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Abstract

A key bottleneck in distributed training of large scale machine learning models is the overhead related
to communication of gradients. In order to reduce the communicated cost, gradient compression
(e.g., sparsification and quantization) and error compensation techniques are often used. In this
paper, we propose and study a new efficient method in this space: error compensated loopless SVRG
method (L-SVRG). Our method is capable of working with any contraction compressor (e.g., TopK
compressor), and we perform analysis for strongly convex optimization problems in the composite
case and smooth case. We prove linear convergence rates for both cases and show that in the smooth
case the rate has a better dependence on the contraction factor associated with the compressor.
Further, we show that in the smooth case, and under some certain conditions, error compensated
L-SVRG has the same convergence rate as the vanilla L-SVRG method. Numerical experiments are
presented to illustrate the efficiency of our method.

1. Introduction

In this work we consider the composite finite-sum optimization problem

min P(z) =5 3 (@) + ¢ (x), (1)
xER4 =1
where f(z) := 23" f(7)(z) is an average of n smooth convex functions f(7) : R? — R distributed

over n nodes (devices, computers), and ¢ : R? — R U {+00} is a proper closed convex function
representing a possibly nonsmooth regularizer. On each node, f(7)(z) is an average of m smooth

m

convex functions f(7)(z) = Ly fi(T) (x), representing the average loss over the training data stored
i=1

on node 7. We assume that problem (1) has at least one optimal solution z*.

For large scale machine learning problems, distributed training and parallel training are often
used. While in such settings, communication is generally much slower than the computation, which
make the communication overhead become a key bottleneck. There are several ways to tackle this
issue, such as using large mini-batchs [5, 20], asynchronous learning [1, 9, 12], quantization and
error compensation [2, 4, 10, 13, 18]. For quantization, there are mainly two types, i.e., contraction
compressor and unbiased compressor, which are defined as follows.
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@ is a contraction compressor if there is a 0 < § < 1 such that
Ellz — Q@)[I* < (1 - 9)||=|, 2
for all z € R?. Q is an unbiased compressor if there is w > 0 such that

EQ()] =2 and E[Q(z)|* < (w+1)l|z|? 3)

for all z € RY.

Quantization can reduce the communicated bits to improve the communication efficiency, but
it will also slow down the convergence rate generally. Hence, error feedback or error compensa-
tion scheme is often used to improve the performance of quantization algorithms. For unbiased
compressor, if we assume the accumulated quantization error is bounded, the convergence rate of
error compensated SGD is the same as vanilla SGD [16]. However, if we only assume bounded
stochastic gradient, in order to guarantee the boundedness of the accumulated quantization error,
some decaying factor need to be involved in general, and the error compensated SGD is proved to
have some advantage over QSGD in some perspective for convex quadratic problem [19]. On the
other hand, for contraction compressor (for example TopK compressor [3]), the error compensated
SGD actually has the same convergence rate as Vanilla SGD [14, 15, 17]. If f is non-smooth and
1 = 0, error compensated SGD was studied in [7] in the single node case, and the convergence rate
is of order O (1/V/sk).

For variance-reduced methods, there is QSVRG [2] for the smooth case where 1) in problem (1)
is zero, and there is VR-DIANA [6] for the composite or regularized case where v in problem (1) is
nonzero. However, the compressor of both algorithms need to be unbiased. In this paper, we study
the error compensated methods for loopless SVRG (L-SVRG) [8] for any contraction compressor.

1.1. Contributions

Iteration complexity. Denote the smoothness of f, f(7), and fi(T) as Ly, L, and L, respectively.
In the composite case, the iteration complexity of error compensated L-SVRG (EC-LSVRG) is

O((3+3+0E + 0508 4 Loy Ly ).

If we further assume additional assumptions (Assumption 2.1 or Assumption 2.2) on the contraction
compressor, the iteration complexity is improved to

O((4+3+0k+ 8k L Lyml).

In the smooth case, the iteration complexity of EC-LSVRG is

o) <<}5 41 SOOLE | YOI Ly @) In 1) .

o Vo

If we further assume additional assumptions (Assumption 2.1 or Assumption 2.2) on the contraction
compressor, the iteration complexity is improved to

O<<+ +w/(1<5Lf_i_LfJr >ln1>.
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In particular, 1f L < L , then the above iteration complexity becomes

O((%#—%-’-%)ln%),

which is actually the iteration complexity of the uncompressed L-SVRG [11]. Noticing that L <
L < mnLy, this means that in the extreme case: L = mnLy, the error compensated L-SVRG has
the same convergence rate as the uncompressed L-SVRG as long as % <m.

Communication complexity. Considering the communication complexity, we obtaint the optimal
choice of p. In particular, we can choose p = O(r(Q)) to get the optimial communication complexity,
where 7(Q)) is the compression ratio for the compressor ) defined in (7). When Ly = L = L,
by choosing the optimal p, the communication complexity of EC-LSVRG in the composite case

becomes
O (A ("2 +1+ (r(Q+ EFL) Lml),

where A is the communication cost of the uncompressed vector = € R%, and the communication
complexity of EC-LSVRG in the smooth case becomes

0<A1<’”(§9)+1+<( ) + mm)) >ln >

2. Gradient Compression Methods

We now give a few examples of contraction compressors:
TopK compressor. For a parameter 1 < K < d, the TopK compressor is defined as

(@)ny i < K,
(TopK(Jf))w(i):{ ()() otherwise,

where 7 is a permutation of {1, 2, ..., d} such that (|z|) ;) > (|z[)z@+1) fori =1,...,d — 1, and if
([2[)x@) = (12D n(i+1), then 7 (4) < 7T(l +1).

The definition of TopK compressor is slightly different with that of [15]. In this way, TopK
compressor is a deterministic operator (well-defined when there are equal dimensions).

RandK compressor. For a parameter 1 < K < d, the RandK compressor is defined as

 (x); ifieS,
(RandK(z)); = { 0 otherwise,

where S is chosen uniformly from the set of all K element subsets of {1,2, ..., d}. RandK can be
used to define an unbiased compressor via scaling. Indeed, it is easy to see that

E (£RandK(z)) = =

for all z € R<.

In general, given an arbitrary unbiased compressor, we can obtaln a contraction compressor via
scaling as follows. For any unbiased compressor Q satisfying (3), +1 Q is a contraction compressor
satisfying (2) with § = W' Indeed,

E|5Q@) —2|* = GimpElQ@) + |l® - ZHE(Q(x), )

< hllel+ el - Hllel? = (1- ) N2l
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For the TopK and RandK compressors, we have the following property.
Lemma 1 (Lemma A.1 in [15]) For the TopK and RandK compressors with 1 < K < d, we have
E|TopK(z) — [ < (1~ &) 2]?, ERandK(x) — > < (1 - 5) [lz]>
We may use the following assumptions for the contraction compressor in some cases.
Assumption 2.1 E[Q(x)] = .

It is easy to verify that RandK compressor satisfies Assumption 2.1 with § = %, and Q /(w+1),

where Q is any unbiased compressor, also satisfies Assumption 2.1 with § = w%rl

Assumption 2.2 For z, = ng* +e* ¢ R%, 7 = 1,....nand k > 0 in Algorithm 1, there exist
> (Qzr) — xr) Zl Lr
T=

8" > 0 such that E[Q(z;)] = Q(z), and <(1-9¢)
=1

For TopK, we have E[Q(z)] = Q(z) for any = € R%. If Q(z,) is close to x,, then ¢’ could
be larger than %. Whenever Assumption 2.2 is needed, if 6 > ¢’, we could decrease ¢ such that
5 = min{d, §'}. In this way, we have the uniform parameter § for the contraction compressor.

3. Error Compensated L-SVRG
The following is the error compensated L-SVRG algorithm. The search direction in L-SVRG is

1 - (7). kY (), k (1), k
" Zl (Vfi; (") sz'; (w") + V7 (w )) ) 4)
where i}, is sampled uniformly and independently from [m] := {1,2,...,m} on 7-th node for

1 < 7 < n, ¥ is the current iteration, and w* is the reference point. Since when ) is nonzero in
problem (1), V f(z*) is nonzero in general, and so is V f(7)(z*). Thus, compressing the direction

Vfi(i') (l‘k) _ vfi(g) (wk) + vf(r) (wk)

directly on each node would cause nonzero noise even when z* and w* goes to the optimal solution
x*. On the other hand, since fz»(T) is L-smooth,

gy =V (@*) = VD (wh)

could be small if ¥ and w* are close. Thus, we compress 1g¥ 4 e¥ instead. The accumulated error
ek +1 is equal to the compression error at iteration & for each node. On each node, a scalar u” is
also maintained, and only u# will be updated. The summation of u” is u*, and we use u* to control
the update frequency of the reference point w*. All nodes maintain the same copies of z*, w”, 3",
and u*. Each node sends their compressed vector ¥ and u**! to the other nodes. If u* = 1, each
node also sends V f(7) (w*) to the other nodes. After the compressed vector y* is received, we add
nV f(wk) to it as the search direction. The proximal step is taken on each node, where we use the
standard proximal operator: prox,,(z) := argminy{3|lz — y[|* + n¢(y)}. The reference point
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Algorithm 1: Error compensated Loopless SVRG (EC-LSVRG)
Parameters: stepsize 77 > 0; probability p € (0, 1]
Initialization: 2° = v ¢ R%: 2 =0 c RGw’ =1 € R
for t=0,1,2,...do
for r=1,...,ndo
Sample ¢}, uniformly and independently in [m] on each node

= VD @) = VED(@h), gk = Qngk + k), ekl = ek gk -yt
1 with propobilit
k+1 _ _ k+1 prop yP
=0form=2,...m, { 0  with probability 1 —

Send y* and uF+1 to the other nodes. Send V f(7) (w") to the other nodes if u* = 1
Recelve y¥ and u¥*! from the other nodes. Receive V f () (w") from the other nodes if
uk =1

end

D Dy i D A VAR AT

k‘ if k+1 1
k+1 _ k+0.5 k+1 _ T 1nu =
T = prox,,,(x , W = .

p W( ) { w®  otherwise

end

w” will be updated if u**! = 1. It is easy to see that w* will be updated with propobility p at each
iteration.

In algorithm 1, lete® = 2 5" ek g = 15" | g% and 2F = 2% — €¥ for k > 0. Then

1 n
== (eﬁ +ngk — y’ﬁ) = e +ng* — ¥,
T=1

and

i’k+1 k+1 k+1

T —€
xk+05 naw( k:—H) e
T
ik

F—yf — V() = nop (2" — e — gk +
—n(g" + Vf(w") + 09 (")

3.1. Composite case

We need the following assumption in this subsection.

Assumption 3.1 fi(T) is L-smooth, ) is L-smooth, f is L f-smooth, and ) is i-strongly convex.
Ly>p

The follwoings are the main results. We use two Lyapulov functions for two cases: with or
without Assumption 2.1 or Assumption 2.2 in the following two theorems.
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Theorem 2 Assume the compressor QQ in Algorithm 1 is a contraction compressor and Assumption
3.1 holds. Define

ofF = (142 -2 P+ 2D ek
+2 (M09 (B4 1) 4161, + 182 [P(wb) - Pa)].

Ifn < ﬁ, then we have

E[®F ] < (1—min {2 2 2))E[®}] + ME[P(z") — P(z"H)]
+ (00 (&4 L) +48Ly + L) PE[P(a) — P(a")].

Theorem 3 Assume the compressor Q) in Algorithm 1 is a contraction compressor and Assumption
3.1 holds. Define

k ~k k 84(1—4
O = (1+%) [|#* — 2| + §llef|? + s )ZHSTIIQ

2 ((1-6) (82L .
+2% ((15 ) ( i 336L+459L) +16L; 16L> [P(w") — P(a").

Under Assumption 2.1 or Assumption 2.2, if n < ﬁ, then we have
E[@5*] < (1—min{&, 2 EV)E[®S] + 29E[P(2*) — P(2")]

4 ((155) (24%Lf + 10(507?E + 13’7717L> —|—48Lf + %) UQE[P(ZE‘k) N P(x*)]

From the above two theorems, we can get the iteration complexity.

Theorem 4 Assume the compressor Q) in Algorithm 1 is a contraction compressor and Assumption
: ) —k k - 1k ;
3.1 holds. Let wy, = (1 —min{ &, §, 5 ) , W = > wi, and k= szizo wix'. If
52

" = 135(1=0)(L+L0)+53L 6753107’ [T1€n we have

E[P(z*) — P(z")] <

£ [l20—a*||24 3 (P(0)— P(a)) (

ofun 6 plyk
—miny =, 5,5 .
1—(1—min{%%,g})k+l { 374 2})

: . 2 _ . .
In particular, if we choose n = 135(1—5)(E+L6)i53Lf62+53L62/n’ then B[P (z*) — P(z*)] < ¢, with

e < §lla? — 2*||* + 3(P(2%) — P(a")), as long as

Theorem 5 Assume the compressor Q) in Algorithm 1 is a contraction compressor and Assumption
3.1 holds. Assume the compressor Q also satisfies Assumption 2.1 or Assumption 2.2. Let wy =

(1 — min { &, Z,g ) , Wy = ZZ o Wi, and 7" Wk Zf:o wit. If

52
n= (1—0)(269L +1100L /n+1503L3 /n)+53L ;62 +53L82 /n’
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then we have

Bja0 -z~ |2+ 1<P<x°> P(m)(

E[P(z") — P(2*)] <
[P(z") (z%)] < (BT 3 By

1 min {§2,4.5})".

. . B 52 kY _
In particular, if we choose 1 = —5y5697 ;71100L /n1503L6 /) +53L ;3753057 > hem E[P(z")

P(z*)] < € withe < 5|20 — 2*||? + $(P(2°) — P(x")), as long as

F>0((3+1+ Sk 4 DL 4 Le L)y (Ml PPEDPE))

nop €

Noticing that Ly < L<nL ¢ and L < L < mlL, the iteration complexity in Theorem 5 could
be better than that in Theorem 4. On the other hand, if L; = L = L, then both iteration complexities
in Theorem 4 and Theorem 5 become

T e s

€

3.2. Smooth case: 1) =0

In this subsection, we study the Algorithm 1 for problem (1) with ¢ = 0. We need the following
assumption in this subsection.

Assumption 3.2 fi(T) is L-smooth, f\7) is L-smooth, f is L f-smooth and f is pi-strongly convex.

We also use two Lyapulov functions for two cases: with or without Assumption 2.1 or Assumption
2.2 in the following two theorems.

Theorem 6 Assume the compressor Q) in Algorithm 1 is a contraction compressor and Assumption
3.2 holds. Define

w:whwWIW@]ﬂP 2 (PO (L) + ) [P wh) — f)

If?] S m, then
E[@™] < (1 —min {4, ¢ 21)E[®)]
~g (1 PO (§ 4 1) - ) B - )]

Theorem 7 Assume the compressor Q) in Algorithm 1 is a contraction compressor and Assumption

3.2 holds. Define

A B o 1M§Lf"§£juek+lu2

n

-5 3 *
P N BT )

Under Assumption 2.1 or Assumption 2.2, if n < then

1
4L;+8L/n’
E[@¥] < (1 —min {4, 21)E[®f]

288(1—08)L¢n? (2L 7 %
—g (1 ZEUDLE (2 4 ULy 8 IS R f(F) — f(27)].

7
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From the above two theorems, we can get the iteration complexity.

Theorem 8 Assume the compressor Q) in Algorithm 1 is a contraction compressor and Assumption
—k k - 1 k ;
3.2 holds. Let wy = (1 — mln{ 5 ,4,g ) , Wi = > 5w, and Tk = W Yoiowixt. If

< mi 1 5 Vo
= mln{4Lf+24L/n’ 51/(1-6)L;L’ 51,/(1=0)LsL |’ then we have

kY gk Ipll® =2 +9(f (%) —f (z*)) 2]
E[f(l’ ) f(x )] < 17(17min{%,g,%})k+l ( mln{ 20

Moq
[\lhs

Tl

In particular, if we choose 1 = min {4Lf+124L/Tl’ 51\/(16_5)L,-L’ 51¢(f5)LfL } then B[ (z*) —

Ja)] < 6 with e <9 (2 — % + [(°) = f(a*)), as long as

k>0 <((1S +1+ VO=)L;L | /A=9LL % N nLM> In <18<uz0—w*2+f(;t0)—f(3:*))>> .

o v €

Theorem 9 Assume the compressor Q) in Algorithm 1 is a contraction compressor and Assumption
3.2 holds. Assume the compressor Q also satisfies Assumption 2.1 or Assumption 2.2. Let w =

(1 — min {“277, j,g ) , Wy = ZZ o Wi, and T* Vék Zf:o wixt. If

n < min 1 Vnd v/nd
- 4Lf+32L/”’84\/ 6Ly’ 138,/(1=8)LyL’ 118/(1-6)LsL

then we have

=ky _ * 12#|Ifﬂ°—z*ll2+12(( N=FE) (1 — myin L1108 21
B () — (o)) < e e e (1 min {41, 8)"
. . _ : 1 vnd \/nd
In particular, if we choose n = min 4Lf+32L/n’84\/7Lf B8 0-0L, L T3y (—0L,T } then

E[f(z%) — f(z*)] < ewithe <12 (u||2® — 2*||* + f(2°) — f(z*)) as long as

k=0 <<}5 \/ﬁLf + Lf 4 ) n (24(M||:v°—a:*||2+f(x°)—f(ac*)))> ’

€

Noticing that Ly < L < nLyand L < L < mL, the iteration complexity in Theorem 9 could
be better than that in Theorem 8. On the other hand, if Ly = L = L, then both iteration complexities
in Theorem 8 and Theorem 9 become

o(( R (- E)L)ln<24(ullw°—w*ij(wo)—f(w*)))>‘ ©)
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Appendix

Appendix A. Communication cost

Optimal choice of p. In Algorithm 1, when w" is updated, the uncompressed vector V f(7) (w*) need to be
communicated. We denote A; as the communication cost of the uncompressed vector = € R<. Define the compress ratio
r(Q) for the contraction compressor () as

(Q) = sup {IE { communication cost of Q(z) } } . @

Ay
z€RE

Denote the total expected communication cost for k iterations as 7. The expected communication cost at iteration k& > 1
is bounded by A17(Q) 4+ 1 4 pA1, where 1 bit is needed to communicate v**, and the expected communication cost at
iteration k = 0 is bounded by A17(Q) + 1 + A;. Hence,

Te < Ar(Q)+1+A1+4(Ar(Q)+1+pAi)k
< Ar@Q 41+ A1+ (Ar(Q) +1) (1 + ﬁ) k. )

From Theorem 4 and Theorem 5 in the composite case and Theorem 8 and Theorem 9 in the smooth case, we have
E[f(Z") — f(z*)] < easlongas k > O ((% + a) In %), where a is independent of p. Hence, from (8), we have
E[f(#") - f(a")] < € for

To = O ((Alr(Q) +1) (1 + ﬁ) (a + %) In g)

- 0 ((Alr(Q) +1) (a +Ee 41y ﬁ) In g) .

Noticing that _£5s + % <a+ ﬁ for min {r(Q), 2} < p < max {r(Q), <}, we have

a 1 1 1
O(“+ @ Tt r(Q)) ZO(“*MQ))v

and the above lower bound holds for O (min {T(Q), é}) <p<O (max {r(Q)7 %}) Hence, in order to minimize the
total expected communication cost, the optimal choice of p is O (min {r(Q),2}) < p < O (max {r(Q), 1 }).
Comparison to the uncompressed L-SVRG. For simplicity, we assume Ly = L = L and A17(Q) > O(1).
In the composite case, from (5) and (8), by choosing p = O(r(Q)), we have

To=0 (a1 (M2 + 1+ (r(@+ =LY L) L) ©)
In the smooth case, from (6) and (8), by choosing p = O(r(Q)), we have
Tk:o(Al (@HJF <r(Q)+7\w> 5) 1n§>. (10)

For uncompressed L-SVRG, by choosing p = 1, we have
ﬁ:O(Alﬁln%). (11)

Thus, in the composite case, If % < 1, then the communication cost in (9) is less than that in (11). In the smooth case,

If @ < 1, then the communication cost in (10) is less than that in (11). For TopK compressor, 7(Q) = %@Ogd]),

and in practice § can be much larger than %, sometimes even in order O(1).

Appendix B. Experiments

In this part, we run experiments with EC-LSVRG to demonstrate the empirical effectiveness. In particular, we should
highlight the linear convergence rate of our algorithm with biased compressor in strongly convex case. Also, the
convergence speed is competitive to other compressed algorithms.

11
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Settings: We implement (1) Linear regression for GD; (2) Logistic regression with L1-Ls regularization (detailed
information can be found in the Appendix). We use Python 3.7 to perform experiments on a server with 2 processors (Intel
Xeon Gold 5120 @ 2.20GHz), 28 cores in total. Library include numpy, sklearn. In particular, for multi-nodes tasks, we
use mpidpy to simulate distributed environment. Step size is searched from 10°, where t € {—4,--- ,0, 1}. For DIANA,
we use the optimal o = (w 4 1) 7%

Datasets: For GD, in order to construct two synthesis data, which are sampled from normal distribution with o = 0.1.
In particular, we use 2048 and 4096 dimension case for the problem. To increase the difficulty in distributed setting, we
only use square matrix, which enlarge the local solution space on each node. Besides, we have real datasets: Gisette,
RCV1, a5a, mushrooms (details are in the Appendix).

B.1. Biased Compressor GD

Since there are not any algorithm achieves linear convergence in stochastic optimization setting. We firstly compare our
algorithm with the error compensated GD (EC-GD) to demonstrate to the gain of variance reduced term. We should
mention that EC-GD only converges linearly when V f () (z*) =0forany 7 = 1,- - - , n, which means the global solution
is also a local solution. Thus we construct a linear regression problem || Az — Y'||3 such that || Az* — Y||3 = 0. By Figure
1, we use 2048-dim and 4096-dim to conduct the experiment. We can notice that, though the gap between EC-GD and GD
is small, EC-LSVRG bridge this gap with the variance reduced term. Moreover, when the optimal point V (™) (z*) #0,
the EC-GD algorithm is unable to acheive the linear convergence rate. As is shown, for a5a and mushrooms dataset, we
conduct logistic regression for each method. We verified the linear convergence of our algorithm emprically and showed
that the EC-GD can only converge to neighbourhood of the optimality.

Y2048 (n=16) 5Y4096 (n=16) a5a (n=6) mushrooms (n=6)

— Topt-ECLSVRG | — TopiECLSVRG wiy — Topt-ECLSVRG

| — TorcoisvRe
Topt£0.60 | Topt£6.60 Topt£0.G0

Top1 £C.GD.
-- @

Heratons () eratons () eratons ()

Figure 1: Compare to Error Compensated gradient descent (p = 1073)

B.2. Compressed Stochastic Algorithms with Linear Convergence

For simplicity, we compare the 1-node case to illustrate the effectiveness of our method. By Figure 2, we can notice that
with the same compressor, like RandK or quantization (k-bit denotes s = 2’“), our EC-LSVRG outperforms VRDIANA,
which is a state-of-the-art approach that support proximal operators with linear convergence. More importantly, since
the biased compressors are often more effective than the unbiased ones, when we compare these method w.r.t. the
communication cost, the TopK compressor is much more efficient than quantization.

Gisato . Gisette

objectve gap.
obectve gap.

objectve gap.
objectve gap

FUlLSVRG
EcusvAG Tt | |
ecisvcTooto | |}
N eosvG |

— VRDIANARangt0 ECLsvAG 200

ECLSVRG Topt
ECLSVRG Topt0
ECLSVRG Rand10
ECLSVAG 11
ECLSVAG 261

opoch

12
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B.3. Distributed Experiment with Compressed Stochastic Algorithms

In order to reflect the influence of the number of nodes, we compared the convergence speed of different nodes. In Figure
3, we can notice that as the number of nodes increases, the convergence speed can be improved significantly for any
compressor. In particular, the TopK compressor is still very competitive, epecially for the communication cost.

Gisetto (Tops Compr

Gisetto (Top10 Comp Gisatto (1-bit Comprossor) Gisatto (1-bit Comprossor)

Figure 3: Distributed Experiment with compressed algorithm (p = 10~%)

Appendix C. Proofs for the composite case

C.1. Lemmas

The following lemma shows the progress at iteration k for the auxiliary points Z* and Z°*!.

Lemma 10 [fn < ﬁ, then

(L+ ) E|z* — 2" < E|g" — 2" + 2E(P(z") — P(="*™)) + E|le"|?
+(1+ Bl + 4n’El|g" ||

Proof
Since #*11 = 7% — (¢~ + Vf(w") 4+ 9p(z* 1)), we have

g + Vi@wh)),a* — 2t
#F — FT pay(atth), 2t — 2
(& RHEL px Rty g (gt gL o Ry (P ), o — oF Y

—x , T n
1 ~k )12 ~k k412 k )12 1/ )2
5 (213 =" + 3" = 2+ ot = a7)) + 5 (18 -0

= B~ =) o (0 - vt + St - )

3

\Y

1 Sl
2 2 T x
1 (@) = () + Bt - at)?)

1 1
||a~:k+1 - 5’3*H2 ~k *HQ + iujk _ xk+1||2 o 5ij-‘-l _ xk+1”2

From Hfék _ mk+lH2 Z %”xk+1 7ka2 _ ||i'k _ {Ijk”2, and ‘|mk+1 756*”2 Z %HjIﬁLl 756*”2 _ ||£,k+1 _ karle
we arrive at

>

(n(g" + Vfw")),z* — 2"

L+nu/2 | kgt w2 Lyak w2 Ly k1 k2 L~k k2
> LW e Lt e e ot - Lt - o

SRR R () - p(a)). (12

13
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Since f is convex and Ex[¢g* + V f(w")] = V f(z"), we have

f@) > f@")+ (Vi) - 2"

= f(@®) +E(" + Vi), z" — 2" 2T — M)

= S El(e" + V"), 2" = 2]+ El(g" + V(") = Vf ("), - ab)]
+EL[(Vf(2®), 2" — ®)]

s[f @] - %Ek[l\xk“ — 2P+ Exl(g" + V"), e — 2F )]

-l—IEk[(g'C + Vf(wk) — Vf(xk)wkﬂ _ $k>]

Ex[f (=) - %Ekmx’““ — PP+ Erl(g" + V() 2 — 2]

fa®) +

\Y
=

\Y

*%Eknmuw(wk) FEP - E[x’““ a* |17,

where the second inequality comes from that f is L ¢-smooth and the last 1nequality comes from Young’s inequality.
Since Ex[||g* + Vf(w") — V£(z*)||?] < Ex|lg"||?, by choosing 8 = --, we have

f@")

> E[f) - (ﬂ + iﬂ) Exllle* — o 2] 4+ Eallg® + V(") 2" — a*+1)] — 2By g

T4+np/2 0 k1 w2 Lk a2
> By[f(z"T! +(—f—f—)Ek [ L e P e
[f(z™)] 7 If ] o | | 277|| |

1+ ~ *
£ = oM ? - S TEEE T P 4 Bt )] - w(e) - 20l

<z Lf , we can get the result after rearrangement.

Lemma 11 We have
INTEllgr|? < ALE[P(z") — P(z")] + 4LE[P(w") — P(z")], (13)
=1

and

Y EIVITEN) - viT WP < 4LE[P(") - P(a")] + 4LE[P(w®) — P(z")], (14)

and
Ellg"|> < 4(Ly+L)E[P(z") — P(z™)] +4(Ly + L) E[P(w") — P(z")]. (15)

and
Elg" + Vf(w*) = Vf(")? < 2EE[P(z") — P(z*) + P(w") — P(z")]. (16)

Proof
Since fi(T) is L-smooth and f is L ;-smooth, we have

IV (@) = VIO WP < 2L(f7 (@) — £ () — (VI ),z — y)),

and

IVF(2) = VIWI* < 2Ls (f(2) = f(y) = (VI(y),z —y))

14
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for any z,y € R?. Therefore,

Elgrl® = E|VST@") - VD @)
< 2BIVAD @) = VAP @I+ 2BV SD @) = VD ()
< ALE[fT(@h) - fOE) — (VO @), = a)]
HLE[f 7 (") = £7 @) = (V1O @), w0t = a7,

and

n 2
Elg? = B[ ot

nT

1 n
= ﬁ Z E<g’ﬁl7g'$2>

T1,T2=1
= LSRG L 3D E(TAE) - ), VA ) - 9 )
T=1 T1#T2
= LRI + BTG - Vo) - ZEHW(” — VIO
< ni > Elgr)? + 2BV f(z") — VF(@")|* + 2BV f(w") = V(")
=1
41 k *
< (L) BUGH - 16 - (V1.0 - )

+ (% +4Lf) E[f(w*) — f(z") — (Vf(@"), 0" — )],
Since z* is an optimal solution, we have —V f(z*) € 9 (™), which implies that
f@") = f(@) = (Vf@"),2" —z*) < P(*) - P(a"). (17
Thus,
z D EIGH|” < ALEIPG) — PG + 4LELP(") ~ P,
and
Bl < (4 + 4y ) BIPGH) - PO+ (5 +4Ls ) BIP(Y) - P
For E|g" + V f(w*) — V£(z*)||?, we have

Ellg* + V(") = Vi) = Elg*|? - EIV (") - V("))
= Bl - 5 RIS @) = VO W

< %Zﬁug’:n?
< ‘ﬁfE[P( )~ P@)] + “UE[P@") — P(a)].

Since f(T) is L-smooth, we have

IV @) = VIO )P <207 (@) = 1T y) = (VT (), 2~ 9)).

15
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Then similarly, we can get
1< - . - . - «
- D EVF T (@) - VO @h)|? < 4LE[P(«") - P(z")] + 4LE[P(w") — P(z")].
|

The following two lemmas show the evolution of e¥ and e, which will be used to construct the Lyapulov functions.

Lemma 12 We have
INTEer ™) < (1-3) 2> ElleR|?
=1 =1

+4(1 - 8)” (£ + L) (E[P(*) — P(a")] + E[P(w*) - P(x")]).

A

Proof
First, we have

Efjef )]

(1 — O)E|lek + ngk||?

= (1=0E[e} + (V@) = VT W") +ngk — (v @*) - v wh))?

1= O)E|lef + (V7 (") — VO (w))?

+(1 = ON’E|lgk — (V7 (@) — VO (wk )|

(1= OE|ef + (V7 (@) — VO WP+ 1 - 0)n’Ellgk|?

(1-38)(1+ B)E|ef]* + (1 - ) (+}3 WE|V 7 (@) — VO @F)? + (1 - 8)n’E|gk|?

IN

IN

(1_é)EH {2+ 2020 2w 10 (a) v 0 @) 2 + (1 d) gk P,

where we use Young’s inequality in the third inequality and choose 8 = 5 (1 5 when § < 1. When § = 1, it is easy to see
that the above inequality also holds.
Then we can get

%ZEmeﬁ“nﬂ
( 7%) ZE” -r|| Jr _ 21 ZE”VJ“(T) ) Vf(f)( )” Jr 77 7ZE|| 7—”
< ( g) : ZEII f2 4+ 2 )77 L (E[P(mk) — P(z")] + E[P(w") — P(m*)]) (1 5)7725 ZEHQ'T“IIQ

iEHeTH +4(1 - 8)n (% +L) (EP(") = P(a")] + E[P(w") - P(z")]) .

C
Ne
/"\
w\o,
S~
3 =

Lemma 13 Under Assumption 2.1 or Assumption 2.2, we have

Bl < (1 §) Bk + 2500 Y plek?

r=1

+4(1— o) (354 + L) E[P(") - P(a") + P(w") - P(a")].

16
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Proof
Under Assumption 2.1, we have E[Q(z)] = dz, and

n 2

%Z i

T=1

BEL kL
- 2 ZE €5

E[e* = E

_ k+1 k+1 k+1
= TQEZEH o S Bl
i#]
@ 1-4 2 (1-9)
< e g+ LS R (e gtk ol
£
U S N [ C U ) RLATINTE
= T]E 2(67+ng7) +TZE‘67+7}97’
T=1 T=1

2 (1-0)0 & 2

< (1-0E[et |+ L0 S ek gt

where we use the definitions of €* and ¢* in the last inequality.
Under Assumption 2.2, we have

Efle"* ) = E

T=1

n

E

=1
Assumption2.2

k+1

-

e

2

%Z (ef- +ngr —Q (ng'ﬁ +e’i))

1]

2
< (1—5)1EH61“+779'“H

Overall, under Assumption 2.1 or Assumption 2.2, we have

Efle |1
< (1—6IEH6 +ng H ZE‘
< -OE[e+ngt| + }:EHA
(13)
< a-oE[e 4| + }:EHA

(1 — 2
+ (1—-10)0Ln
n

17

E[P(z") - P(a") + P(w") —

e +ngr

P(z")].

2

8)o
’7§jEnw

(18)
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For (1 — §)E|e* + ng*||?, we have

2
(1-0)E He’c + nng

(1—5)EHek+an(wk)—Vf( )+ ng* — n(V i) - V)|

(1= O " +n(V @) - Vi@ )|+ (- Bl — (Vi) -~ i h)]?

(1-3) Bl + wEHW(x )~ V()
H1 - O Elg" — (VF*) V)

(16)

_ 2
< (1 - g) Bl ? + 20O gy ey - v st P

LT gpE) - Pa) + PO*) - Pa)]

IN

+(1-19)
Since f is L g-smooth, we have

E[Vf(a") = Vf(w")|? E[|Vf(a") = Vf(z") + Vf(@") = V(")

< 2E|Vf(a") = V@) + 2BV (w") — V()|

< ALE[fh) - f@7) = (Vi@"),a" —a7)]
HALE [f (") = f(z") = (Vf(a"), 0" —o")]

(1§7) ALE[P(z") — P(z*)] 4+ AL{E[P(w") — P(z)].

Hence, we arrive at
2
(1-0)E Hek + nng
< (1 - g) Elle*||> + 4(1 — 6)n° (% + %) E[P(z*) — P(z*) + P(w") — P(z*)].

Combining (18) and the above inequality, we can get

Efle"*|?

< (1-3)me ZEH

R (% + % + 2‘%) BIP(a*) - P(a’) + P(ut) - P

(-

+4(1 = 6)n° (2Lf + 3L> E[P(z") — P(z*) + P(w") — P(z")].

IN

0

C.2. Proof of Theorem 2

Letn < 4L . From ||e¥||> < 23" ||e¥|? and Lemma 10, we have

18
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(1+ ) Bl — )
Elja —a|* + 208 (P(a) ~ P*)) +E\|ek\|2 1+ nu)JEHe’““IIQ +4r°Ellg"|

< E[#" —o"|* + 2nE(P(a”) — P(a"") ZEII AP+ ZEII S+ an’Ellg")?

IN

Lemmal2

< B[ - o) + 2E(P) - P + LS Bk + i (1 - f) ZEH g
T=1

4501 = 0)0* (£ + L) BIP() = Pa") + P’ = PG+ 407Bl

(15) ~ . . 9 1<
E||Z" — 2"||* + 20E(P(z") — P(z""")) + in > ElleR|?
T=1

L 16L . .
+ (5(1 —9) (g + L) +16Ls + —) ’E[P(z") — P(z") + P(w") — P(z")).
From the definition of w®*', we have

E[P(w"*") — P(z")] = pE[P(¢") — P(z")] + (1 — p)E[P(w") — P(a")]. (19)

From Lemma 12, we have

9 n
Skl w2 9 k4112
(L5 ) BN =i+ o 3B
2 * k41 9 g - k(2
< EJ&* o' + 2mE(P@) - P + 5= (1= 7 ) DBl
T=1

+ (w (% + L) +16Ls + %) n’E[P(z*) — P(z*) + P(w") — P(z")].

Combining the above inequality and (19), we can get

E@i7] = (1+2) B -0+ o ZEII a
ﬁg (41(16;5) (g + L) L 16Ls + @) E[P(w**) - P(")]
< Bl - 2 (1-9) illwf
+2‘%2 (@ (% n L) ;16Lf n %) (1-2) EPwt) - PG™))
s2qpfp(e) - P+ (U2 (R ) sty o B8) et - P
< (1—mm{% 35 ) Bt 2Blp) - P
+ (202D ( L) +48Ls + 58 ) FEIPGH) - P,

where we use (1 + %)71 <1 — &1 forun < 1.
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C.3. Proof of Theorem 3

Letn < ﬁ. From Lemma 10, we have

(1 + 7]#) E||~k+1 w*HZ

E||&* — || + 20E(P(z") — P(«""")) + E[le"||” + (1 + nu)E[[e" || + 4n°El|g"||?

< E||Z" — 2"|* + 2nE(P(z") — P(z"*")) + E|le"||* + ZIEIIe'““II2 + 4 E||g"||?

5(1 — )8 —
2 2

IN

Lemmal3
> ElleX|® + 4n’E|lg"|I?

=1

. . 9
E[#" — " ||* + 2mE(P(z") - P(a"")) + ZEllekH2 +

+5(1 — o) (2? + SL) E[P(z*) — P(z") + P(w") — P(z")]
< E|z" — 2" ||” + 20E[P(z") — P(«"")] + EH I + (12;25)5 D Eler|?

+ (5(1 —9) (% + %) +16Ls + %) n’E[P(z") — P(z*) + P(w") — P(z")].

Then from Lemmas 12 and 13, we have

(1+ Y Rt - o7+ gE ) + 22020 ZEH o]
L B 0|+ B[P - P+ (1 - g v 3) 9Bt
o (B ) S ety 2D 5 ey
+ ((1 —5) <5 + ?) (% + %) 6L + %) WE[P(z") — P(z") + P(w") — P(z")]
ST st - ) - P+ (1-3) JEIke e (1- §) 220 ZEH i
(B0 (2 B, 200, 300 (1Y)
TEPE) - Pl) + Pw’) - Pa”)]
=B ) - Pl (1 ) St (1- 1) S0 S
(O (B2 B0L A0 4 yor, 4 10 i) - Py + () - PG

Combining the above inequality and (19), we can obtain

20



ERROR COMPENSATED LOOPLESS SVRG

E[®;"]
vz, 9
= (14 Y B - o) 4SBT 4 220) ZEH aas
2n° ((1—0) (82L;  336L  459L LL K1y oy
+ v ( 5 5 + i +16Ly + E[P(w""") — P(z")]
- 5\ 9 5\ 84
< Bl - (1) SEI (1 4)(—21%” T 2E[P(") — P(a*H)]
T=1
27 ((1=06) (82L; 336L 459L 16L p " .
+ ( 5 L+ 6L+ ) (1 2)E[P(w) P(z")]
1-6) (246L 1008L 1377L 48L .
+(( 5 ) ( 5 LA )+48Lf+—> n’E[P(z") — P(z")]
< (1-mm {80 21) E[<I>’5] + 2E[P(") — P
(1-9) (246L; 1008L  1377L 48LY Ky g
+( 5 5 + 5n + - +48Ly + ) E[P(z") — P(z")],

where we use (1 + %)71 <1 — & for un < 1.

C.4. Proof of Theorem 4

Letn < ;7—. From Theorem 2, we have

IN
RS

[

|

g

=}
—
=
w5
IR
NS
H/_/
N N~

IN
VRS
—

|

£

=]
—N
=
|5
NS
NS
—
~
i)
o

|

o

3
i

S
A~ S

[

|

=

=
—N
|5
NG
N3
H/_/
~
Eal
l

=
]
8&

|
i

8

*

_ k—1 k—1—i
123(1—6) (L 48L\ o fum 8 p i s
+(f <§+L)+48Lf+7)7] . (1 mln{?’i’i E[P(z") — P(2")]

Wk Wk =1
123(1—6) (L 48L 2k ; .
+ (# <g +L) +48L; + —) % 3 wiE[P(z') — P(z")]
i=0

IN

2 & :
_ uTZ Z w;E[P(z") — P(z")]
k

n (w (5 +L> 4530 + 53L) v 2 WE[P() = Pa")),

=0
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where we use w1 < 12 in the last inequality. Rearranging the above inequality, we can get

2 S wEPE) - Pa)

1 1
—— @} — ~E[®7] +

<
T Nwg n Wk
_ k
135(1 —6) (L 53L .
+<7(5 )(E+L)+53L +—) Z P(a")]
=0
1 2(P(z°) — P(a* 135(1 —6) (L 53L . ; .
< m@% (Plz )wk (@ ))+( (5 )(3 )+53L +—)wik2wiE[P(x)—P(x ).
i=0
Hence, if
< 1 _ 5
= (135(51 s>( +L) 4 53L; +53L>  135(1 — 6)(L + LJ) + 53Ls6% + 53L52 /n’
then

§
=
Sy
&@.
|
3
&*
A

%qff +2(P(°) — P(x")).

1
k 1-— - sorun 8§ pyyk+1
; 72'“) . (l—mln{%l,%,a )k+1 . 1—(1—m1n{T,Z,§ )
- v I U - P min 41 8 P1\E’
i=0 1—3 min{ 41,2 B} min{’g, §, §}(1 — min{47, §,5})

we can get

=0
< L (19 1 opE) - PEY)
= Wk 1
min{4, §, 5} 1o 0 \ pn 5 p\"
T =G w3, gy gt AP T PED MG gy
From the definition of <1>’f and eg = 0, we have
cekm 0 opy 1o
min{~—" 31’3 Dy
— minP 0 Py (L Y 0 ez 20 (410 -0) (L LY (pad) - Pl
= min{5], 2.7 ( (1+ 2)||3: 2| +p( 5 S+ L) +16L5 + (P(z°) — P(z"))

IN

-2 .unézg,g 0\ _ pro*
51+ 5) I =P ming L3 By - £ (Pa) — P))

1 0 x
5(PE") = P(")).

Therefore, we arrive at

< Ll —a|* +

ﬂﬁ—fW+aHﬁ%me(umm{w

1— (1 — min{#2, & 2})k+1 37

1)

Sl — 2" |* + 1(P($0) — P(z")) . [ un
1—(1—min{&! JLans (1—m1n{?

0
47

[GILS]

1 & ; .
W ;wiE[P(x ) — P(z")] <

“k_ 1~k .
For 2" = > io wiz’, from the convexity of P, we have

(IS

k k
BIPG) P < g S wEIPE) P < 381

3’42
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If we choose 1 = 135(175)(E+L§)i253Lf62+53L52/n’ then in order to guarantee E[P(z") — P(z*)] < e, we first let
k1
)=

(1 — min {% g,
BIP@") — P < (1l o[ + Pa”) = P(a") (1= min {

I

VIS
N | =

which implies that

b 8
3747

D

N3

Hence, when € < £||z° — z*||> 4 (P (2°) — P(z*)), E[P(z") — P(z*)] < eas long as

k
. un 0 p €
1— L/ S <
( mln{3’4’2}) = ulla® = [P+ P() = Pa*)’
which is equivalent to
0 _ .*||2 0y *
N LU hl(ullw 2|12 + P(a?) P(m))l
—In(1 —min { &, $,5}) €

Since —In(1 — z) > x for = € [0, 1), we have E[P(z*) — P(2*)] < e as long as

— I — 0 _ ,.*[2 0y _ *
k>0 1+1+(1 6)L+(1 6)L+Lf+ L In pllz® — = ||* + P(z”) — P(z™) .
6 p 62 op 1 nu €

C.5. Proof of Theorem 5

From % < Ly, the proof is same as that of Theorem 4.

Appendix D. Proofs for the smooth case

D.1. Lemma

Thanks to the following lemma, we can get better results than the composite case. The main difference between Lemma 10
and Lemma 14 is that there is an additional stepsize 7 before E||e* ||2. The following lemma is similar to Lemma 7 in [14].
However, for completeness, we give the proof.

Lemma 14 Ifn S m, then

E[#" —a"|* < (1-4)E|z" —o"|* ~ $E[f(e") - f(z")]
+3LgnElle" || + SEn"E[f (w") — f(a")].

Proof
Since ¢ = 0, we have #*' = 7% — (g* 4+ V f(w")). Hence
El#* — o
E|&* — 2" —n(g" + Vf(uwh))|?
E|&" —27|* - 20E(F" — ", V(")) + 1°Ellg" + Vf(u")|?
= E|&" —2"|* - 20E(z" — 2", V(")) + 2n(c" — ", Vf(2")) + n"Elg" + V f(w")|?
< B —2|* - 20E(f(2") - f(a")) = pnElla” —a"|* + 20E(e", V£ (2")) + 1’ Ellg" + V£ ()],

where the last inequality comes from the p-strongly convexity of f.
For ||z — z*||?, we have
12" — " )|* < 2)ja® —27||* + 2",

For 2(e*, V f(z*), we have

2", V1) € 3 IVF@IP + 2Lt < 1) - F) + 2Ly et
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Thus, we arrive at
Elja**! — o

IN

(1- D) Bl —a" I = nE(f(2") = £(z") + 2Ly + wuElle"]]” + °Ellg" + V£ (")

(1= D) EIa* - 2*|I” = nB(/(a") = £(@")) + BLyuElle* | + n’Ellg" + V £ (")
Finally, for E||g" + V f(w"*)||?, we have
Elg" + Vf(w")|* = Elg"+Vf(w") = Vf(a")+Vf@") - Vi@
= Elg* + Vi(@") - V") +E|VF(=") - Vi)
Ellg* + VF(*) = VF(")|? + 2L E(f(2") - f(2"))
(16) < 4L

IN

IN

4L

< sz+—)E[f<x’“>—f< N+ LR - )

Thereofore,

Bl o < (1= ) Bt - (1= (2 + 2 ) ) BN - )
+3LEE I + SR (wh) — )]

By choosing < m, we can get the reslut.

D.2. Proof of Theorem 6

Letn < m From Lemma 14, Lemma 12, and [[e*||* < 1 3" _ [e¥||?, we can obtain

o 4 120
]E”j:kJrl 2 f77 Z]EH k+l

IN

(1- 21 jla* o) ~ DBIFG*) - Fa)] + 20 S B + PRl ) - £
(R e (% + ) Bl - 1)+ F0h) = )

(Y sk ep2 1200 (0 O\ S~z 1 (4 96(1—8)Lm* (L
- (1 2>IE||9: P+ (12 ) DBl - 1 (1 5 5L

_ 3 /7 2
Bl - ]+ (B (L) + 1D Blpwt) - £

Then from (19), we have
E[®5™]

N . 12L 48( 175 L L 4Ln? .
= B o f"ZEH s 2 (BUZDR (1) 1) i) — o)

2
D d
) SB[k

< (-2 ()3
2 <48(1 SOk (g ) ALn” )( L) E (") — f)]
_g (1_ 283(1 55)Lf77 <§+L> 16Ln )]E[f( By — f(z)]
< (17mm{%,g,§})ﬁ[¢§]fg(17M(§+L> 16L") E[f(a") — f(z")).
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D.3. Proof of Theorem 7

Letn < From Lemma 14, we have

1
AL +8L/n"

. . 12L 96(1 — &)L n —
E[lZ" " — 2" |” + 75’”71EH~‘2'““||2 + %61 = O)Lyn n25) £ Z]E\Ie'i“Il2
=1

< (- BBl o) - DRI - £+ BLmE I + PRl ) — )]
Y n
+12§f77]EH6k+1H2+ 6(1n25)Lf77 ;E|‘€I:—+1H2

Lemma 13 B ﬂ kw2 Q ky « 12Lf77 _é
< (=B B - - LB Eh - £+ 5 (1 2+ Efle*

i) - fa) + HEDE S el SLZDE S el

+w (% + %) E[f(#") = f(a") + f(w") = f(2")]

Lemma 12 _ﬂ ~k *Q_Q ky * M _é k2
% (1 2)]E||x | = SE[f(") = f@)] + =5 (1= ) Elle”|

2 * _6 (5 _ 2
# B w) — 1)+ RECIET (1-3) 5wl

w (% L3y % + %) E[f(«") = f(z") + f(w") = f(&")]

n
-4 5 —
= (=) E e B (- YR W(1_4);E||ei|2
_ 2
-1 (1 2D (%+£+@))Em )~ 7@

+ <748“ UL (% LuL %) 4 4L ) E[f(w") - f(a")].

n

n

Then from (19), we can get

Efe} )
= B o 2 e 4 2208 Lf”ZEH ol
J% (48(1 —55)Lfn3 (2? % 7@ N 4Ln? )E[f( B f(a™]
< (1= o S (12 Gt S (1 1) S et
+2 (i“g(l =L (% ng%) AL’ ) - DY Elfwh) - fa)]
-1 (1~ U= (2 UL, %) - Y i) - )
< (1-mn {80 2 pagy - 2 (1 - 2SSO (2 UL B IO00) gty o)
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D.4. Proof of Theorem 8

. 1 s Vs
Letn < 11[11n{4Lf+24L/n7 SN AW T } Then we have
7 2
16Ln < g 288(1 — 6)LfL77 < 1 and 288(1 —0)LyLn < 1
n 3 02 9’ 1) 9
Hence, from Theorem 6, we have
k+1 : un 6 p k n k *
< _ il o _ _
E[®;7] < (1 mln{ 3 ,4,2}) E[®3 18E[f(x ) — f(z™)]
k+1 k k—i
. fpn 0 p o N . fpn 8 p i x
< _ Lokl A _ _ [kl _
= (1 mln{ ) 7472}) 3 18 — (1 mln{ 2 7472}) E[f(x) f(.’L' )]
w6 P\ po 1% pn 5 p L\
< — — =, = - — — mi — -, = *
(1 mln{ 5 ,4,2}) Dy 18 ;:0 (1 mln{ 51’ 2}> E[f(z") (z)]

which implies that

k
1 i x 0 k+1 0
LS, - < @ oht) < 0 Y.

Then, from

k 1- e 5 k1
Wi — Zw' B (I—min{ &1, & B})k+1 1-— (1 —min{#!, ,2})
= ;=

= , (20
Tmin( B0 7} min{#47, §, £}(1 — min{47, §, 5})*

we can obtain

k . F)
1 i " min{’5", 3, 5} 18 o . fum 8
Wk;wiE[f(x)—f(m )] < 5 ';@3 1 — min ERVE

SRk

D
From the definition of ®% and 2 = 0, we have
min{ }1¢‘g
n
. { 2
= min et Sl i
p
My oo * 12 . nd p)|2 1 1 0 *
< B _ [l A Gl - _
< Bl =+ i { 21 42}p(4 L D e - 6]

M * 1
< B =P+ 5160 - fa

I

El k]

SIS
SIS

Ao

Therefore, we can get

Z oy 2’ — 2| +9(f(2°) — f(=*)) NTER
u— < 1 _ pn o p .

”,ki sz f@h)] < 1~ (1 — ming2, g Yo minq 5 5

For z* = T&k Zf:o w;x’, from the convexity of f anf the above inequality, we have

)] < Bl =906 — @) (e 8 p) )
Bl - s < PTG (- {5155 )
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If we choose 7 = min { 4Lf+124L/n, 51\/“56)”? 51\/(1g)LfL }, then in order to guarantee E[f (z*) — f(z*)] <

k+1
. fpn b
- Lkl <
(1 mln{ 21 }) <

BIF() ~ F(a)] < 38 (ull — "+ £(a") = £@) (1= min {52, 5.
£@). Bl @) - £ <

€, we first let

[VIRS]
M\»ﬁ

which implies that

o3

-

Hence, when € < 9 (p||1;0 —z*|)? + f(2°) —
)

1 Hn oo

( mm{ 501

! In (18 (ulla® — a2 + £ (=°) - f(w*)))
) |

_ _ un 8 p
In(1 — min { &7, ¢, 2 €

€ as long as

1\3\’6

k
}> S B — P+ @) — f@)

which is equivalen to

Since —In(1 — z) > x for z € [0, 1), we have E[f(Z f(xz")] < easlongas

b -
k>o<(§+;+ VO—L,L , JT-0LL *L/ﬁL> 1n<18 (ulwo—w*|2+f(fv°)—f(x*))>>‘

0 NZ) npy €

D.5. Proof of Theorem 9

. 1 Vnd Vnd
Letn < min { iL;+32L/n’ 84\/71:,«’ 138\/(1=6)Ls L’ 118,/(1-0)L s L } Then we have

g o
288(1 — 0)Lyn* 2Ly L 288(1 — &)L 1> UL _ 1 28801 -0y’ 8L 1 161y 1
1 1) 12’ 1 n — 6 1) ndé — 6 n - 2
Therefore, from Theorem 7, we have
Byt < (1-min {40 521 Bl - LRl - 16
pn 8 p by a pn 5 p\\*
< . Jpn o p n - pn o p i *
< (1 mm{ n2 2}) 5 (1 mm{ ’ ,4,2}) E[f (') — /("))

A
/N
—
|
£
=
—N
w\t
Ak\c»z
NS
H_/
——
kol
*@4
[N
,,,;d

(1 min {“7" g, g})k_iE[f(a:") — f(z")]

1 0 7 *
= —)- 1N wE - ,
T Ry ?:o: wiE[f(a") - /(")
Then same as the proof of Theorem 8, we have

i o 12p)|2° — 27| + 12(f(2°) — f(z7)) i d 40 0
E[f(z") — f(z")] < 1— (1— min{2, % Bkt (1_mm{771’

[VIRS]

)
\V/né =ky *
4Lf+32L/n7 84\/7Lf7 138\/(1 S)LyL’ 1184/(1-8)LsL },then E[f@") - fa")] <e

with € < 12 (pflz® — 2*[|* + f(2°) — f(2*)) as long as

1.1 JO=-9L; JOU=8L;L /(U -0)LsL Ly L
k20<<5+p+ 5 st s +u+nu)

In (24 (ulla® = a2 + £(a°) - f(x*))))

—

3

and if we choose = min

€
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which is equivalent to

>0 <<§+;+W+LJ«+L> N (24 (ulla® — 2> + £ (a”) —f(x*)))) |

n nu €

3|t

since = < Ly, and

2

(L=0)LsL _ VT=3L; , VI=3L _VI=3L; L
né - ) n - ) n’
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