] this loss appears in the Adaboost
algorithm, amongst others. In this case, the Lambert W function is used.

D.1. Binary Log-loss

The ¢5-regularized logistic regression problem is given by:
1 o A
—— 1 (1 *bi(Ai,@) x|, 69
fle) = D tow (1 e +Zal (©9)

where A; is the input feature vector for the 7! datapoint while b; € {—1,1} is its label, and ) is the
regularization parameter.
Note that by following the notation of the rest of the paper, in (69) we have

e A
fi(z) = log (1 + e b4, >) + §Hx\|2

To simplify the notation, let us define z; := b; A;. Let us also decompose the vector z in its
direction Z (element of the unit sphere, i.e. ||| = 1) and its norm « = ||z||, and thus x = «a& for
a € R. Then we obtain the following:

1= ir%f filz) = ir;flog <1 + 67<x’zi>) + %HxHZ
A o

= infinflog (1 + e_o‘@’z'i)) + 5 (70)

Note that log (1 + e‘a@’zl')) is decreasing as (&, z;) increases. Thus, by Cauchy-Schwartz inequality,

inf; is reached when & = H%H and equation (70) takes the following form:

A
fi = inflog (1 n e_O‘HZiH> + 5o’ 1)

=g(a)

g(«) is a strongly convex function of «, and we can find its global minimum by setting its gradient

to zero:
—||zi|le~ =l

V(o) = =

Let ¢ = ||z, then by rearranging the last equation, we obtain:

+ Ao = 0.

c
a4+ ae® = —.
A

Using Theorem 22, the solution of the above equation can be expressed as follows (using » = 1):

1 2
o =W (‘;) . (72)

Thus to get a closed form expression for f;*, one can plug a* in (71), i.e. f;* = g(a*).

36



STOCHASTIC POLYAK STEP-SIZE FOR SGD

D.2. Binary Exponential Loss

The ¢2-regularized binary exponential loss problem is given by:
flz) = lie_b”"“’” 2 (73)
n 2 ’

with the same notation as for the logistic regression problem (69).
From (73) it is clear that,

fila) =4 2o

As for the logistic regression derivation, defining z; := b; A;, and letting x = o with ||z|| = 1,
then we obtain the following:

A
ffo=inf fi(z) = infe*<ﬂﬁvzl'>+§\|a;||2

X A
= infinfe &%) 4 242 (74)
a 2
As for the logistic regression, note that by Cauchy-Schwartz inequality, inf; is reached when

T = % Thus,
IEA

A
fi* — inf 6—04||Zi|| + 7052 (75)
o 2
N—
=g(a)
Again, g(«) is a strongly convex function of «, and we can find its global minimum by setting

its gradient to zero:
Vg(a) =~z + 2o = 0.

Let ¢ = ||z;]|, then by rearranging the last equation, we obtain:
C
e’ = —
A

Using Theorem 22, the solution of the above equation can be expressed as follows (using » = 0):

2
ot = 1w, (C) : (76)
c A

where W) is the classical Lambert W function.
Thus to get a closed form expression for f;*, one can plug a* in (75), i.e. f = g(a*).

Appendix E. Additional Experiments

Following the experiments presented in the main paper, we further evaluate the performance of SGD
with SPS when training over-parametrized models.
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Figure 3: Deep matrix factorization
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Figure 4: Binary classification using kernels. Data: mushrooms, ijcnn, rcvl, w8a
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DenseNet121, CIFAR100-DenseNet121 and MNIST.
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