
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

Employing No Regret Learners for Pure Exploration in Linear Bandits

Mohammadi Zaki MOHAMMADI@IISC.AC.IN
Electrical Communication Engineering,
Indian Institute of Science,
Bangalore 560012.

Avinash Mohan AVINASHMOHAN@CAMPUS.TECHNION.AC.IL
Faculty of Electrical Engineering,
Technion, Israel Institute of Technology,
Haifa 3200003.

Aditya Gopalan ADITYA@IISC.AC.IN

Electrical Communication Engineering,
Indian Institute of Science,
Bangalore 560012.

Abstract
We study the best arm identification problem in linear multi-armed bandits (LMAB) in the fixed
confidence (δ-PAC) setting; this is also the problem of optimizing an unknown linear function over
a discrete ground set with noisy, zeroth-order access. We propose an explicitly implementable
and provably order-optimal sample-complexity algorithm to solve this problem. Most previous
approaches rely on access to a minimax optimization oracle which is at the heart of the complexity
of the problem. We propose a method to solve this optimization problem (upto suitable accuracy) by
interpreting the problem as a two-player zero-sum game, and attempting to sequentially converge to
its saddle point using low-regret learners to compute the players’ strategies in each round which
yields a concrete querying algorithm. The algorithm, which we call the Phased Elimination Linear
Exploration Game (PELEG), maintains a high-probability confidence ellipsoid containing θ∗ in
each round and uses it to eliminate suboptimal arms in phases. We analyze the sample complexity
of PELEG and show that it matches, up to order, an instance-dependent lower bound on sample
complexity in the linear bandit setting without requiring boundedness assumptions on the parameter
space. PELEG is, thus, the first algorithm to achieve both order-optimal sample complexity and
explicit implementability for this setting. We also provide numerical results for the proposed
algorithm consistent with its theoretical guarantees.

1. Introduction

We study the problem of best arm identification (BAI) in linearly parameterised multi-armed bandits.
Given a (finite) set of feature vectors X = {x1, x2, . . . , xK}, a confidence parameter δ and an
unknown vector θ∗, the goal is to identify argmaxx∈X x

T θ∗, with probability at least 1− δ, using
noisy measurements of the form xT θ∗ (fixed-confidence setting) as quickly as possible. Formally,
the agent plays sequentialy and in every round t = 1, 2, . . . the agent chooses an arm xt ∈ X ,
and receives a reward y(xt) = θ∗Txt + ηt. Recently, Degenne et al.[4] use an approach similar
to Degenne et al. [3] to design an algorithm called LinGame for pure exploration in LMAB. Their
algorithm achieves the information-theoretic lower bound for sample complexity in the limit as δ ↓ 0.
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A closer look, however, indicates various interesting directions for improvement. Firstly, being a
fully adaptive algorithm, the stopping criteria used in Degenne et al. [4] rely on potentially weaker
concentration results, which aim at controlling deviations in all (i.e., 2d) directions. We address this
by proposing a phased algorithm which relies on tighter deviation bounds, along only the difference
directions obtained from the surviving arms in each phase. Second, LinGame requires knowledge of
an explicit upper bound on ‖θ∗‖2 – an unknown model parameter. In fact, Degenne et.al. [4] leave
it as an open problem to remove the requirement of a bound on ‖θ∗‖2. We instead make use of an

action-set property, namely, C := λmin

(∑
x∈XB xx

T
)

, which is computable in advance, indicating
that this is possible, but with the additional dependence on C. Here XB denotes a barycentric spanner
of the armset which consists of atmost d arms. We note that the lower bound (i.e., with constant
factor 1) in Degenne et al. [4] is achieved only in the limit as δ ↓ 0; its non-asymptotic (in 1/δ)
version has additive (second-order) terms (see Table 1) which can be large and effect the sample
complexity of their algorithm.

We try to follow, at a high level, the template of Fiez et al. [5], who give an algorithm with
information-theoretically optimal (instance-dependent) PAC sample complexity. Their algorithm
however, requires repeated oracle access to a minimax optimization problem; it is not clear, from a
performance standpoint, in what manner (and to what accuracy) this optimization problem should
be practically solved (for its experiments, the paper implements a (approximate) minimax oracle
using the Frank-Wolfe algorithm and a heuristic stopping rule, but this is not rigorously justifiable
for nonsmooth optimization, see Sec. 3) to enjoy the claimed sample complexity. In this paper, we
give an explicit linear bandit best-arm identification algorithm with instance-optimal PAC sample
complexity and, more importantly, a clearly quantified computational effort by using new techniques:
the main ingredient in the proposed algorithm is a game-theoretic interpretation of the minimax
optimization problem that is at the heart of the instance-based sample complexity lower bound. This
in turn yields an adaptive, sample-based approach using carefully constructed confidence sets for the
unknown parameter θ∗. The adaptive sampling strategy is driven by the interaction of 2 no-regret
online learning subroutines that attempt to solve the minimax problem approximately.

Assumptions and Notation. The noise ηt is zero-mean assumed to be conditionally 1− sub-
Gaussian. We denote by νkθ∗ the distribution of the reward obtained by pulling arm k ∈ [K],
i.e., ∀t > 1, y(xt) ∼ νkθ∗ , whenever xt = xk. Given two probability distributions µ, ν over R,
KL(µ, ν) denotes the KL Divergence of µ and ν (assuming µ � ν). Given θ ∈ Rd, let a∗ ≡
a∗(θ) = argmax

a∈[K]
θTxa, where we assume that θ is such that the argmax is unique. We assume that

‖xk‖2 6 1, ∀xk ∈ X . Given a positive definite matrix A, ‖x‖A :=
√
xTAx denotes the matrix

norm induced by A. For any i ∈ [K], i 6= a∗, let ∆i := θ∗T (xa∗ − xi) be the gap between the
largest expected reward and the expected reward of (suboptimal) arm xi. Let ∆min := mini∈[K] ∆i.
We denote B(z, r) as the closed ball with center z and radius r. We define PK to be the set of
all probability mass functions on an alphabet of size K.For the benefit of the reader, we provide a
glossary of commonly used symbols in Sec. A.

2. The Minimax Optimization Problem and Pure-exploration games

We first note that a lower bound on the sample complexity of any δ- PAC algorithm for the canon-
ical (i.e., unstructured) bandit setting [6] was generalized by Fiez et al [5] to the linear bandit
setting. This result states that any δ-PAC algorithm in the linear setting must satisfy Eθ∗ [τ ] >
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(log 1/2.4δ) 1
Tθ∗

= (log 1/2.4δ) 1
Dθ∗

, where Tθ∗ := max
w∈P(X )

min
θ:a∗(θ)6=a∗(θ∗)

∑
k∈[K]

wkKL
(
νkθ , ν

k
θ∗
)

and Dθ∗ := max
w∈P(X )

min
x∈X
x 6=x∗

(θ∗T (x∗−x))
2

‖x∗−x‖2
(
∑
x∈X wxxxT )−1

, where x∗ = xa∗ . The bound suggests a natural

δ-PAC strategy, namely, to sample arms according to the distribution

w∗ = argmin
w∈P(X )

max
x∈X\{x∗}

‖ x∗ − x ‖2
(
∑
x∈X wxxx

T )
−1(

(x∗ − x)T θ∗
)2 . (1)

However, x∗ is unknown. Fiez et al [5] design a nontrivial strategy (RAGE) that attempts to mimic
the optimal allocation w∗ in phases. Specifically, in phase m, it tries to eliminate arms that are about
2−m-suboptimal (in their gaps), by solving (1) with a plugin estimate of θ∗. This approach, however,
is based crucially on solving minimax problems of the form (1). Though the inner (max) function is
convex as a function of w on the probability simplex (see e.g., Lemma 1 in [12]), it is non-smooth,
and it is not clear how, and to what extent, it must be solved in [5]. We are able to circumvent this
obstacle by using ideas from games between no-regret online learners with optimism, as introduced
by the work of Degenne et al [3] for unstructured bandits.

We consider the following related geometrical optimization problem of fitting an ellipsoid inside
a polygon, both centered at origin, namely max

w∈PK
min

λ∈∪x∈XmCm(x)
‖λ‖2∑

x∈X wxxx
T , where Cm(x) is a

union of halfspaces, defined in 1. By subsequently reducing the size of the polygon (i.e., value of εm
in alg 1) we get arbitary reduction in size of the confidence-ellipsoid. Consider the two-player, zero-
sum Pure-exploration Game in which the MAX player (or column player) plays an arm kt ∈ [K]
while the MIN (or row) player chooses an λt ∈ ∪x∈XmCm(x). MAX then receives a payoff of
‖λt‖2xkxTk from MIN. With MAX moving first and playing a mixed strategy w ∈ P(X ), the value

of the game becomes Bm = max
w∈PK

min
λ∈∪x∈XmCm(x)

‖λ‖2∑
x∈X wxxx

T . As is shown in Appendix G Prop.

14 this quantity is directly related to 1/Dθ∗ .
We crucially employ no-regret online learners to solve this Pure Exploration Game. More

precisely, no-regret learning with the well-known Exponential Weights rule/Negative-entropy mirror
descent algorithm [9] on one hand, and a best-response convex programming subroutine on the other,
provides a direct sampling strategy that obviates the need for separate allocation optimization and
rounding for sampling as in [5]. One crucial advantage of our approach (inspired by [3]) is that we
only use a best response oracle to solve for Tθ∗(w), which gives us a computational edge over [5]
who employ the computationally more costly max-min oracle to solve Tθ∗(w), or, its linear bandit
equivalent, Dθ∗ .

3. Algorithm and Sample Complexity Bound

Our algorithm, that we call “Phased Elimination Linear Exploration Game” (PELEG), is presented
in detail in Appendix B as Algorithm 1. PELEG proceeds in phases with each phase consisting
of multiple rounds, maintaining a set of active arms Xm for testing during Phase m. An OLS
estimate θ̂m of θ∗ is used to estimate the mean reward of active arms and, at the end of phase
m, every active arm with a plausible reward more than ≈ 2−m below that of some arm in Xm is
eliminated. Suppose Sm :=

{
x ∈ X \ {x∗} : θ∗T (x∗ − x) < 1

2m

}
. If we can ensure that Xm ⊂ Sm
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in every Phase m > 1, then PELEG will terminate within dlog2(1/∆min)e phases, where ∆min =
minx 6=x∗ θ

∗T (x∗ − x) . This statement is proved in Corollary 13 in the Supplementary Material.
Approximating the minimax problem using no regret learners. We formulate the minimax

problem discussed in Sec. 2 as a two player, zero-sum game. We solve the game sequentially,
converging to its Nash equilibrium by invoking the use of the EXP-WTS algorithm [1]. Specifically,
in each round t in a phase, PELEG supplies EXP-WTS (MAX player) with an appropriate loss
function lMAX

t−1 and receives the requisite sampling distribution wt . This wt is then fed to the second
no-regret learner (MIN player) – a best response subroutine – that finds the ‘most confusing’ plausible
model λ to focus on. This is a minimization of a quadratic function over a union of finitely many
convex sets (halfspaces intersecting a ball) which can be transparently implemented in polynomial
time. Once the sampling distribution is found, we use an efficient tracking procedure to ensure that

for every t > 1,
t∑

s=1
wks − (logK) 6 nkt 6

t∑
s=1

wks + 1 (see [4] for a proof). This procedure avoids

the use of explicit rounding techniques.
Finally, in each phase m, we need to sample arms often enough to (i) construct confidence

intervals of size at most 2−(m+1) around (x− x′)T θ∗, ∀x, x′ ∈ Xm, (ii) ensure that Xm ⊂ Sm and
(iii) that x∗ ∈ Xm. In Sec. F, we prove a Key Lemma (whose argument is discussed in Sec. 4) to show
that our novel Phase Stopping Criterion ensures this with high probability. It is worth remarking
that the use of phased elimination template of Fiez etal [5] eliminates the need to use more complex,
self-tuning online learners like AdaHedge [2], as used in [3] and more recently [4], in favour of the
simpler Exponential Weights (Hedge). The main theoretical result of this paper is the following
performance guarantee. A more detailed version is in Appendix Sec. G.

Theorem 1 (Sample Complexity of Algorithm 1) With probability at least 1− δ, the worst-case
sample complexity of PELEG is bounded as

τ 6 Õ
(

log2(K2/δ)

C2Dθ∗

)
. (2)

In Sec. 4, we sketch the arguments behind the result with the full proof in Sec. G.

Remark 2 As explained in Sec. 2, the optimal (oracle) allocation requires O
(

1
Dθ∗

log K
δ

)
samples.

Comparing this with (2), we see that our algorithm is instance optimal up to logarithmic factors,
barring the log(K/δ)

C2 term. In most applications, feature vectors (i.e., x1, · · · , xK) are chosen to
represent the feature space well which translates to a high value of C(i.e., C = Ω(1)) .

Remark 3 We conjecture that the extra log(1/δ) factor arises only because of the way the analysis
is carried out. As is shown in the proof of lemma 9, in the definition of εm (line 1), whenever
εm == 1.

(
1
2

)m+1, the phase length can be bounded without the extra log(1/δ) term. On the other
hand, if an upperbound ‖θ∗‖2 6 S is known, then we can to use this information into our algorithm.
More details can be found in appendix (Sec. H), where we also sketch a sample complexity bound for
this new version of PELEG (we call PELEG-S, alg 2) which does not depend on the parameter C.
This brings out an intrinsic trade-off between the knowledge of S and C.
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4. Sketch of Sample Complexity Analysis

At a high level the proof of Theorem 1 involves two main parts: (1) a correctness argument for the
central while loop that eliminates arms, and (2) a bound for its length, which, when added across all
phases, gives the overall sample complexity bound.

1. Ensuring progress (arm elimination) in each phase. At the heart of the analysis is the
following result which guarantees that upon termination of the central while loop, the uncertainty in
estimating all differences of means among the surviving (i.e., non-eliminated) arms remains bounded.

Lemma 4 (Key Lemma) After each phase m > 1, max
x,x′∈Xm,x 6=x′

‖x− x′‖2
(VmNm)

−1 6

(
( 1

2)
m+1

)2

8 logK2/δm
.

Proof sketch. Phase m ends at round t when the ellipsoid E(0, V m
t , rm), with center 0 and shape

according to the arms played in the phase so far, becomes small enough to avoid intersecting the half
spaces Cm(x), for all surviving arms x, within the ball ∩B(0, Dm) (Phase Stopping Criteria of the
algorithm) which is required to keep loss functions bounded for no-regret properties. Consider the
simpler situation when there are only two arms remaining: xi, xj . When a phase ends we have one of
two possibilities. Fig. 1 (a) shows a situation when the ellipsoid V m

t , shaded in blue, has just broken
away from the red regions in the interior of the ball. Because its extent in the direction xi − xj lies
within the strip between the two hyperplanes bounding Cm(i), Cm(j), it can be shown (see proof of
lemma in appendix) that ‖xi − xj‖(Vmt )−1 is small enough to not exceed roughly 2−m. The more
challenging situation is when the ellipsoid V m

t breaks away from the red regions by breaching the
boundary of the ball B(0, Dm), as in Figure 1 (b). The while loop terminating at this time would not
satisfy the objective of controlling ‖xi − xj‖(Vmt )−1 to within 2−m, since the extent of the ellipsoid
in the direction xi − xj is larger than the gap between the halfspaces Cm(xi) and Cm(xj).

0

Span(xi − xj)

{λ : λT (xi − xj) > ε}

{λ : λT (xi − xj) 6 −ε}

Ellipsoid fits within this
⇒ ‖xi − xj‖(Vmt )−1 / 2−m

B(0, Dm)

E(0, V m
t , rm)

(a) ‘Easy’ case: The blue ellipsoid separates from
the halfspaces intersecting the ball (red) by staying
within.

0

Span(xi − xj)

{λ : λT (xi − xj) > ε}

{λ : λT (xi − xj) 6 −ε}

Ellipsoid fits within this
⇒ ‖xi − xj‖(Vmt )−1 / 2−m

Ellipsoid extent
too large

Ellipsoid extent
sufficiently small

(b) ‘Difficult’ case: The green ellipsoid separates from
the halfspaces intersecting the ball (red) by breaching.

Figure 1: Phase stopping condition in Algorithm 1 ensures ‖xi − xj‖(Vmt )−1 / 2−m after phase m.

2. Bounding the number of arm pulls in a phase. The main bound on the length of the central
while loop is the following result.

5
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Lemma 5 (Phase length bound) Let Bm := min
w∈PK

max
x,x′∈Xm,x 6=x′

‖x− x′‖2W−1 . There exists δ0

such that ∀δ < δ0, the phase length Nm for any m is bounded as :

Nm 6

max
{

8Bm (2m)2
[

r4
m logK

(
√

2−1)2C2

]
+ 1, d

}
, εm = Dm

√
C

rm

(
1
2

)m+1
,

max
{

8Bm (2m)2 r2
m + 1, d

}
, εm =

(
1
2

)m+1
.

To prove this we use the no-regret property of both the best-response MIN and the EXP-WTS
MAX learner (the full proof appears in the appendix). A key novelty here is the introduction of
the ball B(0, Dm) as a technical device to control the 2-norm radius of the final stopped ellipsoid
E(0, V m

t , rm) (inequality (i) in the proof).

5. Experiments

We numerically evaluate PELEG, against the algorithms XY-static ([10]), LUCB ([7]), ALBA ([11]),
LinGapE ([8]) and RAGE ([5]), for 3 common benchmark settings. The oracle lower bound is
also calculated. Note: In our implementation, we ignore the term B(0, Dm) in the phase stopping
criterion; this has the advantage of making the criterion check-able in closed form. We simulate
independent,N (0, 1) observation noise in each round. All results reported are averaged over 50 trials.
We also empirically observe a 100% success rate in identifying the best arm, although a confidence
value of δ = 0.1 is passed in all cases.

Setting 1: Standard bandit. The arm set is the standard basis {e1, e2, . . . , e5} in 5 dimen-
sions. The unknown parameter θ∗ is set to (∆, 0, . . . , 0), where ∆ > 0, with ∆ swept across
{0.1, 0.2, 0.3, 0.4, 0.5}. As noted in [8], for ∆ close to 0, XY-static’s essentially uniform allocation
is optimal, since we have to estimate all directions equally accurately. However, PELEG performs
better (Fig. 2(a)) due to being able to eliminate suboptimal arms earlier instead of uniformly across
all arms. Fig. 2(b) compares PELEG and RAGE in the smaller window ∆ ∈ [0.11, 0.19], where
PELEG is found to be competitive (and often better than) RAGE.

Setting 2: Unit sphere. The arms set comprises of 100 vectors sampled uniformly from
the surface of the unit sphere Sd−1. We pick the two closest arms, say u and v, and then set
θ∗ = u+γ(v−u) for γ = 0.01, making u the best arm. We simulate all algorithms over dimensions
d = 10, 20, . . . , 50. This setting was first introduced in [11], and PELEG is uniformly competitive
with the other algorithms (Fig. 2(c)).

Setting 3: Standard bandit with a confounding arm [10]. We instantiate d canonical basis
arms {e1, e2, . . . , ed} and an additional arm xd+1 = (cos(ω), sin(ω), 0, . . . , 0), d = 2, . . . , 10, with
θ∗ = e1 so that the first arm is the best arm. By setting 0 < ω << 1, the d + 1th arm becomes
the closest competitor. Here, the performance critically depends on how much an agent focuses on
comparing arm 1 and arm d+ 1. LinGapE performs very well in this setting, and PELEG and RAGE
are competitive with it (Fig. 2(d)).

6. Concluding Remarks

We proposed a new, explicitly described algorithm for BAI in linear bandits, using tools from
game theory and no-regret learning to solve minimax games. The algorithm proposed is the first
attempt towards instance-optimality without the explicit knowledge of a bound on the parameter
space available to the learner. Several interesting directions remain unexplored. Removing the extra
logarithmic dependence on log(1/δ) is perhaps the most interesting technical question. It is also of
great interest to see whether machinery can be extended to solve for best policies in general MDPs.
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(a) (b) (c) (d)

Figure 2: Sample complexity performance of LMAB algorithms for 3 different settings: Standard
bandit (Figs. a, b), Unit Sphere (Fig. c) and Standard bandit with confounding arm (Fig. d).
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Appendix A. Glossary of symbols

1. AMAX
m : the EXP-WTS algorithm, used to compute the mixed strategy of the MAX player in

each round of PELEG.

2. a∗ : the index of the best arm, i.e., a∗ := argmaxi∈[K] x
T
i θ
∗.

3. B(0, Dm) : the closed ball of radius Dm in Rd, centered at 0.

4. C = λmin

(∑
x∈X xx

T
)
.

5. Cm(x) :=
{
λ ∈ Rd : ∃x′ ∈ Xm, x′ 6= x|λTx′ > λTx+ εm

}
is the union of all hyperplanes

{λ ∈ Rd|λT (x′ − x) > εm}.

6. Dm := 2(
√

2− 1)
√

C
max

x,x′∈Xm,x 6=x′
‖x−x′‖22 logK

.

7. d : dimension of space in which the feature vectors x1, · · · , xK reside.

8. ∆i = (x∗ − xi)T θ∗, i 6= a∗.

9. ∆min = mini 6=a∗ ∆i.

10. δ : maximum allowable probability of erroneous arm selection (a.k.a confidence parameter).

11. δm = δ
m2 .

12. E(0, V, r) := {λ ∈ Rd | λTV λ 6 r2}, is the confidence ellipsoid with center 0, shaped by V
and r.

13. K = |X | number of feature vectors.

14. Nm : the length of Phase m.

15. νk : rewards from Arm k are all drawn IID from νk.

16. P(Ω) := {p ∈ [0, 1]|Ω| :‖ p ‖1= 1}, the set of all probability measures on some given set Ω.

17. rm =
√

8 log K2

δm
.

18. θ∗ : fixed but unknown vector in Rd that parameterizes the means of νk, i.e., the mean of νk is
xTk θ

∗.

19. nkt : number of times Arm k has been sampled up to Round t of PELEG.

20. θ̂m : OLS estimate of θ∗ at the end of Phase m of PELEG.

21. V m
t =

∑
s6t xsx

T
s the design matrix in Round t of Phase m.

22. Wt =
∑

x∈X wxxx
T the design matrix formed by sampling arms∼ w ∈ P(X ).

23. X = {x1, · · · , xK}, the feature set.

24. Xm the set of features that survive Phase m of PELEG.

9
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A.1. Sample complexity comparison of BAI algorithms for LMAB in literature

Algorithm Sample Complexity Remarks

XY-static [10] O
(

d
∆min

(ln 1
δ + lnK + ln 1

∆min
) + d2

) Static allocation, worst-case optimal
Dependence on d cannot be removed

LinGapE1 [8] O
(
dH0 log

(
dH0 log 1

δ

))
Fully adaptive, sub-optimal in general.

ALBA [11] O
(∑d

i=1
1

∆2
(i)

ln
(
K
δ + ln 1

∆min

))
Fully adaptive, sub-optimal in general (see [5])

RAGE [5] O
(

1
Dθ∗

log 1/∆min log
(
K2 log2 1/∆min

δ

)) Instance-optimal, but
Minimax oracle required

LinGame [4] O
(

log 1/δ+K2d
√

log 1/δ+S2(log 1/δ)3/4

Dθ∗

)
Requires knowledge of a upperbound on ‖θ∗‖

Optimal lower bound is achieved only in the limit as δ ↓ 0

PELEG (this paper) O
(

log2(1/∆min)
Dθ∗

[
log2((log2(1/∆min))2K2/δ)

C2

]) Instance-optimal (upto a factor of log(K/δ)/C2),
Explicitly implementable

Only requires knowledge of C which can be computed in advance

Table 1: Comparison of Sample complexities achieved by various algorithms for LMAB in the
literature. Here S is a bound on 2-norm of θ∗ and H0 is a complicated term defined in terms of a
solution to an offline optimization problem in [8].

Appendix B. Details of Algorithm 1

Appendix C. Technical lemmas

C.0.1. DETAILS OF AMAX
m (EXP-WTS)

We employ the EXP-WTS algorithm to recommend to the MAX player, the arm to be played in
round t > K. At the start of every phase m > 1, an EXP-WTS subroutine is instantiated afresh,
with initial weight vectors to be 1 for each of the K experts. The K experts are taken to be standard
unit vectors (0, 0, . . . , 0, 1, 0, . . . , 0) with 1 at the kth position, k ∈ [K]. The EXP-WTS subroutine
recommends an exponentially-weighted probability distribution over the number of arms, depending
upon the weights on each expert. The loss function supplied to update the weights of each expert, is
indicated in Step 1 of Algorithm 1.

EXP-WTS requires a bound on the losses (rewards) in order to set its learning parameter optimally.
This is ensured by passing an upper-bound of D2

m (∵ in any Phase m, ‖λ‖2 6 Dm, see Step ?? of
Algorithm 1).

Lemma 6 In any phase m, at any round t > K, AMAX
m has a regret bounded as

Rt 6
D2
m√

2− 1

√
t logK.

Proof The proof involves a simple modification of the proof of the regret analysis of the EXP-WTS
algorithm (see for example, [1]), with loss scaled by [0, D2

m] followed by the well-known doubling
trick.

10
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Algorithm 1 Phased Elimination Linear Exploration Game (PELEG)
Input: X , a barycentric spanner of X : XB, δ.
Init: m← 1,Xm ← X .
while {|Xm| > 1} do

δm ← δ
m2 .

Dm ← 2(
√

2− 1)

√
C

(
max

x,x′∈Xm,x 6=x′
‖x− x′‖22 logK

)−1

rm ←
√

8 log (K2/δm)

εm ← min
{

1, Dm

√
Cr−1

m

}(
1
2

)m+1
.

Let Cm(x) :=
{
λ ∈ Rd : ∃x′ ∈ Xm, x′ 6= x|λTx′ > λTx+ εm

}
, for x ∈ Xm.

Play each arm in XB once and collect rewards. Burn-in period
∀k ∈ [K], ndk = 1{xk ∈ XB}, V m

d ←
∑

x∈XB
xxT , t← d.

Initialize AMAX
m ≡ EXP − WTS with expert set {ê1, · · · , êK} ⊂ RK and loss function

lMAX
t−1 (). MAX player: EXP-WTS
Phase Stopping Criterion

while
{

min
λ∈∪x∈XmCm(x)∩B(0,Dm)

‖λ‖2Vmt 6 r2
m

}
do

Get wt from AMAX
m and form the matrix Wt =

K∑
k=1

wkt xkx
T
k .

λt ← argmin
λ∈∪x∈XmCm(x)∩B(0,Dm)

‖λ‖2Wt
. MIN player: Best response

For k ∈ [K], Ukt :=
(
λTt xk

)2
.

Construct loss function lMAX
t (w) = −wTUt

Play arm kt = argmax
k∈[K]

t∑
s=1

wks − nkt−1 Tracking

nktt ← nktt + 1
Collect sample Yt = θ∗Txkt + ηt
V m
t = V m

t−1 + xktxkt
T .

end
Nm ← t

θ̂m ←
(
V m
Nm

)−1
(
Nm∑
s=1

Ysxks

)
LSE of θ∗

x̂m+1 ← argmax
x∈Xm

θ̂Tmx. Xm+1 ←
{
x ∈ Xm|θ̂Tm(x̂m+1 − x) 6 2−(m+2)

}
.

m← m+ 1.
end
Return Xm Output surviving arm

11
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Appendix D. Proof of Key Lemma

Lemma 7 (Key Lemma) At the end of each phase m > 1,

max
x,x′∈Xm,x 6=x′

∥∥x− x′∥∥2

(VmNm)
−1 6

((
1
2

)m+1
)2

8 logK2/δm
.

Proof Let rm :=
√

8 logK2/δm, for ease of notation. The phase stopping criterion is

STOP at round t > K if: min
λ∈

⋃
x∈Xm

Cm(x)∩B(0,Dm)
‖λ‖2(VmNm) > r2

m. (3)

Note that the set Cm(x) depends on the value that εm takes in phase m. Depending on the value
of εm, we divide the analysis into the following two cases.

Case 1. εm = (1/2)m+1.

In this case Dm
√
C

rm
> 1. For any phasem > 1, and t > 1, let us define the ellipsoid E (0, V m

t , rm) :={
θ ∈ Rd : ‖θ‖2Vmt 6 r2

m

}
. The phase stopping rule at round t > K is equivalent to :

STOP if : E(0, V m
t , rm)

⋂{ ⋃
x∈Xm

Cm(x) ∩B(0, Dm)

}
= ∅ (empty set)

⇔ {E(0, V m
t , rm) ∩B(0, Dm)}

⋂{ ⋃
x∈Xm

Cm(x)

}
= ∅.

However by Rayleigh’ inequality2 followed by the fact that Dm
√
C

rm
> 1, we have for any θ ∈

E(0, V m
t , rm),

‖θ‖22 6
‖θ‖2Vmt

λmin(V m
t )

(∗)
6

‖θ‖2Vmt

λmin(
K∑
k=1

xkx
T
k )

6
r2
m

C
6 D2

m.

The inequality (*) follows from the following fact: for t > K, V m
t =

K∑
k=1

xkx
T
k +

t∑
s=K+1

xsx
T
s <

K∑
k=1

xkx
T
k .

∴ E(0, V m
t , rm) ⊆ B(0, Dm),∀t > K. Hence the phase stopping rule reduces to,

STOP if: E(0, V m
t , rm)

⋂{ ⋃
x∈Xm

Cm(x)

}
= ∅ ⇔ min

λ∈∪x∈XmCm(x)
‖λ‖2Vmt > r2

m

⇔ min
λ∈

⋃
(x,x′)∈X2

m

{λ′:λ′T x′>λ′T x+(1/2)m+1}
‖λ‖2Vmt > r2

m.

2. for any PSD matrix A and x ∈ Rd, λmin(A) 6 xTAx
xT x

6 λmax(A)

12



EMPLOYING NO REGRET LEARNERS FOR PURE EXPLORATION IN LINEAR BANDITS

The above reduction is a minimization problem over union of halfspaces. For any fixed pair
(x, x′) ∈ X 2

m, x 6= x′, this is a quadratic optimization problem with linear constraints, which can be
explicitly solved using standard Lagrange method.

Lemma 8 (Supporting Lemma for Lem. 7) For any two arms x and x′, we have that

min
λ∈{λ′:λ′T x′>λ′T x+( 1

2)
m+1}

‖λ‖2Vmt =

((
1
2

)m+1
)2

‖x− x′‖2(Vmt )−1

.

Proof The result follows by solving the optimization problem explicitly using the Lagrange multiplier
method.

By using the above lemma we obtain:

STOP if:∀x, x′ ∈ Xm, x 6= x′,
∥∥x− x′∥∥2

(Vmt )−1 <

((
1
2

)m+1
)2

8 logK2/δm
.

Hence, at round t = Nm we have, ∀x, x′ ∈ Xm, x 6= x′, ‖x− x′‖2(VmNm )−1 <

(
( 1

2)
m+1

)2

8 logK2/δm
.

Case 2. εm = Dm
√
C

rm

(
1
2

)m+1.

In this case, we have Dm
√
C

rm
< 1.

The phase ends when ∀(x, x′) ∈ X 2
m, min

λ∈{λ∈Rd:λT x′>λT x+εm}∩B(0,Dm)
‖λ‖2Vmt > r2

m. Let us de-

compose the optimization problem defining the phase stopping criteria into smaller sub-problems,
depending on pair of arms (x, x′) in X 2

m. That is, we split the set ∪x∈XmCm(x) in equation (3), and
consider the following problem: for any pair of distinct arms (x, x′) ∈ Xm, consider

P (x, x′) : min
λ∈{λ∈Rd:λT x′>λT x+εm}∩B(0,Dm)

‖λ‖2Vmt .

let tx,x′ be the first round when min
λ∈{λ∈Rd:λT x′>λT x+εm}∩B(0,Dm)

‖λ‖2Vmt > r2
m. Clearly, we have

Nm = max
(x,x′)∈X 2

m,x 6=x′
tx,x′ . In addition, for any t > tx,x′ , ‖λ‖2Vmt = λT

(
V m
tx,x′

+
∑t

s=tx,x′+1 xsx
t
s

)
λ =

‖λ‖2Vmtx,x′
+
∑t

s=tx,x′+1(xTs λ)2 > ‖λ‖2Vmtx,x′
> r2

m. Hence, once the inequality for a given pair of

arms (x, x′) is fulfilled it is satisfied for all subsequent rounds. We will now analyze the problem
P (x, x′) for each pair of arms (x, x′) ∈ X 2

m individually.
For any t > 1 , define λ∗t ∈ argmin

λ∈{λ∈Rd:λT x′>λT x+εm}
∩B(0,Dm)

‖λ‖2Vmt . Note that λ∗t is specific to the pair

(x, x′).

13
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CLAIM 1. λ∗t
T (x′ − x) = εm,∀t > 1.

Proof [Proof of Claim 1] For the proof, let’s denote λ∗ ≡ λ∗t . Now, suppose that the claim was not
true, i.e., λ∗T (x′ − x) = εm + a for some a > 0. Let b = a

λ∗T (x′−x)
. Then 0 < b < 1. Define

λ′ := (1− b)λ∗. By construction, λ′T (x′ − x) = εm, and ‖λ′‖2 = (1− b) ‖λ∗‖2 < ‖λ∗‖2. Hence
λ′ ∈

{
λ ∈ Rd : λTx′ > λTx+ εm

}
∩B(0, Dm). However, ‖λ′‖Vmt = (1− b) ‖λ∗‖Vmt < ‖λ∗‖Vmt ,

which is a contradiction.

At t = tx,x′ , we have min
λ∈{λ∈Rd:λT x′>λT x+εm}

∩B(0,Dm)

‖λ‖2Vmt > r2
m. We have two sub-cases depending

on the 2-norm of λ∗t .

SUB-CASE 1. ‖λ∗t ‖2 < Dm.

In this case, we have the following equivalence:

min
λ∈{λ∈Rd:λT x′>λT x+εm}

∩B(0,Dm)

‖λ‖2Vmt ≡ min
λ∈{λ∈Rd:λT x′>λT x+εm}

‖λ‖2Vmt .

This can be seen by noting that if ‖λ∗t ‖2 < Dm, then the corresponding Lagrange multiplier is
zero. Hence at round t = tx,x′ , by solving a standard Lagrange optimization problem, we get

‖x− x′‖2(Vmt )−1 <
ε2m

8 logK2/δm
= D2

mC
r2
m

( 1
2)

2(m+1)

8 logK2/δm
<

( 1
2)

2(m+1)

8 logK2/δm
. The last inequality follows from

the hypothesis of Case 2. Since Nm > tx,x′ , we get ‖x− x′‖2(VmNm )−1 6 ‖x− x′‖2(
Vmtx,x′

)−1 <

(
( 1

2)
m+1

)2

8 logK2/δm
.

SUB-CASE 2. ‖λ∗t ‖2 = Dm.

The sub-case when ‖λ∗t ‖2 = Dm, is more involved. Let’s enumerate the properties of λ∗t at t = tx,x′

that we have.

• ‖λ∗t ‖
2
Vmt

> r2
m.

• ‖λ∗t ‖2 = Dm.

• λ∗t T (x− x′) = εm.

We divide the analysis of this sub-case into two further sub-cases.

SUB-SUB-CASE 1. r2
m ‖x− x′‖

2
(Vmt )−1 > ε2

m.

Let θ∗t := argmax
θ∈E(0,Vmt ,rm)

θT (x′ − x). Then, one can verify by solving the maximization problem

explicitly that θ∗t
T (x′ − x) = rm ‖x′ − x‖(Vmt )−1 . Let θ1 :=

θ∗t
T (x′−x)

‖x′−x‖22
(x′ − x). We have the

following properties of θ1 by construction, which are straight-forward to verify.

• ‖θ1‖2 =
rm‖x′−x‖(Vmt )−1

‖x′−x‖2
.

14
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• θT1 (θ∗t − θ1) = 0.

Let λ1 :=
λ∗t
T (x′−x)

‖x′−x‖22
(x′ − x). It follows that, ‖λ1‖2 =

|λ∗t T (x′−x)|
‖x′−x‖2

= εm
‖x′−x‖2

.

Finally, let us define two more quantities. Let λ2 :=
rm‖x′−x‖(Vmt )−1

εm
λ∗t and θ2 := εm

rm‖x′−x‖(Vmt )−1
θ∗t .

We have by the hypothesis of sub-sub-case 1, that ‖θ2‖22 < ‖θ∗t ‖
2
2. This implies that θ2 ∈

E(0, V m
t , rm).

Next, we make the following two claims on the 2-norms of θ2 and θ∗t − θ1.

CLAIM. ‖θ2‖2 > Dm.

Proof [Proof of Claim.] Suppose that θ2 ∈ B(0, Dm). By construction, θT2 (x′ − x) = εm. Hence,
θ2 ∈

{
λ ∈ Rd : λTx′ > λTx+ εm

}
∩ B(0, Dm). Since, θ2 ∈ E(0, V m

t , rm), this implies that
‖θ2‖Vmt 6 rm. However, this is a contradiction since at round t, min

λ∈{λT x′>λT x+εm}
∩B(0,Dm)

> r2
m.

Hence, we have the following,

D2
m < ‖θ2‖22 =

ε2
m

r2
m ‖x′ − x‖

2
(Vmt )−1

‖θ∗t ‖
2
2 =

D2
m

‖λ2‖22
‖θ∗t ‖

2
2 ⇒ ‖θ

∗
t ‖

2
2 > ‖λ2‖22 .

CLAIM. ‖θ∗t − θ1‖22 > ‖λ2 − θ1‖22.

Proof [Proof of Claim.] First we note that,

θT1 (θ∗t − λ2) =
θ∗t
T (x′ − x)

‖x′ − x‖22
(x′ − x)T

(
θ∗t −

rm ‖x′ − x‖(Vmt )−1

εm
λ∗t

)

=
r2
m ‖x′ − x‖

2
(Vmt )−1

‖x′ − x‖22
−
r2
m ‖x′ − x‖

2
(Vmt )−1

‖x′ − x‖22
= 0.

Next observe that,

‖θ∗t − θ1‖22 = ‖θ∗t ‖
2
2 + ‖θ1‖22 − 2θ∗t

T θ1

= ‖θ∗t ‖
2
2 + ‖θ1‖22 − 2(θ∗t − λ2)T θ1 − 2θT1 λ2

= ‖θ∗t ‖
2
2 + ‖θ1‖22 − 2θT1 λ2

> ‖λ2‖22 + ‖θ1‖22 − 2θT1 λ2 = ‖λ2 − θ1‖22 .

Putting things together we have,

‖θ∗t ‖
2
2 = ‖θ∗t − θ1‖22 + ‖θ1‖22

⇒ ‖θ1‖22 = ‖θ∗t ‖
2
2 − ‖θ

∗
t − θ1‖22

⇒ ‖θ1‖22 < ‖θ
∗
t ‖

2
2 − ‖λ2 − θ1‖22

15



EMPLOYING NO REGRET LEARNERS FOR PURE EXPLORATION IN LINEAR BANDITS

⇒
r2
m ‖x′ − x‖

2
(Vmt )−1

‖x′ − x‖22
<
r2
m

C
− r2

m

∥∥x′ − x∥∥2

(Vmt )−1

(
D2
m

ε2
m

− 1

‖x′ − x‖22

)

⇒
‖x′ − x‖2(Vmt )−1

‖x′ − x‖22
<

1

C
−
∥∥x′ − x∥∥2

(Vmt )−1

(
D2
m

ε2
m

− 1

‖x′ − x‖22

)

⇒
‖x′ − x‖2(Vmt )−1

‖x′ − x‖22
<

1

C
−
∥∥x′ − x∥∥2

(Vmt )−1

D2
m

ε2
m

+
‖x′ − x‖2(Vmt )−1

‖x′ − x‖22

⇒
∥∥x′ − x∥∥2

(Vmt )−1 <
ε2
m

D2
mC

=
D2
mC

r2
mD

2
mC

(
1

2

)2(m+1)

=

((
1
2

)m+1
)2

8 logK2/δm
.

SUB-SUB-CASE 2. r2
m ‖x− x′‖

2
(Vmt )−1 6 ε2

m.

This case is trivial as by the hypothesis,

∥∥x− x′∥∥2

(Vmt )−1 6
ε2
m

r2
m

=
D2
mC

r2
m

1

r2
m

((
1

2

)m+1
)2

<

((
1
2

)m+1
)2

8 logK2/δm
.

This completes the proof of the key lemma.

Appendix E. Proofs of bounds on phase length

In this section we will provide an upper-bound on the length of any phase m > 1. Clearly, the length
of any phase m is governed by the value of εm in that phase. Towards this, we have the following
lemma.

Lemma 9 (Phase length bound) Let Bm := min
w∈PK

max
x,x′∈Xm,x 6=x′

‖x− x′‖2W−1 . There exists δ0

such that ∀δ < δ0, the length Nm of any phase m is bounded as :

Nm 6

max
{

2Bm
(
2m+1

)2 [ r4
m logK

(
√

2−1)2C2

]
+ 1, d

}
if εm = Dm

√
C

rm

(
1
2

)m+1
,

max
{

2Bm
(
2m+1

)2
r2
m + 1, d

}
if εm =

(
1
2

)m+1
.

Proof Clearly by the design of the algorithm, every phase has a minimum of d phases as —XB| = d.
Recall that rm =

√
8 logK2/δm. Let t be the last round in phase m, before the phase ends. Then by

definition of phase stopping rule (Step 12 of the algorithm),

r2
m > min

λ∈
⋃

x∈Xm
Cm(x)∩B(0,Dm)

‖λ‖2Vmt

(i)

> min
λ∈

⋃
x∈Xm

Cm(x)∩B(0,Dm)

t∑
s=1

‖λ‖2Ws
−D2

mK logK

16
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(ii)

>
t∑

s=1

‖λs‖2Ws
−D2

mK logK

(iii)
=

t∑
s=1

K∑
k=1

wks
(
λTs xk

)2 −D2
mK logK

(iv)

> max
w∈PK

t∑
s=1

K∑
k=1

wk
(
λTs xk

)2 − D2
m√

2− 1

√
t logK −D2

mK logK

= max
w∈PK

t∑
s=1

‖λs‖2W −
D2
m√

2− 1

√
t logK −D2

mK logK

= t. max
w∈PK

t∑
s=1

1

t
‖λs‖2W −

D2
m√

2− 1

√
t logK −D2

mK logK

(v)

> t. max
w∈PK

min

q∈P
( ⋃
x∈Xm

Cm(x)∩B(0,Dm)

)Eλ∼q
[
‖λ‖2W

]
− D2

m√
2− 1

√
t logK −D2

mK logK

(vi)

> t. max
w∈PK

min

q∈P
( ⋃
x∈Xm

Cm(x)

)Eλ∼q
[
‖λ‖2W

]
− D2

m√
2− 1

√
t logK −D2

mK logK

(vii)
= t

ε2
m

Bm
− D2

m√
2− 1

√
t logK −D2

mK logK.

Here the inequalities follow because of (i) lemma ??, (ii) best-response of MIN player as given in
Step 15 of the algorithm, (iii) by definition of Ws in Step 14, (iv) regret property of MAX player

(see lemma 6), (v)
t∑

s=1

1
t1{λ = λs} ∈ P

( ⋃
x∈Xm

Cm(x) ∩B(0, Dm)

)
, (vi) taking minimum over

a larger set, and (vii) follows by explicitly solving the minimization problem and recalling the
definition of Bm We have that,

t− Bm

(
√

2− 1)ε2
m

D2
m

√
logK

√
t 6

Bm
ε2
m

r2
m +

Bm
ε2
m

D2
mK logK. (4)

We will do the analysis depending on the value that εm takes in phase m.

Case 1. εm = Dm
√
C

rm

(
1
2

)m+1.

In this case we have, Dm
√
C

rm
< 1. Applying the value of εm in eq. (4), we have

t− Bm

(
√

2− 1)ε2
m

D2
m

√
logK

√
t 6

Bm
ε2
m

r2
m +

Bm
ε2
m

D2
mK logK

⇒ t− Bm

(
√

2− 1)C
r2
m

(
2m+1

)2√
logK

√
t 6

Bm
D2
mC

r4
m

(
2m+1

)2
+
Bm
C
r2
m

(
2m+1

)2
K logK.

(5)
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Let Tm := Bm
D2
mC

r4
m

(
2m+1

)2
+ Bm

C r2
m

(
2m+1

)2
K logK. The function t 7→

√
t is a differentiable

concave function, meaning for any t1, t2 > 0,
√
t2 6

√
t1 + 1

2
√
t1

(t2 − t1). We therefore have

√
t 6

√
Tm +

1

2
√
Tm

(t− Tm) .

Applying both these to (5) and rearranging, we get

t 6 Tm

(
1 +

2Bmr
2
m

(
2m+1

)2√
logK

2(
√

2− 1)C
√
Tm −Bmr2

m (2m+1)2√logK

)
.

Note that for small enough δ, the first term in the definition of Tm dominates the second term, i.e.,
there exists δ(1)

0 > 0 such that ∀δ < δ
(1)
0 ,

Bm
C
r2
m

(
2m+1

)2
K logK 6

Bm
D2
mC

r4
m

(
2m+1

)2
,

⇒ r2
m > K logKD2

m. (6)

This means that Tm 6 2 Bm
D2
mC

r4
m

(
2m+1

)2
, and hence,

t 6 2
Bmr

4
m

(
2m+1

)2
D2
mC

1 +
2Bmr

2
m

(
2m+1

)2√
logK

2(
√

2− 1)C

√
Bmr4

m(2m+1)2

D2
mC

−Bmr2
m (2m+1)2√logK


= 2

Bmr
4
m

(
2m+1

)2
D2
mC

1 +
2Dm

√
Bm (2m+1)2 logK

2(
√

2− 1)
√
C −Dm

√
Bm (2m+1)2 logK

 .

We note here the following lower bound on Bm.

Bm = min
w∈PK

max
x,x′∈Xm,x 6=x′

∥∥x− x′∥∥2

W−1

> min
w∈PK

max
x,x′∈Xm,x 6=x′

λmin(W−1)
∥∥x− x′∥∥2

2

= min
w∈PK

max
x,x′∈Xm,x 6=x′

1

λmax(W )

∥∥x− x′∥∥2

2

> min
w∈PK

max
x,x′∈Xm,x 6=x′

∥∥x− x′∥∥2

2

= max
x,x′∈Xm,x 6=x′

∥∥x− x′∥∥2

2
.

By using the value of Dm as given in Step 6 of the algorithm, we note that

Dm

√
Bm (2m+1)2 logK = 2(

√
2− 1)

√√√√ C

max
x,x′∈Xm,x 6=x′

‖x− x′‖22 logK

√
Bm (2m+1)2 logK

18
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> 2(
√

2− 1)

√√√√ C

max
x,x′∈Xm,x 6=x′

‖x− x′‖22 logK

√
max

x,x′∈Xm,x 6=x′
‖x− x′‖22 (2m+1)2 logK

=
(
2m+1

)
.2(
√

2− 1)
√
C > 2(

√
2− 1)

√
C.

Using this we get a bound on t as:

t 6 2
Bmr

4
m

(
2m+1

)2
D2
mC

= 2
Bmr

4
m

(
2m+1

)2
4(
√

2− 1)2C2

(
max

x,x′∈Xm,x 6=x′

∥∥x− x′∥∥2

2
logK

)
6 2Bm

(
2m+1

)2 [ r4
m logK

(
√

2− 1)2C2

]
.

Since, by assumption,C ≡ λmin
(

K∑
k=1

xkx
T
k

)
= Θ(1), we have t 6 limO

(
Bm

(
2m+1

)2
r4
m logK

)
, ∀δ <

δ
(1)
0 .

Case 2. εm =
(

1
2

)m+1.

We have in this case that, Dm
√
C

rm
> 1. Applying the value of εm in eq. (4), we obtain

t− Bm

(
√

2− 1)ε2
m

D2
m

√
logK

√
t 6

Bm
ε2
m

r2
m +

Bm
ε2
m

D2
mK logK (7)

⇒ t− Bm

(
√

2− 1)
D2
m

(
2m+1

)2√
logK

√
t 6 Bmr

2
m

(
2m+1

)2
+Bm

(
2m+1

)2
D2
mK logK. (8)

Let Tm := Bmr
2
m

(
2m+1

)2
+ Bm

(
2m+1

)2
D2
mK logK.. As before, noting that t 7→

√
t is a

concave, differentiable function, we have

√
t 6

√
Tm +

1

2
√
Tm

(t− Tm) .

Applying this to (8) and rearranging, we get

t 6 Tm

(
1 +

2Bmr
2
m

(
2m+1

)2√
logK

2(
√

2− 1)C
√
Tm −Bmr2

m (2m+1)2√logK

)
.

Going along the same lines as Case 1, we see that there exists δ(2)
0 > 0 such that ∀ δ < δ

(2)
0 ,

Tm 6 2Bmr
2
m

(
2m+1

)2, whence

t 6 2Bm
(
2m+1

)2
r2
m.

We now set δ0 = min{δ(1)
0 , δ

(2)
0 }.
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Appendix F. Justification of elimination criteria

In this section, we argue that progress is made after every phase of the algorithm. We will also show
the correctness of the algorithm. Let us define a few terms which will be useful for analysis.

Let Sm :=
{
x ∈ X : θ∗T (x∗ − x) < 1

2m

}
. Let B∗m := min

w∈PK
max

(x,x′)∈S2
m,x 6=x′

‖x− x′‖2W−1 ,

where W =
K∑
k=1

wkxkxk. Finally, define T ∗m := B∗m
D2
mC

r4
m

(
2m+1

)2
+ B∗m

C r2
m

(
2m+1

)2
D2
mK logK.

Define a sequence of favorable events {Gm}m>1 as,

Gm :=

{
Nm 6 T ∗m

(
1 +

2B∗mr
2
m

(
2m+1

)2√
logK

2(
√

2− 1)C
√
T ∗m −B∗mr2

m (2m+1)2√logK

)}⋂
{x∗ ∈ Xm+1}

⋂
{Xm+1 ⊆ Sm+1} .

Remark 10 Conditioned on the event Gm−1, x∗ ∈ Xm and Xm ⊆ Sm. Hence, Bm 6 B∗m and
Tm 6 T ∗m. Hence, under the event Gm−1,

Nm 6 T ∗m

(
1 +

2B∗mr
2
m

(
2m+1

)2√
logK

2(
√

2− 1)C
√
T ∗m −B∗mr2

m (2m+1)2√logK

)
a.s.

Note here that the right hand side is a non-random quantity.

Lemma 11 P
[
Gm

∣∣ Gm−1, . . . ,G1

]
> 1− δm.

Proof [Proof of lemma 11] Let y = xi − xj for some xi, xj ∈ Xm, xi 6= xj . Since θ̂m is a

least squares estimate of θ∗, conditioned on the realization of the set Xm, yT
(
θ̂m − θ∗

)
is a

‖y‖2(VmNm )−1 −sub-Gaussian random variable.

By the key lemma 7 we have that ‖y‖2(VmNm )−1 6 1
8(2m+1)2 log(K2/δm)

. Using property of sub-

Gaussian random variables, we write for any η ∈ (0, 1),

P
[∣∣∣yT (θ̂m − θ∗)∣∣∣ >√2 ‖y‖2(VmNm )−1 log (2/η)

∣∣ Gm−1, . . . ,G1

]
6 η,

which implies that

P

[∣∣∣yT (θ̂m − θ∗)∣∣∣ >
√

2 log (2/η)

8 (2m+1)2 log (K2/δm)

∣∣ Gm−1, . . . ,G1

]
6 η.

Taking intersection over all possible y ∈ Y (Xm), and setting η = 2δm/K
2, gives

P
[
∀y ∈ Y (Xm) :

∣∣∣yT (θ∗ − θ̂m)∣∣∣ 6 2−(m+2)
∣∣ Gm−1, . . . ,G1

]
> 1− δm. (9)

Conditioned on Gm−1, x∗ ∈ Xm. Let x′ ∈ Xm be such that x′ /∈ Sm+1. Let y = (x∗ − x′). Then
y ∈ Y (Xm). By eq. (9) we have with probability > 1− δm:(

x∗ − x′
)T (

θ∗ − θ̂m
)
6 2−(m+2) ⇒ θ̂Tm

(
x∗ − x′

)
> 2−(m+1) − 2−(m+2) = 2−(m+2).
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Thus arm x′ will get eliminated after phase m by the elimination criteria of algorithm 1(see step 25
of algorithm 1). Hence Xm+1 ⊆ Sm+1 w.p. > 1− δm.
Next, we show that conditioned on Gm−1, x∗ ∈ Xm+1, w.p. > 1 − δm. Recall that x̂m is the
empirically best arm at the end of phase m. Hence x̂m ∈ Xm+1. Suppose that x∗ gets eliminated at
the end of phase m. This means that θ̂Tm (x̂m − x∗) > 2−(m+2). However, by eq. 9,

(x̂m − x∗)T
(
θ̂m − θ∗

)
6 2−(m+2) ⇒ θ∗T (x∗ − x̂m) < 0

which is a contradiction, since x∗ is a best arm. This, along with note 10 shows that P
[
Gm

∣∣ Gm−1, . . . ,G1

]
>

1− δm.

Corollary 12 Let G :=
⋂
m>1
Gm.

P

[ ⋂
m>1

Gm

]
>
∞∏
m=1

(
1− δ

m2

)
> 1− δ.

Corollary 13 Under the event G, the maximum number of phases of Algorithm 1 is bounded by
log2

1
∆min

.

Proof Recall that ∆min = minx∈X :x 6=x∗ θ
∗T (x∗ − x) . The proof follows by observing that after

any phase m, under the favorable event Gm−1, Xm ⊆ Sm. Since the size Sm shrinks exponentially
with the number of phases

(
because Sm =

{
x ∈ X : θ∗T (x∗ − x) < 1

2m

})
, we have the result.

Appendix G. Proof of bound on sample complexity

We begin by observing the following useful result from [5]. Recall that

Dθ∗ = max
w∈∆K

min
x∈X ,x 6=x∗

(
θ∗T (x∗ − x)

)2
‖x∗ − x‖2W−1

Proposition 14 ([5])
log2

1
∆min∑

m=1

(2m)2B∗m 6
4 log2 (1/∆min)

Dθ∗
.

Using proposition 14 we now give a bound on the asymptotic sample complexity of algorithm 1.

Theorem 15 With probability at least 1− δ, PEPEG returns the optimal arm after τ rounds, with

τ 6

2048
log2 (1/∆min)

Dθ∗


(

log
(

(log2 (1/∆min))2K2/δ
))2

logK

(
√

2− 1)2C2


+

(
256

log2 (1/∆min)

Dθ∗
log
(

(log2 (1/∆min))2K2/δ
))

.
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Proof The proof follows from Lemma 9 (phase length bound), Corollary 13 (bound on number of
phases), Prop. 14 above and the fact that the sum of several non negative quantities is bigger than
their max.

To begin with, the discussion in Sec. F shows that in every phase, Bm 6 B∗m. Next, Lemma 9
gives us (w.h.p),

τ =

log2(1/∆min)∑
m=1

Nm

6
log2(1/∆min)∑

m=1

max

{
2B∗m

(
2m+1

)2 [ r4
m logK

(
√

2− 1)2C2

]
, 2B∗m

(
2m+1

)2
r2
m

}
+ d log2 (1/∆min)

6
log2(1/∆min)∑

m=1

2B∗m
(
2m+1

)2 [ r4
m logK

(
√

2− 1)2C2

]
+

log2(1/∆min)∑
m=1

2B∗m
(
2m+1

)2
r2
m + d log2 (1/∆min)

Hence, using the fact that rm =
√

8 logK2/δm and invoking Prop. 14 we get

τ 6
log2(1/∆min)∑

m=1

512B∗m (2m)2

[(
log
(
K2/δm

))2
logK

(
√

2− 1)2C2

]

+

log2(1/∆min)∑
m=1

64B∗m
(
2m+1

)2
log
(
K2/δm

)
+ d log2 (1/∆min)

(∗)
6 2048

log2 (1/∆min)

Dθ∗


(

log
(

(log2 (1/∆min))2K2/δ
))2

logK

(
√

2− 1)2C2


+ 256

log2 (1/∆min)

Dθ∗
log
(

(log2 (1/∆min))2K2/δ
)

+ d log2 (1/∆min) ,

where (∗) follows from the fact that K
2

δm
= m2K2

δ 6 (log2(1/∆min))2K2

δ .

Appendix H. Knowledge of a bound on ‖θ∗‖

In this section we give a sketch for the sample complexity in the case when an upperbound on ‖θ∗‖
is known. The algorithm is shown here (Alg. 2).

Let S be an upperbound on ‖θ∗‖2. We use a regularized version for the grammian matrix. Note
a separate burn-in phase for each phase is not reqiured in this case. For λ > 0 and any phase m > 1,

let V m
t = λI +

t∑
s=1

xsx
T
s . The ridge estimate θ̂m of θ∗ is given by θ̂m = V m

Nm
−1

Nm∑
s=1

Ysxks . Let

St :=
t∑

s=1
Ysxks . We sketch the sample complexity analysis of algorithm 2.

• Concentration. We first observe the following useful lemma.
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Algorithm 2 Phased Elimination Linear Exploration Game-known S (PELEG-S)
Input: X , S, δ.
Init: m← 1,Xm ← X .
while {|Xm| > 1} do

δm ← δ
m2 .

(εm, Dm, rm) = SetParams-S(X , S,m, δm)
Let Cm(x) :=

{
λ ∈ Rd : ∃x′ ∈ Xm, x′ 6= x|λTx′ > λTx+ εm

}
, for x ∈ Xm.

∀k ∈ [K], ndk = 0, V m
0 ← λI , t← 0.

Initialize AMAX
m ≡ EXP − WTS with expert set {ê1, · · · , êK} ⊂ RK and loss function

lMAX
t−1 (). MAX player: EXP-WTS
Phase Stopping Criterion

while

 min
λ∈

⋃
x∈Xm

Cm(x)∩B(0,Dm)
‖λ‖2Vmt 6 r2

m

 do

t← t+ 1

Get wt from AMAX
m and form the matrix Wt =

K∑
k=1

wkt xkx
T
k .

λt ← argmin
λ∈∪x∈XmCm(x)∩B(0,Dm)

‖λ‖2Wt
. MIN player: Best response

For k ∈ [K], Ukt :=
(
λTt xk

)2
.

Construct loss function lMAX
t (w) = −wTUt

Play arm kt = argmax
k∈[K]

t∑
s=1

wks − nkt−1 Tracking

nktt ← nktt + 1
Collect sample Yt = θ∗Txkt + ηt
V m
t = V m

t−1 + xktxkt
T .

end
Nm ← t

θ̂m ←
(
V m
Nm

)−1
(
Nm∑
s=1

Ysxks

)
LSE of θ∗

x̂m+1 ← argmax
x∈Xm

θ̂Tmx.

Xm+1 ←
{
x ∈ Xm|θ̂Tm(x̂m+1 − x) 6 2−(m+2)

}
.

m← m+ 1.
end
Return Xm Output surviving arm

Lemma 16 ∥∥∥θ̂m − θ∗∥∥∥
VmNm

6 ‖SNm‖VmNm−1 +
√
λS.

Proof Let V (λ) := λI +
Nm∑
s=1

xsx
T
s and V0 :=

Nm∑
s=1

xsx
T
s .

∥∥∥θ̂m − θ∗∥∥∥
V (λ)

=
∥∥∥V (λ)−1SNm + V (λ)−1V0θ

∗ − θ∗
∥∥∥
V (λ)
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Algorithm 3 SetParams-S(X , S,m, δm)

Dm ← 2(
√

2− 1)
√

λ
max

x,x′∈Xm,x 6=x′
‖x−x′‖22 logK

rm ← 4
√
d+ 2

√
(log(K2/δm)) +

√
λS.

εm ← min

{
1,

Dm
√

(λ)

rm

}(
1
2

)m+1
.

Return εm, Dm, rm.

=
∥∥∥V (λ)−1SNm +

(
V (λ)−1V0 − I

)
θ∗
∥∥∥
V (λ)

6
∥∥∥V (λ)−1SNm

∥∥∥
V (λ)

+
∥∥∥(V (λ)−1V0 − I

)
θ∗
∥∥∥
V (λ)

= ‖SNm‖V (λ)−1 +

√
θ∗T

(
V (λ)−1V0 − I

)
V (λ)

(
V (λ)−1V0 − I

)
θ∗

= ‖SNm‖V (λ)−1 +

√
θ∗T

(
V (λ)−1V0 − I

)
(V0 − V (λ)) θ∗

= ‖SNm‖V (λ)−1 +
√
λ

√
θ∗T

(
I − V (λ)−1V0

)
θ∗ 6 ‖SNm‖VmNm−1 +

√
λS.

By standard sub-Gaussianity bounds and by observing that V −1/2
t St ∼ N

(
0, V

−1/2
t VtV

−1/2
t

)
,

we get the following result.

Lemma 17

P
[∥∥∥θ̂t − θ∗∥∥∥

Vt
6 4
√
d+ 2

√
(log(1/δm)) +

√
λS

]
> 1− δm.

Hence for any fixed y ∈ Rd, with probability > 1− δm,∣∣∣∣(θ̂m − θ∗)T y∣∣∣∣ 6 ‖y‖VmNm−1

(
4
√
d+ 2

√
(log(1/δm)) +

√
λS
)
. (10)

Hence we have,

P
[
∀y ∈ Y (Xm) :

∣∣∣∣(θ̂m − θ∗)T y∣∣∣∣ 6 ‖y‖VmNm−1

(
4
√
d+ 2

√
(log(K2/δm)) +

√
λS
)]

> 1−δm.

(11)

• Uncertainity control. After every phase m > 1,

max
x,x′,x 6=x′
(x,x′)∈X 2

m

∥∥x− x′∥∥2

VmNm
−1 >

(
(1/2)m+1

rm

)2

.

The proof is same as D.
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• Phase length bound. With rm := 4
√
d+ 2

√
(log(K2/δm)) +

√
λS, as defined in Alg 3 we

follow similar steps as in E to obtain the following bound on phaselength.

Lemma 18 (Phase length bound for alg. 2) Let Bm := min
w∈PK

max
x,x′∈Xm,x 6=x′

‖x− x′‖2W−1 .

There exists δ0 such that ∀δ < δ0, the length Nm of any phase m is bounded as :

Nm 6

{
2Bm

(
2m+1

)2 [ r4
m logK

(
√

2−1)2λ2

]
+ 1 if εm = Dm

√
λ

rm

(
1
2

)m+1
,

2Bm
(
2m+1

)2
r2
m + 1 if εm =

(
1
2

)m+1
.

• Finally, putting things together we get the following bound for high probability sample
complexity bound.

Theorem 19 With probability at least 1− δ, PEPEG-S returns the optimal arm after τ rounds,
with

τ 6

C1
log2 (1/∆min)

Dθ∗


(

log
(

(log2 (1/∆min))2K2/δ
))2

logK + λ2S4

λ2


+

(
C2

log2 (1/∆min)

Dθ∗
log
(

(log2 (1/∆min))2K2/δ
))

+ C3d
2 log2(1/∆min).

Appendix I. Experiment Details

In this section, we provide some details on the implementation of each algorithm. Each experiment
was repeated 50 times and the errorbar plots show the mean sample complexity with 1-standard
deviations.

• For implementation of PELEG, as mentioned in Sec. 5, we ignore the intersection with the
ball B(0, Dm) in the phase stopping criterion. This helps in implementing a closed form
expression for the stopping rule. The learning rate parameter in the EXP-WTS subroutine is
set to be equal to (1/D2

m)
√

8 logK/t.

• LinGapE: In the paper of [8] LinGapE was simulated using a greedy arm selection strategy that
deviates from the algorithm that is analyzed. We instead implement the LinGapE algorithm in
the form that it is analyzed.

• For implementation of RAGE, ALBA and XY−ORACLE, we have used the code provided in
the Supplementary material of Fiez et al [5]. We refer the readers to Appendix Sec. F of [5]
for further details of their implementations.
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