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Abstract
Sparse Group LASSO (SGL) is a regularized model for high-dimensional linear regression prob-
lems with grouped covariates. SGL applies l1 and l2 penalties to the individual predictors and group
predictors, respectively, to guarantee sparse effects both on the inter-group and within-group levels.
In this paper, we apply the approximate message passing (AMP) algorithm to efficiently solve the
SGL problem under Gaussian random designs. We use AMP and a recently developed state evo-
lution analysis for non-separable penalties to derive an asymptotically exact characterization of the
SGL solution, which allows us to conduct fine-grained statistical analysis of the solution.

1. Introduction

Suppose we observe an n× p design matrix X, and the response y ∈ Rn which is modeled by

y = Xβ +w (1)

in which w ∈ Rn is a noise vector.
To yield both sparsity of groups and sparsity within each group, [13] introduced the Sparse

Group LASSO problem as follows:

min
β∈Rp

1

2
‖y −

L∑
l=1

Xlβl‖22 + (1− γ)λ
L∑
l=1

√
pl‖βl‖2 + γλ‖β‖1 (2)

where γ ∈ [0, 1] refers to the proportion of the LASSO fit in the overall penalty. We assume that p
predictors are divided into L groups and denote the size of the l-th group as pl. If γ = 1, SGL is
purely LASSO, while if γ = 0, SGL reduces to Group LASSO. We denote the solution to the SGL
problem as β̂.

In this paper, we derive the proximal operator for SGL and establish approximate message
passing (AMP) [1–3, 6, 7, 10] for SGL from this new approach. We then analyze the algorithmic
aspects of SGL via AMP. In general, AMP is a class of computationally efficient gradient-based
algorithms originating from graphical models and extensively studied for many compressed sensing
problems [9, 11].

We derive, for fixed γ, the SGL AMP as follows: set β0 = 0, z0 = y and for t > 0,

βt+1 = ηγ(X>zt + βt, θt) (3)

zt+1 = y −Xβt+1 +
1

δ
zt〈η′γ(X>zt + βt, θt)〉. (4)
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Here the threshold θt is carefully designed and can be found in [2]. 〈v〉 :=
∑p

i=1 vp/p is the average
of vector v. Furthermore, ηγ is the proximal operator

ηγ(s, λ) := argmin
b

1

2
‖s− b‖2 + (1− γ)λ

L∑
l=1

√
pl‖bl‖2 + γλ‖b‖1

and η′γ := ∇ ◦ ηγ is the diagonal of the Jacobian matrix of the proximal operator with respect to its
first argument s, with ◦ being the Hadamard product.

Empirically, the simulation results in Table 1 demonstrate the supremacy of AMP convergence
speed over the two most well-known proximal gradient descent methods, ISTA and FISTA. We also
compare these methods to the Nesterov-accelerated blockwise descent in [13] and in R package
SGL. We note that the Nesterov-accelerated ISTA (i.e. FISTA) outperforms the accelerated block-
wise descent in terms of both the number of iterations and the wall-clock time. This observation
suggests that using the proximal operator not only requires fewer iterations but also reduces the
complexity of computation at each iteration. We pause to emphasize that, in general, the cost func-
tion CX,y(β) := 1

2‖y−
∑L

l=1 Xlβl‖22 + (1−γ)λ
∑L

l=1

√
pl‖βl‖2 +γλ‖β‖1 is not strictly convex.

We choose the optimization error (mean squared error, or MSE, between βt and β) as the measure
of convergence, as there may exist β̂ far from β for which C(β̂) is close to C(β).

Number of Iterations
MSE 10−2 10−3 10−4 10−5

ISTA 309 629 988 1367
FISTA 42 81 158 230
AMP 4 6 14 35

Table 1: p = 4000, n = 2000, γ = 0.5, g = (1, · · · , 1), the entries of X are i.i.d. N (0, 1/n),
λ = 1, and the prior β0 is 5×Bernoulli(0.1)

Our contributions are as follows. We first derive a proximal operator of SGL on which the SGL
AMP is based. We prove that the algorithm solves the SGL problem asymptotically exactly under
i.i.d. Gaussian designs. The proof leverages the recent state evolution analysis [4] for non-separable
penalties and shows that the state evolution characterizes the asymptotically exact behaviors of β̂.
Specifically, the distribution of SGL solution is completely specified by a few parameters that are
the solution to a certain fixed-point equation asymptotically. As a consequence, we can use the
characterization of the SGL solution to analyze the behaviors of the β̂ precisely. The rest of this
paper is divided into four sections. In Section 2, we give some preliminary background of the AMP
algorithm. In Section 3, we state our main theorems about the convergence and the characterization.
In Section 4, we conclude our paper and list some possible extensions of future work.

2. Algorithm

2.1. Approximate Message Passing

We first list the assumptions.

• (A1) The measurement matrix X has independent entries following N (0, 1
n).
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• (A2) The elements of signalβ are i.i.d. copies of a random variable Π with E(Π2 max{0, log(Π)}) <
∞. We use Π ∈ Rp to denote random vector with each component following i.i.d. Π.

• (A3) The elements of noise w are i.i.d. W with σ2
w := E(W 2) <∞.

• (A4) The ratio of sample size to feature size n
p approaches a constant δ ∈ (0,∞) as n, p→∞.

We note that the assumptions are the same as in [5] and the second-moment assumptions (A2) and
(A3) can be relaxed. For example, we can instead assume that w has an empirical distribution that
converges weakly to W , with ‖w‖2/p → E(W 2) < ∞. In general, we may extend assumptions
(A1) and (A2) to a much broader range of cases. Additionally, we need one extra assumption for
the group information as follows.

• (A5) The relative ratio of each group size, pl/p, converges to rl ∈ (0, 1) as p→∞.

Now we can write the SGL AMP algorithm based on [7]:

βt+1 = ηγ,g(X>zt + βt, ατt) (5)

zt+1 = y −Xβt+1 +
1

δ
zt〈η′γ,g(X>zt + βt, ατt)〉 (6)

τ2
t+1 = σ2

w + lim
p→∞

1

δp
E‖ηγ,g(Π + τtZ, ατt)−Π‖22 (7)

where Z is the standard GaussianN (0, Ip) and the expectation is taken with respect to both Π and
Z. We denote ηγ,g(s, λ) : Rp×R→ Rp as the proximal operator for SGL, which we will derive in
appendix. We notice that, comparing AMP to the standard proximal gradient descent, the thresholds
are related to (α, τt) instead of to λ. On one hand, τt is derived from equation equation 7, known as
the state evolution, which relies on α. On the other hand, α corresponds uniquely to λ via equation
(8) which is so called calibration:

λ = ατ∗

(
1− lim

p→∞

1

δ
〈η′γ,g(Π + τ∗Z, ατ∗)〉

)
(8)

in which τt → τ∗ as t→∞.

3. Main Result

3.1. State Evolution and Calibration

Notice that in SGL AMP, we use θt as the threshold, whose design requires state evolution and
calibration. Thus we start with some properties of state evolution recursion (7). To simplify the
analysis, we consider the finite approximation of state evolution and present precise conditions
which guarantee that the state evolution converges efficiently.

Proposition 1 Let Fγ(τ2
t , ατt) = σ2

w + 1
δpE‖ηγ(Π + τtZ, ατt) −Π‖22 and define A(γ) = {α :

δ ≥ 2T (γα)−2(1−γ)α
√

2T (γα)+(1−γ)2α2} with T (z) = (1+z2)Φ(−z)−zφ(z), φ(z) being
the standard Gaussian density and Φ(z) =

∫ z
−∞ φ(x)dx. For any σ2

w > 0, α ∈ A(γ) , the fixed
point equation τ2 = Fγ(τ2, ατ) admits a unique solution. Denoting the solution as τ∗ = τ∗(α), we
have limt→∞ τt → τ∗(α), where the convergence is monotone under any initial condition. Finally∣∣∣dFγdτ2

∣∣∣ < 1 at τ = τ∗
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We note that for all γ < 1, A has upper and lower bounds; however, when γ = 1, i.e. for
LASSO, there is no upper bound.

Before we employ the finite approximation of state evolution to describe the calibration (8), we
explain the necessity of calibration by the following lemma.

Lemma 2 For fixed γ, a stationary point β̂ with corresponding ẑ of the AMP iteration (5), (6) with
θt = θ∗ is a minimizer of the SGL cost function in (2) with λ = θ∗

(
1− 1

δ 〈η
′
γ(X>ẑ + β̂, θ∗)〉

)
.

Setting θ∗ = ατ∗, we are now in the position to define the finite approximation of calibration
between α and λ by λ = ατ∗

(
1− 1

δ 〈η
′
γ(Π + τ∗Z, ατ∗)〉

)
. In practice, we need to invert it to input

λ and recover α(λ) ∈ {a ∈ A : λ(a) = λ}. The next proposition and corollary imply that the
mapping of λ→ α(λ) is well-defined and easy to compute.

Proposition 3 The functionα→ λ(α) is continuous onA(γ) with λ(minA) = −∞ and λ(maxA) =
λmax for some constant λmax depending on Π and γ. Therefore, the function λ → α(λ) satisfying
α(λ) ∈ {α ∈ A(γ) : λ(α) = λ} exists where λ ∈ (−∞, λmax).

Given λ, Proposition 3 claims that α exists and the following result guarantees its uniqueness.

Corollary 4 For λ < λmax, σ
2
w > 0, ∃!α ∈ A(γ) such that λ(α) = ατ∗

(
1− 1

δ 〈η
′
γ(Π + τ∗Z, ατ∗)〉

)
.

Hence the function λ→ α(λ) is continuous and non-decreasing with α((−∞, λmax)) = A(γ).

3.2. AMP State Evolution Characterizes SGL Estimate

Having described the state evolution, we now state our main theoretical results. We establish an
asymptotic equality between β̂ and ηγ in pseudo-Lipschitz norm, which allows the fine-grained
statistical analysis of the SGL minimizer.

Definition 5 [4]: For k ∈ N+, a function φ : Rd → R is pseudo-Lipschitz of order k, if there
exists a constant L such that for a,b ∈ Rd,

|φ(a)− φ(b)| ≤ L
(

1 +

(
‖a‖√
d

)k−1

+

(
‖b‖√
d

)k−1 )(‖a− b‖√
d

)
. (9)

A sequence (in p) of pseudo-Lipschitz functions {φp}p∈N+ is uniformly pseudo-Lipschitz of order
k if, denoting by Lp the pseudo-Lipschitz constant of φp, Lp <∞ for each p and lim supp→∞ Lp <
∞.

Theorem 6 Under the assumptions (A1)-(A5), for any uniformly pseudo-Lipschitz sequence of
functionϕp : Rp×Rp → R and for Z ∼ N (0, Ip),Π ∼ pΠ, limp→∞ ϕp(β̂,β) = limt limp E[ϕp(ηγ(Π+
τtZ;ατt),Π)].

Essentially, up to a uniformly pseudo-Lipschitz loss, we can replace β̂ by ηγ in the large
system limit. The distribution of ηγ is explicit, thus allowing the analysis of certain quantities.
For instance, the true positive rate (or recall) P(β̂i 6= 0|βi 6= 0) can be well-approximated by
P(ηγ(Π∗ + τ∗Z;ατ∗) 6= 0), where Π∗ is the random variable of signals conditioned on being non-
zero.

Specifically, if we use ϕ(a, b) = ‖a− b‖22, the MSE between β̂ and β can be characterized by
τ .
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Corollary 7 Under the assumptions (A1)-(A5), then almost surely, limp→∞
1
p‖β̂−β‖

2
2 = δ(τ2

∗ −
σ2
w).

Now that we have demonstrated the usefulness of our main theoretical result. We first show the
convergence of βt to β̂, i.e. the AMP iterates converge to the true minimizer.

Theorem 8 Under assumptions (A1)-(A5), for the output of the AMP algorithm in (5) and the
Sparse Group LASSO estimator given by the solution of (2), limp→∞

1
p‖β̂ − β

t‖22 = kt, where
limt→∞ kt = 0.

In addition to Theorem 8, we borrow the state evolution analysis from [4] Theorem 14 to com-
plete the proof of Theorem 6.

Lemma 9 [4] Under assumptions (A1) - (A5), given that (S1) and (S2) are satisfied, consider the
recursion equation 5 and equation 6. For any uniformly pseudo-Lipschitz sequence of functions
φn : Rn × Rn → R and ϕp : Rp × Rp → R,

φn(zt,w)
P→ E

[
φn(w +

√
τ2
t − σ2

wZ′,w)

]
(10)

ϕp(β
t + X>zt,Π)

P→ E [ϕp(Π + τtZ,Π)] (11)

where τt is defined in equation 7, Z′ ∼ N (0, In) and Z ∼ N (0, Ip).

To see that Theorem 1 holds, we combine β̂ ≈ βt from Theorem 8 and βt+X>zt ≈ Π+ τtZ
from Lemma 9 to obtain that β̂ = ηγ(βt + X>zt, ατt) within uniformly pseudo-Lipschitz loss,
asymptotically, in large system limit.

In order to apply Lemma 9, we need to check the proximal operator of SGL satisfies the follow-
ing properties.

(S1) For each t, the proximal operators are uniformly Lipschitz (i.e. uniformly pseudo- Lipschitz
of order k = 1).

(S2) For any s, t with (Z,Z′) a pair of length p vectors such that (Zi, Z
′
i) are i.i.d N (0,Σ) for

i ∈ {1, 2, · · · , p} where Σ is any 2 × 2 covariance matrix, the following limits exist and are
finite:

lim
p→∞

1

p
‖β‖2, lim

p→∞

1

p
E
(
βT ηγ(β + Z, ατt)

)
, lim
p→∞

1

p
E
(
ηγ(β + Z′, ατs)

>ηγ(β + Z, ατt)
)

(12)

4. Discussion and Future Work

Our work suggests several possible future research. In one direction, it is promising to extend the
proximal algorithms (especially AMP) to a broader class of models with structured sparsity, such as
the sparse linear regression with overlapping groups, Group SLOPE and the sparse group logistic
regression. On a different road, although AMP is robust in distributional assumptions in the sense of
fast convergence under i.i.d. non-Gaussian measurements, multiple variants of AMP may be applied
to adapt to real-world data. To name a few, one may look into SURE-AMP [8], EM-AMP [14, 15]
and VAMP [12] to relax the known signal assumption and non-i.i.d. measurement assumption.
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