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Peter Richtárik PETER.RICHTARIK@KAUST.EDU.SA
KAUST

Tong Zhang TONGZHANG@UST.HK

Hong Kong University of Science and Technology

Abstract
A key bottleneck in distributed training of large scale machine learning models is the overhead related
to communication of gradients. In order to reduce the communicated cost, gradient compression
(e.g., sparsification and quantization) and error compensation techniques are often used. In this
paper, we propose and study a new efficient method in this space: error compensated loopless SVRG
method (L-SVRG). Our method is capable of working with any contraction compressor (e.g., TopK
compressor), and we perform analysis for strongly convex optimization problems in the composite
case and smooth case. We prove linear convergence rates for both cases and show that in the smooth
case the rate has a better dependence on the contraction factor associated with the compressor.
Further, we show that in the smooth case, and under some certain conditions, error compensated
L-SVRG has the same convergence rate as the vanilla L-SVRG method. Numerical experiments are
presented to illustrate the efficiency of our method.

1. Introduction

In this work we consider the composite finite-sum optimization problem

min
x∈Rd

P (x) := 1
n

n∑
τ=1

f (τ)(x) + ψ(x), (1)

where f(x) := 1
n

∑
τ f

(τ)(x) is an average of n smooth convex functions f (τ) : Rd → R distributed
over n nodes (devices, computers), and ψ : Rd → R ∪ {+∞} is a proper closed convex function
representing a possibly nonsmooth regularizer. On each node, f (τ)(x) is an average of m smooth

convex functions f (τ)(x) = 1
m

m∑
i=1

f
(τ)
i (x), representing the average loss over the training data stored

on node τ . We assume that problem (1) has at least one optimal solution x∗.

For large scale machine learning problems, distributed training and parallel training are often
used. While in such settings, communication is generally much slower than the computation, which
make the communication overhead become a key bottleneck. There are several ways to tackle this
issue, such as using large mini-batchs [5, 20], asynchronous learning [1, 9, 12], quantization and
error compensation [2, 4, 10, 13, 18]. For quantization, there are mainly two types, i.e., contraction
compressor and unbiased compressor, which are defined as follows.
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Q is a contraction compressor if there is a 0 < δ ≤ 1 such that

E‖x−Q(x)‖2 ≤ (1− δ)‖x‖2, (2)

for all x ∈ Rd. Q̃ is an unbiased compressor if there is ω ≥ 0 such that

E[Q̃(x)] = x and E‖Q̃(x)‖2 ≤ (ω + 1)‖x‖2, (3)

for all x ∈ Rd.
Quantization can reduce the communicated bits to improve the communication efficiency, but

it will also slow down the convergence rate generally. Hence, error feedback or error compensa-
tion scheme is often used to improve the performance of quantization algorithms. For unbiased
compressor, if we assume the accumulated quantization error is bounded, the convergence rate of
error compensated SGD is the same as vanilla SGD [16]. However, if we only assume bounded
stochastic gradient, in order to guarantee the boundedness of the accumulated quantization error,
some decaying factor need to be involved in general, and the error compensated SGD is proved to
have some advantage over QSGD in some perspective for convex quadratic problem [19]. On the
other hand, for contraction compressor (for example TopK compressor [3]), the error compensated
SGD actually has the same convergence rate as Vanilla SGD [14, 15, 17]. If f is non-smooth and
ψ = 0, error compensated SGD was studied in [7] in the single node case, and the convergence rate
is of order O (1/

√
δk).

For variance-reduced methods, there is QSVRG [2] for the smooth case where ψ in problem (1)
is zero, and there is VR-DIANA [6] for the composite or regularized case where ψ in problem (1) is
nonzero. However, the compressor of both algorithms need to be unbiased. In this paper, we study
the error compensated methods for loopless SVRG (L-SVRG) [8] for any contraction compressor.

1.1. Contributions

Iteration complexity. Denote the smoothness of f , f (τ), and f (τ)
i as Lf , L̄, and L, respectively.

In the composite case, the iteration complexity of error compensated L-SVRG (EC-LSVRG) is

O
((

1
δ + 1

p + (1−δ)L̄
δ2µ

+ (1−δ)L
δµ +

Lf
µ + L

nµ

)
ln 1

ε

)
.

If we further assume additional assumptions (Assumption 2.1 or Assumption 2.2) on the contraction
compressor, the iteration complexity is improved to

O
((

1
δ + 1

p +
(1−δ)Lf
δ2µ

+ (1−δ)L
nδµ +

Lf
µ + L

nµ

)
ln 1

ε

)
.

In the smooth case, the iteration complexity of EC-LSVRG is

O

((
1
δ + 1

p +

√
(1−δ)Lf L̄
µδ +

√
(1−δ)LfL
µ
√
δ

+
Lf
µ + L

nµ

)
ln 1

ε

)
.

If we further assume additional assumptions (Assumption 2.1 or Assumption 2.2) on the contraction
compressor, the iteration complexity is improved to

O

((
1
δ + 1

p +

√
(1−δ)Lf
µδ +

Lf
µ + L

nµ

)
ln 1

ε

)
.

2



ERROR COMPENSATED LOOPLESS SVRG

In particular, if Lfδ ≤
L
n , then the above iteration complexity becomes

O
((

1
p +

Lf
µ + L

nµ

)
ln 1

ε

)
,

which is actually the iteration complexity of the uncompressed L-SVRG [11]. Noticing that Lf ≤
L ≤ mnLf , this means that in the extreme case: L = mnLf , the error compensated L-SVRG has
the same convergence rate as the uncompressed L-SVRG as long as 1

δ ≤ m.

Communication complexity. Considering the communication complexity, we obtaint the optimal
choice of p. In particular, we can choose p = O(r(Q)) to get the optimial communication complexity,
where r(Q) is the compression ratio for the compressor Q defined in (7). When Lf = L̄ = L,
by choosing the optimal p, the communication complexity of EC-LSVRG in the composite case
becomes

O
(

∆1

(
r(Q)
δ + 1 +

(
r(Q) + (1−δ)r(Q)

δ2

)
L
µ

)
ln 1

ε

)
,

where ∆1 is the communication cost of the uncompressed vector x ∈ Rd, and the communication
complexity of EC-LSVRG in the smooth case becomes

O

(
∆1

(
r(Q)
δ + 1 +

(
r(Q) +

√
(1−δ)r(Q)

δ

)
L
µ

)
ln 1

ε

)
.

2. Gradient Compression Methods

We now give a few examples of contraction compressors:
TopK compressor. For a parameter 1 ≤ K ≤ d, the TopK compressor is defined as

(TopK(x))π(i) =

{
(x)π(i) if i ≤ K,

0 otherwise,

where π is a permutation of {1, 2, ..., d} such that (|x|)π(i) ≥ (|x|)π(i+1) for i = 1, ..., d− 1, and if
(|x|)π(i) = (|x|)π(i+1), then π(i) ≤ π(i+ 1).

The definition of TopK compressor is slightly different with that of [15]. In this way, TopK
compressor is a deterministic operator (well-defined when there are equal dimensions).

RandK compressor. For a parameter 1 ≤ K ≤ d, the RandK compressor is defined as

(RandK(x))i =

{
(x)i if i ∈ S,
0 otherwise,

where S is chosen uniformly from the set of all K element subsets of {1, 2, ..., d}. RandK can be
used to define an unbiased compressor via scaling. Indeed, it is easy to see that

E
(
d
KRandK(x)

)
= x

for all x ∈ Rd.
In general, given an arbitrary unbiased compressor, we can obtain a contraction compressor via

scaling as follows. For any unbiased compressor Q̃ satisfying (3), 1
ω+1Q̃ is a contraction compressor

satisfying (2) with δ = 1
ω+1 . Indeed,

E‖ 1
ω+1Q̃(x)− x‖2 = 1

(ω+1)2E‖Q̃(x)‖2 + ‖x‖2 − 2
ω+1E〈Q̃(x), x〉

≤ 1
ω+1‖x‖

2 + ‖x‖2 − 2
ω+1‖x‖

2 =
(

1− 1
ω+1

)
‖x‖2.
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For the TopK and RandK compressors, we have the following property.

Lemma 1 (Lemma A.1 in [15]) For the TopK and RandK compressors with 1 ≤ K ≤ d, we have

E‖TopK(x)− x‖2 ≤
(
1− K

d

)
‖x‖2, E‖RandK(x)− x‖2 ≤

(
1− K

d

)
‖x‖2.

We may use the following assumptions for the contraction compressor in some cases.

Assumption 2.1 E[Q(x)] = δx.

It is easy to verify that RandK compressor satisfies Assumption 2.1 with δ = K
d , and Q̃/(ω + 1),

where Q̃ is any unbiased compressor, also satisfies Assumption 2.1 with δ = 1
ω+1 .

Assumption 2.2 For xτ = ηgkτ + ekτ ∈ Rd, τ = 1, ..., n and k ≥ 0 in Algorithm 1, there exist

δ′ > 0 such that E[Q(xτ )] = Q(xτ ), and
∥∥∥∥ n∑
τ=1

(Q(xτ )− xτ )

∥∥∥∥2

≤ (1− δ′)
∥∥∥∥ n∑
τ=1

xτ

∥∥∥∥2

.

For TopK, we have E[Q(x)] = Q(x) for any x ∈ Rd. If Q(xτ ) is close to xτ , then δ′ could
be larger than K

d . Whenever Assumption 2.2 is needed, if δ > δ′, we could decrease δ such that
δ = min{δ, δ′}. In this way, we have the uniform parameter δ for the contraction compressor.

3. Error Compensated L-SVRG

The following is the error compensated L-SVRG algorithm. The search direction in L-SVRG is

1
n

n∑
τ=1

(
∇f (τ)

iτk
(xk)−∇f (τ)

iτk
(wk) +∇f (τ)(wk)

)
, (4)

where iτk is sampled uniformly and independently from [m] := {1, 2, ...,m} on τ -th node for
1 ≤ τ ≤ n, xk is the current iteration, and wk is the reference point. Since when ψ is nonzero in
problem (1),∇f(x∗) is nonzero in general, and so is∇f (τ)(x∗). Thus, compressing the direction

∇f (τ)
iτk

(xk)−∇f (τ)
iτk

(wk) +∇f (τ)(wk)

directly on each node would cause nonzero noise even when xk and wk goes to the optimal solution
x∗. On the other hand, since f (τ)

i is L-smooth,

gkτ = ∇f (τ)
iτk

(xk)−∇f (τ)
iτk

(wk)

could be small if xk and wk are close. Thus, we compress ηgkτ + ekτ instead. The accumulated error
ek+1
τ is equal to the compression error at iteration k for each node. On each node, a scalar ukτ is

also maintained, and only uk1 will be updated. The summation of ukτ is uk, and we use uk to control
the update frequency of the reference point wk. All nodes maintain the same copies of xk, wk, yk,
and uk. Each node sends their compressed vector ykτ and uk+1

τ to the other nodes. If uk = 1, each
node also sends ∇f (τ)(wk) to the other nodes. After the compressed vector ykτ is received, we add
η∇f(wk) to it as the search direction. The proximal step is taken on each node, where we use the
standard proximal operator: proxηψ(x) := arg miny{1

2‖x − y‖
2 + ηψ(y)}. The reference point

4
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Algorithm 1: Error compensated Loopless SVRG (EC-LSVRG)
Parameters: stepsize η > 0; probability p ∈ (0, 1]
Initialization: x0 = w0 ∈ Rd; e0

τ = 0 ∈ Rd; u0 = 1 ∈ R
for k = 0, 1, 2, ... do

for τ = 1, ..., n do
Sample iτk uniformly and independently in [m] on each node
gkτ = ∇f (τ)

iτk
(xk)−∇f (τ)

iτk
(wk), ykτ = Q(ηgkτ + ekτ ), ek+1

τ = ekτ + ηgkτ − ykτ

uk+1
τ = 0 for τ = 2, ..., n , uk+1

1 =

{
1 with propobility p
0 with probability 1− p

Send ykτ and uk+1
τ to the other nodes. Send∇f (τ)(wk) to the other nodes if uk = 1

Receive ykτ and uk+1
τ from the other nodes. Receive∇f (τ)(wk) from the other nodes if

uk = 1
end
yk = 1

n

∑n
τ=1 y

k
τ , uk+1 =

∑n
τ=1 u

k+1
τ , xk+0.5 = xk − (yk + η∇f(wk))

xk+1 = proxηψ(xk+0.5), wk+1 =

{
xk if uk+1 = 1
wk otherwise

end

wk will be updated if uk+1 = 1. It is easy to see that wk will be updated with propobility p at each
iteration.

In algorithm 1, let ek = 1
n

∑n
τ=1 e

k
τ , gk = 1

n

∑n
τ=1 g

k
τ , and x̃k = xk − ek for k ≥ 0. Then

ek+1 =
1

n

n∑
τ=1

(
ekτ + ηgkτ − ykτ

)
= ek + ηgk − yk,

and

x̃k+1 = xk+1 − ek+1

= xk+0.5 − η∂ψ(xk+1)− ek+1

= xk − yk − η∇f(wk)− η∂ψ(xk+1)− ek − ηgk + yk

= x̃k − η(gk +∇f(wk) + ∂ψ(xk+1)).

3.1. Composite case

We need the following assumption in this subsection.

Assumption 3.1 f
(τ)
i is L-smooth, f (τ) is L̄-smooth, f is Lf -smooth, and ψ is µ-strongly convex.

Lf ≥ µ.

The follwoings are the main results. We use two Lyapulov functions for two cases: with or
without Assumption 2.1 or Assumption 2.2 in the following two theorems.
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Theorem 2 Assume the compressor Q in Algorithm 1 is a contraction compressor and Assumption
3.1 holds. Define

Φk
1 :=

(
1 + ηµ

2

)
‖x̃k − x∗‖2 + 9

δn

n∑
τ=1

‖ekτ‖2

+2η2

p

(
41(1−δ)

δ

(
L̄
δ + L

)
+ 16Lf + 16L

n

)
[P (wk)− P (x∗)].

If η ≤ 1
4Lf

, then we have

E[Φk+1
1 ] ≤

(
1−min

{µη
3 ,

δ
4 ,

p
2

})
E[Φk

1] + 2ηE[P (x∗)− P (xk+1)]

+
(

123(1−δ)
δ

(
L̄
δ + L

)
+ 48Lf + 48L

n

)
η2E[P (xk)− P (x∗)].

Theorem 3 Assume the compressor Q in Algorithm 1 is a contraction compressor and Assumption
3.1 holds. Define

Φk
2 :=

(
1 + ηµ

2

)
‖x̃k − x∗‖2 + 9

δ‖e
k‖2 + 84(1−δ)

δn2

n∑
τ=1

‖ekτ‖2

+2η2

p

(
(1−δ)
δ

(
82Lf
δ + 336L̄

δn + 459L
n

)
+ 16Lf + 16L

n

)
[P (wk)− P (x∗)].

Under Assumption 2.1 or Assumption 2.2, if η ≤ 1
4Lf

, then we have

E[Φk+1
2 ] ≤

(
1−min

{µη
3 ,

δ
4 ,

p
2

})
E[Φk

2] + 2ηE[P (x∗)− P (xk+1)]

+
(

(1−δ)
δ

(
246Lf
δ + 1008L̄

δn + 1377L
n

)
+ 48Lf + 48L

n

)
η2E[P (xk)− P (x∗)].

From the above two theorems, we can get the iteration complexity.

Theorem 4 Assume the compressor Q in Algorithm 1 is a contraction compressor and Assumption
3.1 holds. Let wk =

(
1−min

{µη
3 ,

δ
4 ,

p
2

})−k
, Wk =

∑k
i=0wi, and x̄k = 1

Wk

∑k
i=0wix

i. If

η ≤ δ2

135(1−δ)(L̄+Lδ)+53Lf δ2+53Lδ2/n
, then we have

E[P (x̄k)− P (x∗)] ≤
µ
2
‖x0−x∗‖2+

1
2 (P (x0)−P (x∗))

1−(1−min{µη3 ,
δ
4 ,
p
2})

k+1

(
1−min

{µη
3 ,

δ
4 ,

p
2

})k
.

In particular, if we choose η = δ2

135(1−δ)(L̄+Lδ)+53Lf δ2+53Lδ2/n
, then E[P (x̄k)− P (x∗)] ≤ ε, with

ε ≤ µ
2‖x

0 − x∗‖2 + 1
2(P (x0)− P (x∗)), as long as

k ≥ O
((

1
δ + 1

p + (1−δ)L̄
δ2µ

+ (1−δ)L
δµ +

Lf
µ + L

nµ

)
ln
(
µ‖x0−x∗‖2+P (x0)−P (x∗)

ε

))
.

Theorem 5 Assume the compressor Q in Algorithm 1 is a contraction compressor and Assumption
3.1 holds. Assume the compressor Q also satisfies Assumption 2.1 or Assumption 2.2. Let wk =(
1−min

{µη
3 ,

δ
4 ,

p
2

})−k
, Wk =

∑k
i=0wi, and x̄k = 1

Wk

∑k
i=0wix

i. If

η ≤ δ2

(1−δ)(269Lf+1100L̄/n+1503Lδ/n)+53Lf δ2+53Lδ2/n
,
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then we have

E[P (x̄k)− P (x∗)] ≤
µ
2 ‖x

0−x∗‖2+
1
2 (P (x0)−P (x∗))

1−(1−min{µη3 ,
δ
4 ,
p
2})

k+1

(
1−min

{µη
3 ,

δ
4 ,

p
2

})k
.

In particular, if we choose η = δ2

(1−δ)(269Lf+1100L̄/n+1503Lδ/n)+53Lf δ2+53Lδ2/n
, then E[P (x̄k) −

P (x∗)] ≤ ε, with ε ≤ µ
2‖x

0 − x∗‖2 + 1
2(P (x0)− P (x∗)), as long as

k ≥ O
((

1
δ + 1

p +
(1−δ)Lf
δ2µ

+ (1−δ)L
nδµ +

Lf
µ + L

nµ

)
ln
(
µ‖x0−x∗‖2+P (x0)−P (x∗)

ε

))
.

Noticing that Lf ≤ L̄ ≤ nLf and L̄ ≤ L ≤ mL̄, the iteration complexity in Theorem 5 could
be better than that in Theorem 4. On the other hand, if Lf = L̄ = L, then both iteration complexities
in Theorem 4 and Theorem 5 become

O
((

1
δ + 1

p + L
µ + (1−δ)L

δ2µ

)
ln
(
µ‖x0−x∗‖2+P (x0)−P (x∗)

ε

))
. (5)

3.2. Smooth case: ψ = 0

In this subsection, we study the Algorithm 1 for problem (1) with ψ = 0. We need the following
assumption in this subsection.

Assumption 3.2 f
(τ)
i is L-smooth, f (τ) is L̄-smooth, f is Lf -smooth and f is µ-strongly convex.

We also use two Lyapulov functions for two cases: with or without Assumption 2.1 or Assumption
2.2 in the following two theorems.

Theorem 6 Assume the compressor Q in Algorithm 1 is a contraction compressor and Assumption
3.2 holds. Define

Φk
3 := ‖x̃k − x∗‖2 +

12Lfη
nδ

n∑
τ=1

‖ekτ‖2 + 2
p

(
48(1−δ)Lfη3

δ

(
L̄
δ + L

)
+ 4Lη2

n

)
[f(wk)− f(x∗)].

If η ≤ 1
4Lf+8L/n , then

E[Φk+1
3 ] ≤

(
1−min

{µη
2 ,

δ
4 ,

p
2

})
E[Φk

3]

−η
2

(
1− 288(1−δ)Lfη2

δ

(
L̄
δ + L

)
− 16Lη

n

)
E[f(xk)− f(x∗)].

Theorem 7 Assume the compressor Q in Algorithm 1 is a contraction compressor and Assumption
3.2 holds. Define

Φk+1
4 = ‖x̃k+1 − x∗‖2 +

12Lfη
δ ‖e

k+1‖2 +
96(1−δ)Lfη

n2δ

n∑
τ=1

‖ek+1
τ ‖2

+2
p

(
48(1−δ)Lfη3

δ

(
2Lf
δ + 11L

n + 8L̄
nδ

)
+ 4Lη2

n

)
[f(wk+1)− f(x∗)].

Under Assumption 2.1 or Assumption 2.2, if η ≤ 1
4Lf+8L/n , then

E[Φk+1
4 ] ≤

(
1−min

{µη
2 ,

δ
4 ,

p
2

})
E[Φk

4]

−η
2

(
1− 288(1−δ)Lfη2

δ

(
2Lf
δ + 11L

n + 8L̄
nδ

)
− 16Lη

n

)
E[f(xk)− f(x∗)].

7
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From the above two theorems, we can get the iteration complexity.

Theorem 8 Assume the compressor Q in Algorithm 1 is a contraction compressor and Assumption
3.2 holds. Let wk =

(
1−min

{µη
2 ,

δ
4 ,

p
2

})−k
, Wk =

∑k
i=0wi, and x̄k = 1

Wk

∑k
i=0wix

i. If

η ≤ min

{
1

4Lf+24L/n ,
δ

51
√

(1−δ)Lf L̄
,

√
δ

51
√

(1−δ)LfL

}
, then we have

E[f(x̄k)− f(x∗)] ≤ 9µ‖x0−x∗‖2+9(f(x0)−f(x∗))

1−(1−min{µη2 ,
δ
4 ,
p
2})

k+1

(
1−min

{µη
2 ,

δ
4 ,

p
2

})k
.

In particular, if we choose η = min

{
1

4Lf+24L/n ,
δ

51
√

(1−δ)Lf L̄
,

√
δ

51
√

(1−δ)LfL

}
, then E[f(x̄k) −

f(x∗)] ≤ ε, with ε ≤ 9
(
µ‖x0 − x∗‖2 + f(x0)− f(x∗)

)
, as long as

k ≥ O
((

1
δ + 1

p +

√
(1−δ)Lf L̄
µδ +

√
(1−δ)LfL
µ
√
δ

+
Lf
µ + L

nµ

)
ln

(
18(µ‖x0−x∗‖2+f(x0)−f(x∗))

ε

))
.

Theorem 9 Assume the compressor Q in Algorithm 1 is a contraction compressor and Assumption
3.2 holds. Assume the compressor Q also satisfies Assumption 2.1 or Assumption 2.2. Let wk =(
1−min

{µη
2 ,

δ
4 ,

p
2

})−k
, Wk =

∑k
i=0wi, and x̄k = 1

Wk

∑k
i=0wix

i. If

η ≤ min

{
1

4Lf+32L/n ,
δ

84
√

1−δLf
,

√
nδ

138
√

(1−δ)LfL
,

√
nδ

118
√

(1−δ)Lf L̄

}
,

then we have

E[f(x̄k)− f(x∗)] ≤ 12µ‖x0−x∗‖2+12(f(x0)−f(x∗))

1−(1−min{µη2 ,
δ
4 ,
p
2})

k+1

(
1−min

{µη
2 ,

δ
4 ,

p
2

})k
.

In particular, if we choose η = min

{
1

4Lf+32L/n ,
δ

84
√

1−δLf
,

√
nδ

138
√

(1−δ)LfL
,

√
nδ

118
√

(1−δ)Lf L̄

}
, then

E[f(x̄k)− f(x∗)] ≤ ε with ε ≤ 12
(
µ‖x0 − x∗‖2 + f(x0)− f(x∗)

)
as long as

k ≥ O
((

1
δ + 1

p +

√
(1−δ)Lf
µδ +

Lf
µ + L

nµ

)
ln

(
24(µ‖x0−x∗‖2+f(x0)−f(x∗))

ε

))
.

Noticing that Lf ≤ L̄ ≤ nLf and L̄ ≤ L ≤ mL̄, the iteration complexity in Theorem 9 could
be better than that in Theorem 8. On the other hand, if Lf = L̄ = L, then both iteration complexities
in Theorem 8 and Theorem 9 become

O

((
1
δ + 1

p + L
µ +

√
(1−δ)L
δµ

)
ln

(
24(µ‖x0−x∗‖2+f(x0)−f(x∗))

ε

))
. (6)
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Appendix
Appendix A. Communication cost
Optimal choice of p. In Algorithm 1, when wk is updated, the uncompressed vector ∇f (τ)(wk) need to be
communicated. We denote ∆1 as the communication cost of the uncompressed vector x ∈ Rd. Define the compress ratio
r(Q) for the contraction compressor Q as

r(Q) := sup
x∈Rd

{
E
[

communication cost of Q(x)
∆1

]}
. (7)

Denote the total expected communication cost for k iterations as Tk. The expected communication cost at iteration k ≥ 1
is bounded by ∆1r(Q) + 1 + p∆1, where 1 bit is needed to communicate uk+1

τ , and the expected communication cost at
iteration k = 0 is bounded by ∆1r(Q) + 1 + ∆1. Hence,

Tk ≤ ∆1r(Q) + 1 + ∆1 + (∆1r(Q) + 1 + p∆1)k

≤ ∆1r(Q) + 1 + ∆1 + (∆1r(Q) + 1)
(

1 + p
r(Q)

)
k. (8)

From Theorem 4 and Theorem 5 in the composite case and Theorem 8 and Theorem 9 in the smooth case, we have
E[f(x̄k) − f(x∗)] ≤ ε as long as k ≥ O

((
1
p

+ a
)

ln 1
ε

)
, where a is independent of p. Hence, from (8), we have

E[f(x̄k)− f(x∗)] ≤ ε for

Tk = O
(

(∆1r(Q) + 1)
(

1 + p
r(Q)

)(
a+ 1

p

)
ln 1

ε

)
= O

(
(∆1r(Q) + 1)

(
a+ pa

r(Q)
+ 1

p
+ 1

r(Q)

)
ln 1

ε

)
.

Noticing that pa
r(Q)

+ 1
p
≤ a+ 1

r(Q)
for min

{
r(Q), 1

a

}
≤ p ≤ max

{
r(Q), 1

a

}
, we have

O
(
a+ pa

r(Q)
+ 1

p
+ 1

r(Q)

)
≥ O

(
a+ 1

r(Q)

)
,

and the above lower bound holds for O
(
min

{
r(Q), 1

a

})
≤ p ≤ O

(
max

{
r(Q), 1

a

})
. Hence, in order to minimize the

total expected communication cost, the optimal choice of p is O
(
min

{
r(Q), 1

a

})
≤ p ≤ O

(
max

{
r(Q), 1

a

})
.

Comparison to the uncompressed L-SVRG. For simplicity, we assume Lf = L̄ = L and ∆1r(Q) ≥ O(1).
In the composite case, from (5) and (8), by choosing p = O(r(Q)), we have

Tk = O
(

∆1

(
r(Q)
δ

+ 1 +
(
r(Q) + (1−δ)r(Q)

δ2

)
L
µ

)
ln 1

ε

)
. (9)

In the smooth case, from (6) and (8), by choosing p = O(r(Q)), we have

Tk = O

(
∆1

(
r(Q)
δ

+ 1 +

(
r(Q) +

√
(1−δ)r(Q)

δ

)
L
µ

)
ln 1

ε

)
. (10)

For uncompressed L-SVRG, by choosing p = 1, we have

Tk = O
(

∆1
L
µ

ln 1
ε

)
. (11)

Thus, in the composite case, If r(Q)

δ2
< 1, then the communication cost in (9) is less than that in (11). In the smooth case,

If r(Q)
δ

< 1, then the communication cost in (10) is less than that in (11). For TopK compressor, r(Q) = K(64+dlog de)
64d

,
and in practice δ can be much larger than K

d
, sometimes even in order O(1).

Appendix B. Experiments
In this part, we run experiments with EC-LSVRG to demonstrate the empirical effectiveness. In particular, we should
highlight the linear convergence rate of our algorithm with biased compressor in strongly convex case. Also, the
convergence speed is competitive to other compressed algorithms.
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Settings: We implement (1) Linear regression for GD; (2) Logistic regression with L1-L2 regularization (detailed
information can be found in the Appendix). We use Python 3.7 to perform experiments on a server with 2 processors (Intel
Xeon Gold 5120 @ 2.20GHz), 28 cores in total. Library include numpy, sklearn. In particular, for multi-nodes tasks, we
use mpi4py to simulate distributed environment. Step size is searched from 10t, where t ∈ {−4, · · · , 0, 1}. For DIANA,
we use the optimal α = (w + 1)−1.

Datasets: For GD, in order to construct two synthesis data, which are sampled from normal distribution with σ = 0.1.
In particular, we use 2048 and 4096 dimension case for the problem. To increase the difficulty in distributed setting, we
only use square matrix, which enlarge the local solution space on each node. Besides, we have real datasets: Gisette,
RCV1, a5a, mushrooms (details are in the Appendix).

B.1. Biased Compressor GD
Since there are not any algorithm achieves linear convergence in stochastic optimization setting. We firstly compare our
algorithm with the error compensated GD (EC-GD) to demonstrate to the gain of variance reduced term. We should
mention that EC-GD only converges linearly when∇f (τ)(x∗) = 0 for any τ = 1, · · · , n, which means the global solution
is also a local solution. Thus we construct a linear regression problem ‖Ax− Y ‖22 such that ‖Ax∗ − Y ‖22 = 0. By Figure
1, we use 2048-dim and 4096-dim to conduct the experiment. We can notice that, though the gap between EC-GD and GD
is small, EC-LSVRG bridge this gap with the variance reduced term. Moreover, when the optimal point∇f (τ)(x∗) 6= 0,
the EC-GD algorithm is unable to acheive the linear convergence rate. As is shown, for a5a and mushrooms dataset, we
conduct logistic regression for each method. We verified the linear convergence of our algorithm emprically and showed
that the EC-GD can only converge to neighbourhood of the optimality.
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Figure 1: Compare to Error Compensated gradient descent (p = 10−3)

B.2. Compressed Stochastic Algorithms with Linear Convergence
For simplicity, we compare the 1-node case to illustrate the effectiveness of our method. By Figure 2, we can notice that
with the same compressor, like RandK or quantization (k-bit denotes s = 2k), our EC-LSVRG outperforms VRDIANA,
which is a state-of-the-art approach that support proximal operators with linear convergence. More importantly, since
the biased compressors are often more effective than the unbiased ones, when we compare these method w.r.t. the
communication cost, the TopK compressor is much more efficient than quantization.
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Figure 2: Compare to compressed algorithm with linear convergence (p = 1
mn )
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B.3. Distributed Experiment with Compressed Stochastic Algorithms
In order to reflect the influence of the number of nodes, we compared the convergence speed of different nodes. In Figure
3, we can notice that as the number of nodes increases, the convergence speed can be improved significantly for any
compressor. In particular, the TopK compressor is still very competitive, epecially for the communication cost.
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Figure 3: Distributed Experiment with compressed algorithm (p = 10−4)

Appendix C. Proofs for the composite case

C.1. Lemmas
The following lemma shows the progress at iteration k for the auxiliary points x̃k and x̃k+1.

Lemma 10 If η ≤ 1
4Lf

, then(
1 + ηµ

2

)
E‖x̃k+1 − x∗‖2 ≤ E‖x̃k − x∗‖2 + 2ηE(P (x∗)− P (xk+1)) + E‖ek‖2

+(1 + ηµ)E‖ek+1‖2 + 4η2E‖gk‖2.

Proof
Since x̃k+1 = x̃k − η(gk +∇f(wk) + ∂ψ(xk+1)), we have

〈η(gk +∇f(wk)), x∗ − xk+1〉
= 〈x̃k − x̃k+1 − η∂ψ(xk+1), x∗ − xk+1〉
= 〈x̃k − xk+1, x∗ − xk+1〉+ 〈xk+1 − x̃k+1, x∗ − xk+1〉 − η〈∂ψ(xk+1), x∗ − xk+1〉

≥ 1

2

(
−‖x̃k − x∗‖2 + ‖x̃k − xk+1‖2 + ‖xk+1 − x∗‖2

)
+

1

2

(
‖x̃k+1 − x∗‖2

−‖xk+1 − x̃k+1‖2 − ‖xk+1 − x∗‖2
)

+ η
(
ψ(xk+1)− ψ(x∗) +

µ

2
‖xk+1 − x∗‖2

)
=

1

2
‖x̃k+1 − x∗‖2 − 1

2
‖x̃k − x∗‖2 +

1

2
‖x̃k − xk+1‖2 − 1

2
‖x̃k+1 − xk+1‖2

+η
(
ψ(xk+1)− ψ(x∗) +

µ

2
‖xk+1 − x∗‖2

)
.

From ‖x̃k − xk+1‖2 ≥ 1
2
‖xk+1 − xk‖2 −‖x̃k − xk‖2, and ‖xk+1 − x∗‖2 ≥ 1

2
‖x̃k+1 − x∗‖2 −‖x̃k+1 − xk+1‖2,

we arrive at

〈η(gk +∇f(wk)), x∗ − xk+1〉

≥ 1 + ηµ/2

2
‖x̃k+1 − x∗‖2 − 1

2
‖x̃k − x∗‖2 +

1

4
‖xk+1 − xk‖2 − 1

2
‖x̃k − xk‖2

−1 + ηµ

2
‖x̃k+1 − xk+1‖2 + η(ψ(xk+1)− ψ(x∗)). (12)
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Since f is convex and Ek[gk +∇f(wk)] = ∇f(xk), we have

f(x∗) ≥ f(xk) + 〈∇f(xk), x∗ − xk〉
= f(xk) + Ek[〈gk +∇f(wk), x∗ − xk+1 + xk+1 − xk〉]
= f(xk) + Ek[〈gk +∇f(wk), x∗ − xk+1〉] + Ek[〈gk +∇f(wk)−∇f(xk), xk+1 − xk〉]

+Ek[〈∇f(xk), xk+1 − xk〉]

≥ Ek[f(xk+1)]− Lf
2

Ek[‖xk+1 − xk‖2] + Ek[〈gk +∇f(wk), x∗ − xk+1〉]

+Ek[〈gk +∇f(wk)−∇f(xk), xk+1 − xk〉]

≥ Ek[f(xk+1)]− Lf
2

Ek[‖xk+1 − xk‖2] + Ek[〈gk +∇f(wk), x∗ − xk+1〉]

− 1

2β
Ek[‖gk +∇f(wk)−∇f(xk)‖2]− β

2
Ek[xk+1 − xk‖2],

where the second inequality comes from that f is Lf -smooth and the last inequality comes from Young’s inequality.
Since Ek[‖gk +∇f(wk)−∇f(xk)‖2] ≤ Ek‖gk‖2, by choosing β = 1

4η
, we have

f(x∗)

≥ Ek[f(xk+1)]−
(
Lf
2

+
1

8η

)
Ek[‖xk+1 − xk‖2] + Ek[〈gk +∇f(wk), x∗ − xk+1〉]− 2ηEk‖gk‖2

(12)

≥ Ek[f(xk+1)] +

(
1

4η
− Lf

2
− 1

8η

)
Ek[‖xk+1 − xk‖2] +

1 + ηµ/2

2η
Ek‖x̃k+1 − x∗‖2 − 1

2η
‖x̃k − x∗‖2

− 1

2η
‖x̃k − xk‖2 − 1 + ηµ

2η
Ek‖x̃k+1 − xk+1‖2 + Ek[ψ(xk+1)]− ψ(x∗)− 2ηEk‖gk‖2.

Noticing that 1
4η
− Lf

2
− 1

8η
≥ 0 if η ≤ 1

4Lf
, we can get the result after rearrangement.

Lemma 11 We have

1
n

n∑
τ=1

E‖gkτ ‖2 ≤ 4LE[P (xk)− P (x∗)] + 4LE[P (wk)− P (x∗)], (13)

and

1
n

n∑
τ=1

E‖∇f (τ)(xk)−∇f (τ)(wk)‖2 ≤ 4L̄E[P (xk)− P (x∗)] + 4L̄E[P (wk)− P (x∗)], (14)

and

E‖gk‖2 ≤ 4
(
Lf + L

n

)
E[P (xk)− P (x∗)] + 4

(
Lf + L

n

)
E[P (wk)− P (x∗)]. (15)

and

E‖gk +∇f(wk)−∇f(xk)‖2 ≤ 4L
n
E[P (xk)− P (x∗) + P (wk)− P (x∗)]. (16)

Proof
Since f (τ)

i is L-smooth and f is Lf -smooth, we have

‖∇f (τ)
i (x)−∇f (τ)

i (y)‖2 ≤ 2L(f
(τ)
i (x)− f (τ)

i (y)− 〈∇f (τ)
i (y), x− y〉),

and
‖∇f(x)−∇f(y)‖2 ≤ 2Lf (f(x)− f(y)− 〈∇f(y), x− y〉)

14
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for any x, y ∈ Rd. Therefore,

E‖gkτ ‖2 = E‖∇f (τ)
iτ
k

(xk)−∇f (τ)
iτ
k

(wk)‖2

≤ 2E‖∇f (τ)
iτ
k

(xk)−∇f (τ)
iτ
k

(x∗)‖2 + 2E‖∇f (τ)
iτ
k

(wk)−∇f (τ)
iτ
k

(x∗)‖2

≤ 4LE[f (τ)(xk)− f (τ)(x∗)− 〈∇f (τ)(x∗), xk − x∗〉]
+4LE[f (τ)(wk)− f (τ)(x∗)− 〈∇f (τ)(x∗), wk − x∗〉],

and

E‖gk‖2 = E

∥∥∥∥∥ 1

n

n∑
τ=1

gkτ

∥∥∥∥∥
2

=
1

n2
E

〈
n∑
τ=1

gkτ ,

n∑
τ=1

gkτ

〉

=
1

n2

n∑
τ1,τ2=1

E
〈
gkτ1 , g

k
τ2

〉
=

1

n2

n∑
τ=1

E‖gkτ ‖2 +
1

n2

∑
τ1 6=τ2

E
〈
∇f (τ1)(xk)−∇f (τ1)(wk),∇f (τ2)(xk)−∇f (τ2)(wk)

〉
=

1

n2

n∑
τ=1

E‖gkτ ‖2 + E‖∇f(xk)−∇f(wk)‖2 − 1

n2

n∑
τ=1

E‖∇f (τ)(xk)−∇f (τ)(wk)‖2

≤ 1

n2

n∑
τ=1

E‖gkτ ‖2 + 2E‖∇f(xk)−∇f(x∗)‖2 + 2E‖∇f(wk)−∇f(x∗)‖2

≤
(

4L

n
+ 4Lf

)
E[f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉]

+

(
4L

n
+ 4Lf

)
E[f(wk)− f(x∗)− 〈∇f(x∗), wk − x∗〉].

Since x∗ is an optimal solution, we have −∇f(x∗) ∈ ∂ψ(x∗), which implies that

f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉 ≤ P (xk)− P (x∗). (17)

Thus,
1

n

n∑
τ=1

E‖gkτ ‖2 ≤ 4LE[P (xk)− P (x∗)] + 4LE[P (wk)− P (x∗)],

and

E‖gk‖2 ≤
(

4L

n
+ 4Lf

)
E[P (xk)− P (x∗)] +

(
4L

n
+ 4Lf

)
E[P (wk)− P (x∗)].

For E‖gk +∇f(wk)−∇f(xk)‖2, we have

E‖gk +∇f(wk)−∇f(xk)‖2 = E‖gk‖2 − E‖∇f(xk)−∇f(wk)‖2

=
1

n2

n∑
τ=1

E‖gkτ ‖2 −
1

n2

n∑
τ=1

E‖∇f (τ)(xk)−∇f (τ)(wk)‖2

≤ 1

n2

n∑
τ=1

E‖gkτ ‖2

≤ 4L

n
E[P (xk)− P (x∗)] +

4L

n
E[P (wk)− P (x∗)].

Since f (τ) is L̄-smooth, we have

‖∇f (τ)(x)−∇f (τ)(y)‖2 ≤ 2L̄(f (τ)(x)− f (τ)(y)− 〈∇f (τ)(y), x− y〉).

15
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Then similarly, we can get

1

n

n∑
τ=1

E‖∇f (τ)(xk)−∇f (τ)(wk)‖2 ≤ 4L̄E[P (xk)− P (x∗)] + 4L̄E[P (wk)− P (x∗)].

The following two lemmas show the evolution of ekτ and ek, which will be used to construct the Lyapulov functions.

Lemma 12 We have

1
n

n∑
τ=1

E[‖ek+1
τ ‖2] ≤

(
1− δ

2

)
1
n

n∑
τ=1

E‖ekτ‖2

+4(1− δ)η2
(
L̄
δ

+ L
)(

E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]
)
.

Proof
First, we have

E[‖ek+1
τ ‖2]

(2)

≤ (1− δ)E‖ekτ + ηgkτ ‖2

= (1− δ)E‖ekτ + η(∇f (τ)(xk)−∇f (τ)(wk)) + ηgkτ − η(∇f (τ)(xk)−∇f (τ)(wk))‖2

= (1− δ)E‖ekτ + η(∇f (τ)(xk)−∇f (τ)(wk))‖2

+(1− δ)η2E‖gkτ − (∇f (τ)(xk)−∇f (τ)(wk))‖2

≤ (1− δ)E‖ekτ + η(∇f (τ)(xk)−∇f (τ)(wk))‖2 + (1− δ)η2E‖gkτ ‖2

≤ (1− δ)(1 + β)E‖ekτ‖2 + (1− δ)
(

1 +
1

β

)
η2E‖∇f (τ)(xk)−∇f (τ)(wk)‖2 + (1− δ)η2E‖gkτ ‖2

≤
(

1− δ

2

)
E‖ekτ‖2 +

2(1− δ)
δ

η2E‖∇f (τ)(xk)−∇f (τ)(wk)‖2 + (1− δ)η2E‖gkτ ‖2,

where we use Young’s inequality in the third inequality and choose β = δ
2(1−δ) when δ < 1. When δ = 1, it is easy to see

that the above inequality also holds.
Then we can get

1

n

n∑
τ=1

E[‖ek+1
τ ‖2]

≤
(

1− δ

2

)
1

n

n∑
τ=1

E‖ekτ‖2 +
2(1− δ)

δ
η2 1

n

n∑
τ=1

E‖∇f (τ)(xk)−∇f (τ)(wk)‖2 + (1− δ)η2 1

n

n∑
τ=1

E‖gkτ ‖2

(14)

≤
(

1− δ

2

)
1

n

n∑
τ=1

E‖ekτ‖2 +
8(1− δ)η2L̄

δ

(
E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]

)
+ (1− δ)η2 1

n

n∑
τ=1

E‖gkτ ‖2

(13)

≤
(

1− δ

2

)
1

n

n∑
τ=1

E‖ekτ‖2 + 4(1− δ)η2

(
L̄

δ
+ L

)(
E[P (xk)− P (x∗)] + E[P (wk)− P (x∗)]

)
.

Lemma 13 Under Assumption 2.1 or Assumption 2.2, we have

E‖ek+1‖2 ≤
(
1− δ

2

)
E‖ek‖2 + 2(1−δ)δ

n2

n∑
τ=1

E‖ekτ‖2

+4(1− δ)η2
(

2Lf
δ

+ 3L
n

)
E[P (xk)− P (x∗) + P (wk)− P (x∗)].

16
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Proof
Under Assumption 2.1, we have E[Q(x)] = δx, and

E‖ek+1‖2 = E

∥∥∥∥∥ 1

n

n∑
τ=1

ek+1
τ

∥∥∥∥∥
2

=
1

n2

∑
i,j

E〈ek+1
i , ek+1

j 〉

=
1

n2

n∑
τ=1

E‖ek+1
τ ‖2 +

1

n2

∑
i 6=j

E〈ek+1
i , ek+1

j 〉

(2)

≤ 1− δ
n2

n∑
τ=1

E
∥∥∥ekτ + ηgkτ

∥∥∥2

+
(1− δ)2

n2

∑
i6=j

E
〈
eki + ηgki , e

k
j + ηgkj

〉

=
(1− δ)2

n2
E

∥∥∥∥∥
n∑
τ=1

(ekτ + ηgkτ )

∥∥∥∥∥
2

+
(1− δ)δ
n2

n∑
τ=1

E
∥∥∥ekτ + ηgkτ

∥∥∥2

≤ (1− δ)E
∥∥∥ek + ηgk

∥∥∥2

+
(1− δ)δ
n2

n∑
τ=1

E
∥∥∥ekτ + ηgkτ

∥∥∥2

,

where we use the definitions of ek and gk in the last inequality.
Under Assumption 2.2, we have

E‖ek+1‖2 = E

∥∥∥∥∥ 1

n

n∑
τ=1

ek+1
τ

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
τ=1

(
ekτ + ηgkτ −Q

(
ηgkτ + ekτ

))∥∥∥∥∥
2

Assumption2.2

≤ (1− δ′)E
∥∥∥ek + ηgk

∥∥∥2

≤ (1− δ)E
∥∥∥ek + ηgk

∥∥∥2

.

Overall, under Assumption 2.1 or Assumption 2.2, we have

E‖ek+1‖2

≤ (1− δ)E
∥∥∥ek + ηgk

∥∥∥2

+
(1− δ)δ
n2

n∑
τ=1

E
∥∥∥ekτ + ηgkτ

∥∥∥2

≤ (1− δ)E
∥∥∥ek + ηgk

∥∥∥2

+
2(1− δ)δ

n2

n∑
τ=1

E‖ekτ‖2 +
2(1− δ)δη2

n2

n∑
τ=1

E‖gkτ ‖2

(13)

≤ (1− δ)E
∥∥∥ek + ηgk

∥∥∥2

+
2(1− δ)δ

n2

n∑
τ=1

E‖ekτ‖2

+
8(1− δ)δLη2

n
E[P (xk)− P (x∗) + P (wk)− P (x∗)]. (18)

17
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For (1− δ)E‖ek + ηgk‖2, we have

(1− δ)E
∥∥∥ek + ηgk

∥∥∥2

= (1− δ)E
∥∥∥ek + η(∇f(xk)−∇f(wk)) + ηgk − η(∇f(xk)−∇f(wk))

∥∥∥2

= (1− δ)E
∥∥∥ek + η(∇f(xk)−∇f(wk))

∥∥∥2

+ (1− δ)η2E‖gk − (∇f(xk)−∇f(wk))‖2

≤
(

1− δ

2

)
E‖ek‖2 +

2(1− δ)η2

δ
E‖∇f(xk)−∇f(wk)‖2

+(1− δ)η2E‖gk − (∇f(xk)−∇f(wk))‖2

(16)

≤
(

1− δ

2

)
E‖ek‖2 +

2(1− δ)η2

δ
E‖∇f(xk)−∇f(wk)‖2

+(1− δ)4Lη2

n
E[P (xk)− P (x∗) + P (wk)− P (x∗)].

Since f is Lf -smooth, we have

E‖∇f(xk)−∇f(wk)‖2 = E‖∇f(xk)−∇f(x∗) +∇f(x∗)−∇f(wk)‖2

≤ 2E‖∇f(xk)−∇f(x∗)‖2 + 2E‖∇f(wk)−∇f(x∗)‖2

≤ 4LfE
[
f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉

]
+4LfE

[
f(wk)− f(x∗)− 〈∇f(x∗), wk − x∗〉

]
(17)

≤ 4LfE[P (xk)− P (x∗)] + 4LfE[P (wk)− P (x∗)].

Hence, we arrive at

(1− δ)E
∥∥∥ek + ηgk

∥∥∥2

≤
(

1− δ

2

)
E‖ek‖2 + 4(1− δ)η2

(
2Lf
δ

+
L

n

)
E[P (xk)− P (x∗) + P (wk)− P (x∗)].

Combining (18) and the above inequality, we can get

E‖ek+1‖2

≤
(

1− δ

2

)
E‖ek‖2 +

2(1− δ)δ
n2

n∑
τ=1

E‖ekτ‖2

+4(1− δ)η2

(
2Lf
δ

+
L

n
+

2δL

n

)
E[P (xk)− P (x∗) + P (wk)− P (x∗)]

≤
(

1− δ

2

)
E‖ek‖2 +

2(1− δ)δ
n2

n∑
τ=1

E‖ekτ‖2

+4(1− δ)η2

(
2Lf
δ

+
3L

n

)
E[P (xk)− P (x∗) + P (wk)− P (x∗)].

C.2. Proof of Theorem 2
Let η ≤ 1

4Lf
. From ‖ek‖2 ≤ 1

n

∑n
τ=1 ‖e

k
τ‖2 and Lemma 10, we have

18
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(
1 +

ηµ

2

)
E‖x̃k+1 − x∗‖2

≤ E‖x̃k − x∗‖2 + 2ηE(P (x∗)− P (xk+1)) + E‖ek‖2 + (1 + ηµ)E‖ek+1‖2 + 4η2E‖gk‖2

≤ E‖x̃k − x∗‖2 + 2ηE(P (x∗)− P (xk+1)) +
1

n

n∑
τ=1

E‖ekτ‖2 +
5

4n

n∑
τ=1

E‖ek+1
τ ‖2 + 4η2E‖gk‖2

Lemma12

≤ E‖x̃k − x∗‖2 + 2ηE(P (x∗)− P (xk+1)) +
1

n

n∑
τ=1

E‖ekτ‖2 +
5

4

(
1− δ

2

)
1

n

n∑
τ=1

E‖ekτ‖2

+5(1− δ)η2

(
L̄

δ
+ L

)
E[P (xk)− P (x∗) + P (wk)− P (x∗)] + 4η2E‖gk‖2

(15)

≤ E‖x̃k − x∗‖2 + 2ηE(P (x∗)− P (xk+1)) +
9

4
· 1

n

n∑
τ=1

E‖ekτ‖2

+

(
5(1− δ)

(
L̄

δ
+ L

)
+ 16Lf +

16L

n

)
η2E[P (xk)− P (x∗) + P (wk)− P (x∗)].

From the definition of wk+1, we have

E[P (wk+1)− P (x∗)] = pE[P (xk)− P (x∗)] + (1− p)E[P (wk)− P (x∗)]. (19)

From Lemma 12, we have

(
1 +

ηµ

2

)
E‖x̃k+1 − x∗‖2 +

9

δn

n∑
τ=1

E‖ek+1
τ ‖2

≤ E‖x̃k − x∗‖2 + 2ηE(P (x∗)− P (xk+1)) +
9

δn

(
1− δ

4

) n∑
τ=1

E‖ekτ‖2

+

(
41(1− δ)

δ

(
L̄

δ
+ L

)
+ 16Lf +

16L

n

)
η2E[P (xk)− P (x∗) + P (wk)− P (x∗)].

Combining the above inequality and (19), we can get

E[Φk+1
1 ] =

(
1 +

ηµ

2

)
E‖x̃k+1 − x∗‖2 +

9

δn

n∑
τ=1

E‖ek+1
τ ‖2

+
2η2

p

(
41(1− δ)

δ

(
L̄

δ
+ L

)
+ 16Lf +

16L

n

)
E[P (wk+1)− P (x∗)]

≤ E‖x̃k − x∗‖2 +
9

δn

(
1− δ

4

) n∑
τ=1

E‖ekτ‖2

+
2η2

p

(
41(1− δ)

δ

(
L̄

δ
+ L

)
+ 16Lf +

16L

n

)(
1− p

2

)
E[P (wk)− P (x∗)]

+2ηE[P (x∗)− P (xk+1)] +

(
123(1− δ)

δ

(
L̄

δ
+ L

)
+ 48Lf +

48L

n

)
η2E[P (xk)− P (x∗)]

≤
(

1−min

{
µη

3
,
δ

4
,
p

2

})
E[Φk1 ] + 2ηE[P (x∗)− P (xk+1)]

+

(
123(1− δ)

δ

(
L̄

δ
+ L

)
+ 48Lf +

48L

n

)
η2E[P (xk)− P (x∗)],

where we use
(
1 + ηµ

2

)−1 ≤ 1− µη
3

for µη < 1.

19
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C.3. Proof of Theorem 3
Let η ≤ 1

4Lf
. From Lemma 10, we have

(
1 +

ηµ

2

)
E‖x̃k+1 − x∗‖2

≤ E‖x̃k − x∗‖2 + 2ηE(P (x∗)− P (xk+1)) + E‖ek‖2 + (1 + ηµ)E‖ek+1‖2 + 4η2E‖gk‖2

≤ E‖x̃k − x∗‖2 + 2ηE(P (x∗)− P (xk+1)) + E‖ek‖2 +
5

4
E‖ek+1‖2 + 4η2E‖gk‖2

Lemma13

≤ E‖x̃k − x∗‖2 + 2ηE(P (x∗)− P (xk+1)) +
9

4
E‖ek‖2 +

5(1− δ)δ
2n2

n∑
τ=1

E‖ekτ‖2 + 4η2E‖gk‖2

+5(1− δ)η2

(
2Lf
δ

+
3L

n

)
E[P (xk)− P (x∗) + P (wk)− P (x∗)]

(15)

≤ E‖x̃k − x∗‖2 + 2ηE[P (x∗)− P (xk+1)] +
9

4
E‖ek‖2 +

5(1− δ)δ
2n2

n∑
τ=1

E‖ekτ‖2

+

(
5(1− δ)

(
2Lf
δ

+
3L

n

)
+ 16Lf +

16L

n

)
η2E[P (xk)− P (x∗) + P (wk)− P (x∗)].

Then from Lemmas 12 and 13, we have

(
1 +

ηµ

2

)
E‖x̃k+1 − x∗‖2 +

9

δ
E‖ek+1‖2 +

84(1− δ)
δn2

n∑
τ=1

E‖ek+1
τ ‖2

lemma13

≤ E‖x̃k − x∗‖2 + 2ηE[P (x∗)− P (xk+1)] +

(
1− δ

2
+
δ

4

)
9

δ
E‖ek‖2

+

(
18(1− δ)

n2
+

5(1− δ)δ
2n2

) n∑
τ=1

E‖ekτ‖2 +
84(1− δ)
δn2

n∑
τ=1

E‖ek+1
τ ‖2

+

(
(1− δ)

(
5 +

36

δ

)(
2Lf
δ

+
3L

n

)
+ 16Lf +

16L

n

)
η2E[P (xk)− P (x∗) + P (wk)− P (x∗)]

Lemma12

≤ E‖x̃k − x∗‖2 + 2ηE[P (x∗)− P (xk+1)] +

(
1− δ

4

)
9

δ
E‖ek‖2 +

(
1− δ

4

)
84(1− δ)
δn2

n∑
τ=1

E‖ekτ‖2

+

(
41(1− δ)

δ

(
2Lf
δ

+
3L

n

)
+ 16Lf +

16L

n
+

336(1− δ)
δn

(
L̄

δ
+ L

))
·η2E[P (xk)− P (x∗) + P (wk)− P (x∗)]

= E‖x̃k − x∗‖2 + 2ηE[P (x∗)− P (xk+1)] +

(
1− δ

4

)
9

δ
E‖ek‖2 +

(
1− δ

4

)
84(1− δ)
δn2

n∑
τ=1

E‖ekτ‖2

+

(
(1− δ)
δ

(
82Lf
δ

+
336L̄

δn
+

459L

n

)
+ 16Lf +

16L

n

)
η2E[P (xk)− P (x∗) + P (wk)− P (x∗)].

Combining the above inequality and (19), we can obtain
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E[Φk+1
2 ]

=
(

1 +
ηµ

2

)
E‖x̃k+1 − x∗‖2 +

9

δ
E‖ek+1‖2 +

84(1− δ)
δn2

n∑
τ=1

E‖ek+1
τ ‖2

+
2η2

p

(
(1− δ)
δ

(
82Lf
δ

+
336L̄

δn
+

459L

n

)
+ 16Lf +

16L

n

)
E[P (wk+1)− P (x∗)]

≤ E‖x̃k − x∗‖2 +

(
1− δ

4

)
9

δ
E‖ek‖2 +

(
1− δ

4

)
84(1− δ)
δn2

n∑
τ=1

E‖ekτ‖2 + 2ηE[P (x∗)− P (xk+1)]

+
2η2

p

(
(1− δ)
δ

(
82Lf
δ

+
336L̄

δn
+

459L

n

)
+ 16Lf +

16L

n

)(
1− p

2

)
E[P (wk)− P (x∗)]

+

(
(1− δ)
δ

(
246Lf
δ

+
1008L̄

δn
+

1377L

n

)
+ 48Lf +

48L

n

)
η2E[P (xk)− P (x∗)]

≤
(

1−min

{
µη

3
,
δ

4
,
p

2

})
E[Φk2 ] + 2ηE[P (x∗)− P (xk+1)]

+

(
(1− δ)
δ

(
246Lf
δ

+
1008L̄

δn
+

1377L

n

)
+ 48Lf +

48L

n

)
η2E[P (xk)− P (x∗)],

where we use
(
1 + ηµ

2

)−1 ≤ 1− µη
3

for µη < 1.

C.4. Proof of Theorem 4
Let η ≤ 1

4Lf
. From Theorem 2, we have

E[Φk1 ]

≤
(

1−min

{
µη

3
,
δ

4
,
p

2

})
E[Φk−1

1 ] + 2ηE[P (x∗)− P (xk)]

+

(
123(1− δ)

δ

(
L̄

δ
+ L

)
+ 48Lf +

48L

n

)
η2E[P (xk−1)− P (x∗)]

≤
(

1−min

{
µη

3
,
δ

4
,
p

2

})k
Φ0

1 − 2η

k∑
i=1

(
1−min

{
µη

3
,
δ

4
,
p

2

})k−i
E[P (xi)− P (x∗)]

+

(
123(1− δ)

δ

(
L̄

δ
+ L

)
+ 48Lf +

48L

n

)
η2

k−1∑
i=0

(
1−min

{
µη

3
,
δ

4
,
p

2

})k−1−i

E[P (xi)− P (x∗)]

=
1

wk
Φ0

1 −
2η

wk

k∑
i=1

wiE[P (xi)− P (x∗)]

+

(
123(1− δ)

δ

(
L̄

δ
+ L

)
+ 48Lf +

48L

n

)
w1η

2

wk

k−1∑
i=0

wiE[P (xi)− P (x∗)]

≤ 1

wk
Φ0

1 −
2η

wk

k∑
i=1

wiE[P (xi)− P (x∗)]

+

(
135(1− δ)

δ

(
L̄

δ
+ L

)
+ 53Lf +

53L

n

)
η2

wk

k∑
i=0

wiE[P (xi)− P (x∗)],
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where we use w1 ≤ 12
11

in the last inequality. Rearranging the above inequality, we can get

2

wk

k∑
i=0

wiE[P (xi)− P (x∗)]

≤ 1

ηwk
Φ0

1 −
1

η
E[Φk1 ] +

2(P (x0)− P (x∗))

wk

+

(
135(1− δ)

δ

(
L̄

δ
+ L

)
+ 53Lf +

53L

n

)
η

wk

k∑
i=0

wiE[P (xi)− P (x∗)]

≤ 1

ηwk
Φ0

1 +
2(P (x0)− P (x∗))

wk
+

(
135(1− δ)

δ

(
L̄

δ
+ L

)
+ 53Lf +

53L

n

)
η

wk

k∑
i=0

wiE[P (xi)− P (x∗)].

Hence, if

η ≤ 1(
135(1−δ)

δ

(
L̄
δ

+ L
)

+ 53Lf + 53L
n

) =
δ2

135(1− δ)(L̄+ Lδ) + 53Lfδ2 + 53Lδ2/n
,

then
k∑
i=0

wiE[P (xi)− P (x∗)] ≤ 1

η
Φ0

1 + 2(P (x0)− P (x∗)).

Furthermore, since

Wk =

k∑
i=0

wi =
1− 1

(1−min{µη
3
, δ
4
, p
2
})k+1

1− 1

1−min{µη
3
, δ
4
, p
2
}

=
1− (1−min{µη

3
, δ

4
, p

2
})k+1

min{µη
3
, δ

4
, p

2
}(1−min{µη

3
, δ

4
, p

2
})k

,

we can get

1

Wk

k∑
i=0

wiE[P (xi)− P (x∗)]

≤ 1

Wk

(
1

η
Φ0

1 + 2(P (x0)− P (x∗))

)
=

min{µη
3
, δ

4
, p

2
}

1− (1−min{µη
3
, δ

4
, p

2
})k+1

(
1

η
Φ0

1 + 2(P (x0)− P (x∗))

)(
1−min

{
µη

3
,
δ

4
,
p

2

})k
.

From the definition of Φk1 and e0
τ = 0, we have

min{µη
3
,
δ

4
,
p

2
} · 1

η
Φ0

1

= min{µη
3
,
δ

4
,
p

2
}
(

1

η

(
1 +

µη

2

)
‖x0 − x∗‖2 +

2η

p

(
41(1− δ)

δ

(
L̄

δ
+ L

)
+ 16Lf +

16L

n

)
(P (x0)− P (x∗))

)
≤ µ

3

(
1 +

µη

2

)
‖x0 − x∗‖2 + min{µη

3
,
δ

4
,
p

2
} · 2

3p
(P (x0)− P (x∗))

≤ µ

2
‖x0 − x∗‖2 +

1

3
(P (x0)− P (x∗)).

Therefore, we arrive at

1

Wk

k∑
i=0

wiE[P (xi)− P (x∗)] ≤
µ
2
‖x0 − x∗‖2 + 1

2
(P (x0)− P (x∗))

1− (1−min{µη
3
, δ

4
, p

2
})k+1

(
1−min

{
µη

3
,
δ

4
,
p

2

})k
.

For x̄k = 1
Wk

∑k
i=0 wix

i, from the convexity of P , we have

E[P (x̄k)−P (x∗)] ≤ 1

Wk

k∑
i=0

wiE[P (xi)−P (x∗)] ≤
µ
2
‖x0 − x∗‖2 + 1

2
(P (x0)− P (x∗))

1− (1−min{µη
3
, δ

4
, p

2
})k+1

(
1−min

{
µη

3
,
δ

4
,
p

2

})k
.
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If we choose η = δ2

135(1−δ)(L̄+Lδ)+53Lf δ
2+53Lδ2/n

, then in order to guarantee E[P (x̄k)− P (x∗)] ≤ ε, we first let(
1−min

{
µη

3
,
δ

4
,
p

2

})k+1

≤ 1

2
,

which implies that

E[P (x̄k)− P (x∗)] ≤
(
µ‖x0 − x∗‖2 + P (x0)− P (x∗)

)(
1−min

{
µη

3
,
δ

4
,
p

2

})k
.

Hence, when ε ≤ µ
2
‖x0 − x∗‖2 + 1

2
(P (x0)− P (x∗)), E[P (x̄k)− P (x∗)] ≤ ε as long as(

1−min

{
µη

3
,
δ

4
,
p

2

})k
≤ ε

µ‖x0 − x∗‖2 + P (x0)− P (x∗)
,

which is equivalent to

k ≥ 1

− ln(1−min
{
µη
3
, δ

4
, p

2

}
)

ln

(
µ‖x0 − x∗‖2 + P (x0)− P (x∗)

ε

)
.

Since − ln(1− x) ≥ x for x ∈ [0, 1), we have E[P (x̄k)− P (x∗)] ≤ ε as long as

k ≥ O
((

1

δ
+

1

p
+

(1− δ)L̄
δ2µ

+
(1− δ)L
δµ

+
Lf
µ

+
L

nµ

)
ln

(
µ‖x0 − x∗‖2 + P (x0)− P (x∗)

ε

))
.

C.5. Proof of Theorem 5
From L̄

n
≤ Lf , the proof is same as that of Theorem 4.

Appendix D. Proofs for the smooth case

D.1. Lemma
Thanks to the following lemma, we can get better results than the composite case. The main difference between Lemma 10
and Lemma 14 is that there is an additional stepsize η before E‖ek‖2. The following lemma is similar to Lemma 7 in [14].
However, for completeness, we give the proof.

Lemma 14 If η ≤ 1
4Lf+8L/n

, then

E‖x̃k+1 − x∗‖2 ≤
(
1− µη

2

)
E‖x̃k − x∗‖2 − η

2
E[f(xk)− f(x∗)]

+3LfηE‖ek‖2 + 4L
n
η2E[f(wk)− f(x∗)].

Proof
Since ψ = 0, we have x̃k+1 = x̃k − η(gk +∇f(wk)). Hence

E‖x̃k+1 − x∗‖2

= E‖x̃k − x∗ − η(gk +∇f(wk))‖2

= E‖x̃k − x∗‖2 − 2ηE〈x̃k − x∗,∇f(xk)〉+ η2E‖gk +∇f(wk)‖2

= E‖x̃k − x∗‖2 − 2ηE〈xk − x∗,∇f(xk)〉+ 2η〈xk − x̃k,∇f(xk)〉+ η2E‖gk +∇f(wk)‖2

≤ E‖x̃k − x∗‖2 − 2ηE(f(xk)− f(x∗))− µηE‖xk − x∗‖2 + 2ηE〈ek,∇f(xk)〉+ η2E‖gk +∇f(wk)‖2,

where the last inequality comes from the µ-strongly convexity of f .
For ‖xk − x∗‖2, we have

‖x̃k − x∗‖2 ≤ 2‖xk − x∗‖2 + 2‖ek‖2.
For 2〈ek,∇f(xk), we have

2〈ek,∇f(xk)〉 ≤ 1

2Lf
‖∇f(xk)‖2 + 2Lf‖ek‖2 ≤ f(xk)− f(x∗) + 2Lf‖ek‖2.

23



ERROR COMPENSATED LOOPLESS SVRG

Thus, we arrive at

E‖x̃k+1 − x∗‖2

≤
(

1− µη

2

)
E‖x̃k − x∗‖2 − ηE(f(xk)− f(x∗)) + (2Lf + µ)ηE‖ek‖2 + η2E‖gk +∇f(wk)‖2

≤
(

1− µη

2

)
E‖x̃k − x∗‖2 − ηE(f(xk)− f(x∗)) + 3LfηE‖ek‖2 + η2E‖gk +∇f(wk)‖2.

Finally, for E‖gk +∇f(wk)‖2, we have

E‖gk +∇f(wk)‖2 = E‖gk +∇f(wk)−∇f(xk) +∇f(xk)−∇f(x∗)‖2

= E‖gk +∇f(wk)−∇f(xk)‖2 + E‖∇f(xk)−∇f(x∗)‖2

≤ E‖gk +∇f(wk)−∇f(xk)‖2 + 2LfE(f(xk)− f(x∗))

(16)

≤
(

2Lf +
4L

n

)
E[f(xk)− f(x∗)] +

4L

n
E[f(wk)− f(x∗)].

Thereofore,

E‖x̃k+1 − x∗‖2 ≤
(

1− µη

2

)
E‖x̃k − x∗‖2 − η

(
1−

(
2Lf +

4L

n

)
η

)
E[f(xk)− f(x∗)]

+3LfηE‖ek‖2 +
4L

n
η2E[f(wk)− f(x∗)].

By choosing η ≤ 1
4Lf+8L/n

, we can get the reslut.

D.2. Proof of Theorem 6
Let η ≤ 1

4Lf+8L/n
. From Lemma 14, Lemma 12, and ‖ek‖2 ≤ 1

n

∑n
τ=1 ‖e

k
τ‖2, we can obtain

E‖x̃k+1 − x∗‖2 +
12Lfη

nδ

n∑
τ=1

E‖ek+1
τ ‖2

≤
(

1− µη

2

)
E‖x̃k − x∗‖2 − η

2
E[f(xk)− f(x∗)] +

3Lfη

n

n∑
τ=1

E‖ekτ‖2 +
4L

n
η2E[f(wk)− f(x∗)]

+
12Lfη

nδ

(
1− δ

2

) n∑
τ=1

E‖ekτ‖2 +
48(1− δ)Lfη3

δ

(
L̄

δ
+ L

)
E[f(xk)− f(x∗) + f(wk)− f(x∗)]

=
(

1− µη

2

)
E‖x̃k − x∗‖2 +

12Lfη

nδ

(
1− δ

4

) n∑
τ=1

E‖ekτ‖2 −
η

2

(
1− 96(1− δ)Lfη2

δ

(
L̄

δ
+ L

))
·E[f(xk)− f(x∗)] +

(
48(1− δ)Lfη3

δ

(
L̄

δ
+ L

)
+

4Lη2

n

)
E[f(wk)− f(x∗)].

Then from (19), we have

E[Φk+1
3 ]

= E‖x̃k+1 − x∗‖2 +
12Lfη

nδ

n∑
τ=1

E‖ek+1
τ ‖2 +

2

p

(
48(1− δ)Lfη3

δ

(
L̄

δ
+ L

)
+

4Lη2

n

)
E[f(wk+1)− f(x∗)]

≤
(

1− µη

2

)
E‖x̃k − x∗‖2 +

12Lfη

nδ

(
1− δ

4

) n∑
τ=1

E‖ekτ‖2

+
2

p

(
48(1− δ)Lfη3

δ

(
L̄

δ
+ L

)
+

4Lη2

n

)(
1− p

2

)
E[f(wk)− f(x∗)]

−η
2

(
1− 288(1− δ)Lfη2

δ

(
L̄

δ
+ L

)
− 16Lη

n

)
E[f(xk)− f(x∗)]

≤
(

1−min

{
µη

2
,
δ

4
,
p

2

})
E[Φk3 ]− η

2

(
1− 288(1− δ)Lfη2

δ

(
L̄

δ
+ L

)
− 16Lη

n

)
E[f(xk)− f(x∗)].
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D.3. Proof of Theorem 7
Let η ≤ 1

4Lf+8L/n
. From Lemma 14, we have

E‖x̃k+1 − x∗‖2 +
12Lfη

δ
E‖ek+1‖2 +

96(1− δ)Lfη
n2δ

n∑
τ=1

E‖ek+1
τ ‖2

≤
(

1− µη

2

)
E‖x̃k − x∗‖2 − η

2
E[f(xk)− f(x∗)] + 3LfηE‖ek‖2 +

4L

n
η2E[f(wk)− f(x∗)]

+
12Lfη

δ
E‖ek+1‖2 +

96(1− δ)Lfη
n2δ

n∑
τ=1

E‖ek+1
τ ‖2

Lemma 13

≤
(

1− µη

2

)
E‖x̃k − x∗‖2 − η

2
E[f(xk)− f(x∗)] +

12Lfη

δ

(
1− δ

2
+
δ

4

)
E‖ek‖2

+
4L

n
η2E[f(wk)− f(x∗)] +

24(1− δ)Lfη
n2

n∑
τ=1

E‖ekτ‖2 +
96(1− δ)Lfη

n2δ

n∑
τ=1

E‖ek+1
τ ‖2

+
48(1− δ)Lfη3

δ

(
2Lf
δ

+
3L

n

)
E[f(xk)− f(x∗) + f(wk)− f(x∗)]

Lemma 12

≤
(

1− µη

2

)
E‖x̃k − x∗‖2 − η

2
E[f(xk)− f(x∗)] +

12Lfη

δ

(
1− δ

4

)
E‖ek‖2

+
4L

n
η2E[f(wk)− f(x∗)] +

96(1− δ)Lfη
n2δ

(
1− δ

4

) n∑
τ=1

E‖ekτ‖2

+
48(1− δ)Lfη3

δ

(
2Lf
δ

+
3L

n
+

8L̄

nδ
+

8L

n

)
E[f(xk)− f(x∗) + f(wk)− f(x∗)]

=
(

1− µη

2

)
E‖x̃k − x∗‖2 +

12Lfη

δ

(
1− δ

4

)
E‖ek‖2 +

96(1− δ)Lfη
n2δ

(
1− δ

4

) n∑
τ=1

E‖ekτ‖2

−η
2

(
1− 96(1− δ)Lfη2

δ

(
2Lf
δ

+
11L

n
+

8L̄

nδ

))
E[f(xk)− f(x∗)]

+

(
48(1− δ)Lfη3

δ

(
2Lf
δ

+
11L

n
+

8L̄

nδ

)
+

4Lη2

n

)
E[f(wk)− f(x∗)].

Then from (19), we can get

E[Φk+1
4 ]

= E‖x̃k+1 − x∗‖2 +
12Lfη

δ
E‖ek+1‖2 +

96(1− δ)Lfη
n2δ

n∑
τ=1

E‖ek+1
τ ‖2

+
2

p

(
48(1− δ)Lfη3

δ

(
2Lf
δ

+
11L

n
+

8L̄

nδ

)
+

4Lη2

n

)
E[f(wk+1)− f(x∗)]

≤
(

1− µη

2

)
E‖x̃k − x∗‖2 +

12Lfη

δ

(
1− δ

4

)
E‖ek‖2 +

96(1− δ)Lfη
n2δ

(
1− δ

4

) n∑
τ=1

E‖ekτ‖2

+
2

p

(
48(1− δ)Lfη3

δ

(
2Lf
δ

+
11L

n
+

8L̄

nδ

)
+

4Lη2

n

)(
1− p

2

)
E[f(wk)− f(x∗)]

−η
2

(
1− 288(1− δ)Lfη2

δ

(
2Lf
δ

+
11L

n
+

8L̄

nδ

)
− 16Lη

n

)
E[f(xk)− f(x∗)]

≤
(

1−min

{
µη

2
,
δ

4
,
p

2

})
E[Φk4 ]− η

2

(
1− 288(1− δ)Lfη2

δ

(
2Lf
δ

+
11L

n
+

8L̄

nδ

)
− 16Lη

n

)
E[f(xk)− f(x∗)].
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D.4. Proof of Theorem 8

Let η ≤ min

{
1

4Lf+24L/n
, δ

51
√

(1−δ)Lf L̄
,

√
δ

51
√

(1−δ)LfL

}
. Then we have

16Lη

n
≤ 2

3
,

288(1− δ)Lf L̄η2

δ2
≤ 1

9
, and

288(1− δ)LfLη2

δ
≤ 1

9
.

Hence, from Theorem 6, we have

E[Φk+1
3 ] ≤

(
1−min

{
µη

2
,
δ

4
,
p

2

})
E[Φk3 ]− η

18
E[f(xk)− f(x∗)]

≤
(

1−min

{
µη

2
,
δ

4
,
p

2

})k+1

Φ0
3 −

η

18

k∑
i=0

(
1−min

{
µη

2
,
δ

4
,
p

2

})k−i
E[f(xi)− f(x∗)]

≤
(

1−min

{
µη

2
,
δ

4
,
p

2

})k
Φ0

3 −
η

18

k∑
i=0

(
1−min

{
µη

2
,
δ

4
,
p

2

})k−i
E[f(xi)− f(x∗)]

=
1

wk
Φ0

3 −
η

18wk

k∑
i=0

wiE[f(xi)− f(x∗)],

which implies that

1

Wk

k∑
i=0

wiE[f(xi)− f(x∗)] ≤ 18

ηWk
Φ0

3 −
18wk
ηWk

E[Φk+1
3 ] ≤ 18

ηWk
Φ0

3.

Then, from

Wk =

k∑
i=0

wi =
1− 1

(1−min{µη
2
, δ
4
, p
2
})k+1

1− 1

1−min{µη
2
, δ
4
, p
2
}

=
1− (1−min{µη

2
, δ

4
, p

2
})k+1

min{µη
2
, δ

4
, p

2
}(1−min{µη

2
, δ

4
, p

2
})k

, (20)

we can obtain

1

Wk

k∑
i=0

wiE[f(xi)− f(x∗)] ≤
min{µη

2
, δ

4
, p

2
}

1− (1−min{µη
2
, δ

4
, p

2
})k+1

· 18

η
Φ0

3

(
1−min

{
µη

2
,
δ

4
,
p

2

})k
.

From the definition of Φk3 and e0
τ = 0, we have

min

{
µη

2
,
δ

4
,
p

2

}
· 1

η
Φ0

3

= min

{
µη

2
,
δ

4
,
p

2

}(
1

η
‖x0 − x∗‖2 +

2

p

(
48(1− δ)Lfη2

δ

(
L̄

δ
+ L

)
+

4Lη

n

)
[f(x0)− f(x∗)]

)
≤ µ

2
‖x0 − x∗‖2 + min

{
µη

2
,
δ

4
,
p

2

}
2

p

(
1

54
+

1

54
+

1

6

)
[f(x0)− f(x∗)]

≤ µ

2
‖x0 − x∗‖2 +

1

2
[f(x0)− f(x∗)].

Therefore, we can get

1

Wk

k∑
i=0

wiE[f(xi)− f(x∗)] ≤ 9µ‖x0 − x∗‖2 + 9(f(x0)− f(x∗))

1− (1−min{µη
2
, δ

4
, p

2
})k+1

(
1−min

{
µη

2
,
δ

4
,
p

2

})k
.

For x̄k = 1
Wk

∑k
i=0 wix

i, from the convexity of f anf the above inequality, we have

E[f(x̄k)− f(x∗)] ≤ 9µ‖x0 − x∗‖2 + 9(f(x0)− f(x∗))

1− (1−min{µη
2
, δ

4
, p

2
})k+1

(
1−min

{
µη

2
,
δ

4
,
p

2

})k
.
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If we choose η = min

{
1

4Lf+24L/n
, δ

51
√

(1−δ)Lf L̄
,

√
δ

51
√

(1−δ)LfL

}
, then in order to guarantee E[f(x̄k)−f(x∗)] ≤

ε, we first let (
1−min

{
µη

2
,
δ

4
,
p

2

})k+1

≤ 1

2
,

which implies that

E[f(x̄k)− f(x∗)] ≤ 18
(
µ‖x0 − x∗‖2 + f(x0)− f(x∗)

)(
1−min

{
µη

2
,
δ

4
,
p

2

})k
.

Hence, when ε ≤ 9
(
µ‖x0 − x∗‖2 + f(x0)− f(x∗)

)
, E[f(x̄k)− f(x∗)] ≤ ε as long as(

1−min

{
µη

2
,
δ

4
,
p

2

})k
≤ ε

18 (µ‖x0 − x∗‖2 + f(x0)− f(x∗))
,

which is equivalen to

k ≥ 1

− ln(1−min
{
µη
2
, δ

4
, p

2

}
)

ln

(
18
(
µ‖x0 − x∗‖2 + f(x0)− f(x∗)

)
ε

)
.

Since − ln(1− x) ≥ x for x ∈ [0, 1), we have E[f(x̄k)− f(x∗)] ≤ ε as long as

k ≥ O

((
1

δ
+

1

p
+

√
(1− δ)Lf L̄

δ
+

√
(1− δ)LfL√

δ
+
Lf
µ

+
L

nµ

)
ln

(
18
(
µ‖x0 − x∗‖2 + f(x0)− f(x∗)

)
ε

))
.

D.5. Proof of Theorem 9

Let η ≤ min

{
1

4Lf+32L/n
, δ

84
√

1−δLf
,

√
nδ

138
√

(1−δ)LfL
,

√
nδ

118
√

(1−δ)Lf L̄

}
. Then we have

288(1− δ)Lfη2

δ
· 2Lf
δ
≤ 1

12
,

288(1− δ)Lfη2

δ
· 11L

n
≤ 1

6
,

288(1− δ)Lfη2

δ
· 8L̄

nδ
≤ 1

6
, and

16Lη

n
≤ 1

2
.

Therefore, from Theorem 7, we have

E[Φk+1
4 ] ≤

(
1−min

{
µη

2
,
δ

4
,
p

2

})
E[Φk4 ]− η

24
E[f(xk)− f(x∗)]

≤
(

1−min

{
µη

2
,
δ

4
,
p

2

})k+1

Φ0
4 −

η

24

k∑
i=0

(
1−min

{
µη

2
,
δ

4
,
p

2

})k−i
E[f(xi)− f(x∗)]

≤
(

1−min

{
µη

2
,
δ

4
,
p

2

})k
Φ0

4 −
η

24

k∑
i=0

(
1−min

{
µη

2
,
δ

4
,
p

2

})k−i
E[f(xi)− f(x∗)]

=
1

wk
Φ0

4 −
η

24wk

k∑
i=0

wiE[f(xi)− f(x∗)],

Then same as the proof of Theorem 8, we have

E[f(x̄k)− f(x∗)] ≤ 12µ‖x0 − x∗‖2 + 12(f(x0)− f(x∗))

1− (1−min{µη
2
, δ

4
, p

2
})k+1

(
1−min

{
µη

2
,
δ

4
,
p

2

})k
,

and if we choose η = min

{
1

4Lf+32L/n
, δ

84
√

1−δLf
,

√
nδ

138
√

(1−δ)LfL
,

√
nδ

118
√

(1−δ)Lf L̄

}
, then E[f(x̄k)− f(x∗)] ≤ ε

with ε ≤ 12
(
µ‖x0 − x∗‖2 + f(x0)− f(x∗)

)
as long as

k ≥ O

((
1

δ
+

1

p
+

√
(1− δ)Lf
µδ

+

√
(1− δ)Lf L̄
µ
√
nδ

+

√
(1− δ)LfL
µ
√
nδ

+
Lf
µ

+
L

nµ

)

ln

(
24
(
µ‖x0 − x∗‖2 + f(x0)− f(x∗)

)
ε

))
,
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which is equivalent to

k ≥ O

((
1

δ
+

1

p
+

√
(1− δ)Lf
µδ

+
Lf
µ

+
L

nµ

)
ln

(
24
(
µ‖x0 − x∗‖2 + f(x0)− f(x∗)

)
ε

))
,

since L̄
n
≤ Lf , and

2

√
(1− δ)LfL

nδ
≤
√

1− δLf
δ

+

√
1− δL
n

≤
√

1− δLf
δ

+
L

n
.
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