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Abstract
In this paper, we propose a novel stochastic gradient estimator—ProbAbilistic Gradient Estimator
(PAGE)—for nonconvex optimization. PAGE is easy to implement as it is designed via a small
adjustment to vanilla SGD: in each iteration, PAGE uses the vanilla minibatch SGD update with
probability p or reuses the previous gradient with a small adjustment, at a much lower computa-
tional cost, with probability 1 − p. We give a simple formula for the optimal choice of p. We
prove tight lower bounds for nonconvex problems, which are of independent interest. Moreover,
we prove matching upper bounds both in the finite-sum and online regimes, which establish that
PAGE is an optimal method. Besides, we show that for nonconvex functions satisfying the Polyak-
Łojasiewicz (PL) condition, PAGE can automatically switch to a faster linear convergence rate.
Finally, we conduct several deep learning experiments (e.g., LeNet, VGG, ResNet) on real datasets
in PyTorch, and the results demonstrate that PAGE not only converges much faster than SGD in
training but also achieves the higher test accuracy, validating our theoretical results and confirming
the practical superiority of PAGE.

1. Introduction

Nonconvex optimization is ubiquitous across many domains of machine learning, including robust
regression, low rank matrix recovery, sparse recovery and supervised learning [13]. Driven by the
applied success of deep neural networks [21], and the critical place nonconvex optimization plays
in training them, research in nonconvex optimization has been undergoing a renaissance [6, 8, 9, 25,
28, 47].

1.1. The problem

Motivated by this development, we consider the general optimization problem

min
x∈Rd

f(x), (1)

where f : Rd → R is a differentiable and possibly nonconvex function. We are interested in
functions having the finite-sum form

f(x) :=
1

n

n∑
i=1

fi(x), (2)
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where the functions fi are also differentiable and possibly nonconvex. Form (2) captures the stan-
dard empirical risk minimization problems in machine learning [41]. Moreover, if the number of
data samples n is very large or even infinite, e.g., in the online/streaming case, then f(x) usually is
modeled via the online form

f(x) := Eζ∼D[F (x, ζ)], (3)

which we also consider in this work. For notational convenience, we adopt the notation of the finite-
sum form (2) in the descriptions and algorithms in the rest of this paper. However, our results apply
to the online form (3) as well by letting fi(x) := F (x, ζi) and treating n as a very large number or
even infinite.

1.2. Gradient complexity

To measure the efficiency of algorithms for solving the nonconvex optimization problem (1), it
is standard to bound the number of stochastic gradient computations needed to find a solution of
suitable characteristics. In this paper we use the standard term gradient complexity to describe
such bounds. In particular, our goal will be to find a (possibly random) point x̂ ∈ Rd such that
E‖∇f(x̂)‖ ≤ ε, where the expectation is with respect to the randomness inherent in the algorithm.
We use the term ε-approximate solution to refer to such a point x̂.

Two of the most classical gradient complexity results for solving problem (1) are those for gra-
dient descent (GD) and stochastic gradient descent (SGD). In particular, the gradient complexity of
GD is O(n/ε2) in this nonconvex regime, and assuming that the stochastic gradient satisfies a (uni-
form) bounded variance assumption (Assumption 1), the gradient complexity of SGD is O(1/ε4).
Note that although SGD has a worse dependence on ε, it typically only needs to compute a constant
minibatch of stochastic gradients in each iteration instead of the full batch (i.e., n stochastic gradi-
ents) used in GD. Hence, SGD is better than GD if the number of data samples n is very large or
the error tolerance ε is not very small.

There has been extensive research in designing gradient-type methods with an improved de-
pendence on n and/or ε [8, 9, 32, 34]. In particular, the SVRG method of Johnson and Zhang
[14], the SAGA method of Defazio et al. [5] and the SARAH method of Nguyen et al. [35] are
representatives of what is by now a large class of variance-reduced methods, which have played
a particularly important role in this effort. However, the analyses in these papers focused on the
convex regime. Furthermore, several accelerated (momentum) methods have been designed as well
[1, 18–20, 27, 30, 31, 33], with or without variance reduction. There are also some lower bounds
given by [44, 45].

Coming back to problem (1) in the nonconvex regime studied in this paper, interesting recent
development starts with the work of Reddi et al. [40], and Allen-Zhu and Hazan [2], who have
concurrently shown that if f has the finite-sum form (2), a suitably designed minibatch version of
SVRG enjoys the gradient complexity O(n + n2/3/ε2), which is an improvement on the O(n/ε2)
gradient complexity of GD. Subsequently, other variants of SVRG were shown to posses the same
improved rate, including those developed by [7, 11, 23, 26, 39]. More recently, Fang et al. [6]
proposed the SPIDER method, and Zhou et al. [47] proposed the SNVRG method, both of which
improve the gradient complexity further to O(n +

√
n/ε2). Further variants of the SARAH method

(e.g., [12, 24, 25, 37, 43]) which also achieve the sameO(n+
√
n/ε2) gradient complexity have been

developed. Particularly, Horváth et al. [12] proposed the Geom-SARAH to automatically adapt
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different parameter settings via dynamic batch size and epoch length. Also there are some lower
bounds given by [3, 6, 46]. See Table 1 for an overview of results.

2. Our Contributions

As we show in through this work, despite enormous effort by the community to design efficient
methods for solving (1) in the nonconvex regime, there is still a considerable gap in our under-
standing. First, while optimal methods for (1) in the finite-sum regime exist (e.g., SPIDER [6],
SpiderBoost [43], SARAH [37], SSRGD [25]), the known lower bound Ω(

√
n/ε2) [6] used to es-

tablish their optimality works only for n ≤ O(1/ε4), i.e., in the small data regime (see Table 1).
Moreover, these methods are unnecessarily complicated, often with a double loop structure, and re-
liance on several hyperparameters. Besides, there is also no tight lower bound to show the optimality
of optimal methods in the online regime.

Table 1: Gradient complexity for finding x̂ satisfying E‖∇f(x̂)‖ ≤ ε in nonconvex problems

Problem Assumption Algorithm or Lower Bound Gradient complexity

Finite-sum (2) Asp. 2 GD [34] O( nε2 )

Finite-sum (2) Asp. 2 SVRG [2, 40], SCSG [23], SVRG+ [26] O(n+ n2/3

ε2 )

Finite-sum (2) Asp. 2 SNVRG [47], Geom-SARAH [12] Õ
(
n+

√
n
ε2

)
Finite-sum (2) Asp. 2

SPIDER [6], SpiderBoost [43],
SARAH [37], SSRGD [25] O(n+

√
n
ε2 )

Finite-sum (2) Asp. 2 PAGE (this paper) O(n+
√
n
ε2 )

Finite-sum (2) Asp. 2 Lower bound [6] Ω(
√
n
ε2 ) if n ≤ O( 1

ε4 )

Finite-sum (2) Asp. 2 Lower bound (this paper) Ω(n+
√
n
ε2 )

Finite-sum (2) Asp. 2 and 3 PAGE (this paper) O
(
(n+

√
nκ) log 1

ε

)
1

Online (3) 2 Asp. 1 and 2 SGD [9, 15, 28] O(σ
2

ε4 )

Online (3) Asp. 1 and 2 SCSG [23], SVRG+ [26] O(b+ b2/3

ε2 )

Online (3) Asp. 1 and 2 SNVRG [47], Geom-SARAH [12] Õ
(
b+

√
b
ε2

)
Online (3) Asp. 1 and 2

SPIDER [6], SpiderBoost [43],
SARAH [37], SSRGD [25] O(b+

√
b
ε2 )

Online (3) Asp. 1 and 2 PAGE (this paper) O(b+
√
b
ε2 ) 3

Online (3) Asp. 1 and 2 Lower bound (this paper) Ω(b+
√
b
ε2 )

Online (3) Asp. 1, 2 and 3 PAGE (this paper) O
(

(b+
√
bκ) log 1

ε

)

1. Note that PAGE can automatically switch to a faster linear convergence O(· log 1
ε
) instead of sublinear O(· 1

ε2
) by

exploiting the local structure of the objective function via the PL condition (Assumption 3).
2. Note that we refer the online problem (3) as the finite-sum problem (2) with large or infinite n as discussed in the

introduction Section 1.1. In this online case, the full gradient may not be available (e.g., if n is infinite), thus the
bounded variance of stochastic gradient Assumption 1 is needed in this case.

3. In the online case, b := min{σ
2

ε2
, n}, and σ is defined in Assumption 1. If n is very large, i.e., b := min{σ

2

ε2
, n} =

σ2

ε2
, then O(b+

√
b
ε2

) = O(σ
2

ε2
+ σ

ε3
) is better than the rate O(σ

2

ε4
) of SGD by a factor of 1

ε2
or σ

ε
.
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In this paper, we resolve the above issues by designing a novel ProbAbilistic Gradient Esti-
mator (PAGE) described in Algorithm 1 for achieving optimal convergence results in nonconvex
optimization. Moreover, PAGE is very simple and easy to implement. In each iteration, PAGE uses
minibatch SGD update with probability pt, or reuses the previous gradient with a small adjustment
(at a low computational cost) with probability 1− pt (see Line 4 of Algorithm 1). We would like to
highlight the following points:
• We prove that PAGE achieves the optimal rates for both nonconvex finite-sum problem (2)

and online problem (3) (see Corollaries 2 and 4 4). We also provide tight lower bounds for these two
problems to close the gap and show the optimality of PAGE (see Theorem 2 and Corollary 5). Our
lower bounds are inspired and based by recent work [3, 6]. See Table 1 for a detailed comparison
with previous work.
•Moreover, we show that PAGE can automatically switch to a faster linear convergenceO(· log 1

ε )
by exploiting the local structure of the objective function, via the PL condition (Assumption 3), al-
though the objective function f is globally nonconvex. See the middle and the last row of Table 1.
For example, PAGE automatically switches from the sublinear rateO(n+

√
n/ε2) to the faster linear

rate O((n+
√
nκ) log 1

ε ) for nonconvex finite-sum problem (2) (see the Remark after Corollary 6).
• PAGE is easy to implement via a small adjustment to vanilla minibatch SGD, and takes a

lower computational cost than SGD (i.e., p = 1 in PAGE) since b′ < b. We conduct several deep
learning experiments (e.g., LeNet, VGG, ResNet) on real datasets in PyTorch showing that PAGE
indeed not only converges much faster than SGD in training but also achieves higher test accuracy.
This validates our theoretical results and confirms the practical superiority of PAGE.

2.1. The PAGE gradient estimator

In this section, we describe PAGE, an SGD variant employing a new, simple and optimal gradient
estimator (see Algorithm 1). In particular, PAGE was inspired by algorithmic design elements com-
ing from methods such as SARAH [35], SPIDER [6], SSRGD [25] (usage of a recursive estimator),
and L-SVRG [16] and SAGD [4] (probabilistic switching between two estimators to avoid a dou-
ble loop structure). PAGE with constant probability p can be reduced to an equivalent form of the
double loop algorithm with geometric distribution Geom-SARAH [12], but our single-loop PAGE
is more flexible and also leads to simpler and better analysis.

Algorithm 1 ProbAbilistic Gradient Estimator (PAGE)
Input: initial point x0, stepsize η, minibatch size b, b′ < b, probability {pt} ∈ (0, 1]
1: g0 = 1

b

∑
i∈I ∇fi(x0) // I denotes random minibatch samples with |I| = b

2: for t = 0, 1, 2, . . . do
3: xt+1 = xt − ηgt

4: gt+1 =

{
1
b

∑
i∈I ∇fi(xt+1) with probability pt

gt + 1
b′
∑

i∈I′(∇fi(xt+1)−∇fi(xt)) with probability 1− pt
5: end for

Output: x̂T chosen uniformly from {xt}t∈[T ]

In iteration t, the gradient estimator gt+1 of PAGE is defined in Line 4 of Algorithm 1, which
indicates that PAGE uses the vanilla minibatch SGD update with probability pt, and reuses the

4. All theorems and cocollaries and their proofs can be found in the full version of this paper [29].
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previous gradient gt with a small adjustment (which lowers the computational cost since b′ � b)
with probability 1− pt. In particular, the pt ≡ 1 case reduces to vanilla minibatch SGD, and to GD
if we further set the minibatch size to b = n. We give a simple formula for the optimal choice of
pt, i.e., pt ≡ b′

b+b′ is enough for PAGE to obtain the optimal convergence rates. More details can be
found in the convergence theorems and corollaries in the full version of this paper [29].

3. Assumptions

Assumption 1 (Bounded variance) The stochastic gradient has bounded variance if

∃σ > 0, such that Ei[‖∇fi(x)−∇f(x)‖2] ≤ σ2, ∀x ∈ Rd. (4)

Assumption 2 (Average L-smoothness) A function f : Rd → R is average L-smooth if

∃L > 0, such that Ei[‖∇fi(x)−∇fi(y)‖2] ≤ L2‖x− y‖2, ∀x, y ∈ Rd. (5)

Moreover, we also prove faster linear convergence rates for nonconvex functions under the
Polyak-Łojasiewicz (PL) condition [38].

Assumption 3 (PL condition) A function f : Rd → R satisfies PL condition if

∃µ > 0, such that ‖∇f(x)‖2 ≥ 2µ(f(x)− f∗), ∀x ∈ Rd. (6)

4. Experiments

We conduct several deep learning experiments for multi-class image classification. Concretely, we
compare our PAGE algorithm with vanilla SGD by running standard LeNet [22], VGG [42] and
ResNet [10] models on MNIST [22] and CIFAR-10 [17] datasets. We implement the algorithms in
PyTorch [36] and run the experiments on several NVIDIA Tesla V100 GPUs.

According to the update form in PAGE (see Line 4 of Algorithm 1), PAGE enjoys a lower
computational cost than vanilla minibatch SGD (i.e., p = 1 in PAGE) since b′ < b. Thus, in the
experiments we want to show how the performance of PAGE compares with vanilla minibatch SGD
under different minibatch sizes b. Note that we do not tune the parameters for PAGE, i.e., we set
b′ =

√
b and p = b′

b+b′ =
√
b

b+
√
b

according to our theoretical results (see e.g., Corollary 2 and 4).
Concretely, in Figure 1, we choose standard minibatch b = 64 and b = 256 for both PAGE and

vanilla minibatch SGD for MNIST experiments. In Figure 2, we choose b = 256 and b = 512 for
CIFAR-10 experiments. The first row of Figures 1 and 2 denotes the training loss with respect to
the gradient computations, and the second row denotes the test accuracy with respect to the gradient
computations. Both Figures 1 and 2 demonstrate that PAGE not only converges much faster than
SGD in training but also achieves the higher test accuracy (which is typically very important in
practice, e.g., lead to a better model). Moreover, the performance gap between PAGE and SGD
is larger when the minibatch size b is larger (i.e, gap between solid lines in Figures 1a, 1b, 2a,
2b), which is consistent with the update form of PAGE, i.e, it reuses the previous gradient with a
small adjustment (lower computational cost b′ =

√
b instead of b) with probability 1 − pt. The

experimental results validate our theoretical results and confirm the practical superiority of PAGE.
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Figure 1: LeNet and ResNet18 on MNIST dataset
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Figure 2: VGG16 and ResNet18 on CIFAR-10 dataset
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