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Abstract

Non-negative matrix factorization (NMF) [22] is a popular unsupervised learning approach that
allows to obtain part-based representations of non-negative data samples and provide soft-clustering
assignments for them. The optimization problem behind NMF is often solved using multiplicative
update rules (MUR) that are known to exhibit several flaws related to their convergence and the
uniqueness of the obtained solutions. In this paper, we provide a novel theoretical analysis of
this optimization procedure by showing its equivalence to a time inhomogeneous Markov chain.
This equivalence allows us to (1) derive sufficient conditions required for convergence to a non-
negative solution regardless the initialization to take place and (2) to characterize the speed of this
convergence. In general, we argue that the established results are negative and lead to an incentive
of solving NMF with optimization strategies other than MUR.

1. Introduction

Non-negative matrix factorization (NMF) [22] is a popular learning method that is widely applied
in many real-world applications such as times series analysis [26], clustering [31], topic modeling
[24], recommender systems [2] and music analysis [9] due to its capacity of providing meaningful
non-negative part-based data representations. Despite its widespread use, NMF represents a non-
convex optimization problem with several major drawbacks. First, the factorization obtained by
NMF is not unique in general so that one may obtain an alternative matrix decomposition for the
same data matrix. This issue was studied in several theoretical contributions showing how one can
ensure a uniqueness of the factorization through data preprocessing [5, 11, 18, 21], by imposing
priors on the obtained matrices or by adding suitable regularization terms to the objective function
[17, 19]. Second, several studies showed that multiplicative update rules (MUR) introduced in [22]
for optimizing the NMF objective function may fail to converge to a local minimum [12] or even
to a stationary point [23]. Despite these findings, there were no theoretical studies that analyzed
analytically the convergence properties of the original MUR. Instead, a common solution adopted by
many authors to ensure the convergence was to replace them with a more computationally expensive
projected gradient and non-negative least-squares approaches [8].

In this paper, we provide several negative results for MUR within a standard NMF model. First,
we prove that MUR is equivalent to a finite space time inhomogeneous Markov chain and show that
this equivalence is not bijective in general. This latter presents a generalization of a traditional finite
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space Markov chain where transition matrices describing the probability of moving from one state to
another are allowed to vary over time. We argue that it explains the convergence of MUR to distinct
solutions for the same data matrix. Second, we derive sufficient conditions required for MUR
to admit the same non-negative convergence point for any initialization and show that satisfying
them requires solving a very difficult algebraic problem. Finally, we characterize the speed of the
convergence and show that it depends on the spectral properties of the matrices involved in the
optimization procedure. To the best of our knowledge, our results are the first of their kind both in
terms of the used approach and the guarantees that they provide.

2. Preliminary knowledge

Non-negative matrix factorization A standard NMF [22] is represented as the following opti-
mization problem:

in J(W,H)= min [|X-WH]|7. 1
Whin J(W, H) = min | I M
Multiplicative update rules (MUR) used to optimize J (W, H) were first introduced in [22] and can
be summarized by the following iterative procedure:

XHT

(i+1) _ W) o XH
W =W WonaT

2
where for the sake of simplicity we omit the superscripts () for H and W when they are fixed
in (2) and o and — denote entrywise multiplication (also called Hadamard product) and division,
respectively. MUR given in (2) are guaranteed to not increase the objective function in [22] and, due
to their simplicity, are widely used in the NMF community [20, 27, 28]. As mentioned in [8], the
popularity of NMF with MUR remains quite high despite several empirical results showing that the
sequence {W(i), H®) }72,, generated by (2) may fail to converge to a local minimum [12] or even a
stationary point [23].

Markov chains A Markov chain [25] is defined by a countable set of states S = {s1, s2,...,Sc}
and a conditional probability distribution (CPD) P(S;|S;_1) representing the probability of transi-
tioning to a state Sy € S given the previous state S;_; € S. This CPD is summarized in the form
of a non-negative row stochastic transition matrix {P(S;, S;)}{ ;_; = P(S;|5;) that can be used to
generate a sequence of stochastic vectors {x; };";1 (>, xé =1,y xé- > 0) starting from some
Xg as follows:

x; = xoP?, 3)

tth

where P? denotes the t™ power of P. We further give the following definitions.

Definition 1 A distribution 7 supported on S is called a stationary (also called invariant) distri-
bution of a Markov chain with a transition matrix P if /P = 7.

Definition 2 A Markov chain is irreducible if for all states S;,S; € S, there exists at > 0 such
that P*(S;, Sj) > 0.
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Definition 3 Ler 7(S;) = {t > 1 : PY(S;,S;) > 0} be the set of all time steps for which a
Markov chain can start and end in a state S;. An irreducible Markov chain is aperiodic if the
greatest common divisor (gcd) of T(S;) is 1,VS; € S.

With these definitions, we now recall the convergence theorem for Markov chains [4, Theorem 1.9].

Theorem 4 If the Markov chain is irreducible and aperiodic, then there is a unique stationary
distribution 7. In this case, Pt converges to 7 as follows, lim;_,o, P* = 1.

The time homogeneous Markov chain introduced above can be also extended to a time inhomoge-
neous case where the transition matrix changes at each step. In this case, (3) becomes:

t
Xi = X0 H P;, with Xit1 = x;P;. @
=1

In what follows, we denote by P(*:*') the transition matrix between steps ¢ and ¢’ (t < t),ie.,
ptY) = H?:_tl P;. In this situation, each of the transition matrices P; can be characterized indi-
vidually in terms of reducibility and periodicity and has its own stationary distribution. The conver-
gence of time inhomogeneous Markov chains was studied in several works [13, 29] where different
assumptions regarding the properties of transition matrices were made. In this paper, we use the
result from [29, Theorem 3.3] that links the convergence of inhomogeneous Markov chains to the
spectra of the transition matrices and the general convergence theorem of [13] given below.

Theorem 5 Let {P;}°, be a sequence of Markov transition matrices on S admitting ™ as an
invariant distribution. For each i, let 0;(P;),j = 0,...,|S| — 1, be the singular values of P;
ordered in the decreasing order. Then, we have

L lim [[Pil,-) =7 =0, 2. |[[Pil,) =72 < (m(x) — 1)2 [[oPy)
i=1 =1

t—00 -
=1

where H§:1 P;(1,-) denotes the I line of the product of matrices P;.

When different transition matrices are not required to have the same stationary distribution, we can
use the following more general result from [13].

Theorem 6 Let {P;}°, be a sequence of Markov transition matrices on S admitting for all i, m;
as an invariant distribution. Assume thaty .o ||m; — miy1]| < 0o and that there exists ng < ni <
na..., such that 332 (1 — §(Pmk+1)) = oo with §(P) = sup; jes [[P(4,:) — P(j,-)[| . Then,
for m* = zlggo m; the following holds

Vt, lim sup HP(t’t,)(l, =7 =0.

t'—00 1§

Markov chains, both time homogeneous and inhomogeneous, have found their application in a wide
variety of scientific fields including the modelling of complex processes in computer science (e.g.,
information retrieval and speech recognition), statistics and physics and thus present a topic of
ongoing interest for research community.

We now proceed to the presentation of our main results.
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3. Key results

Our plan of attack for analyzing NMF with MUR is to prove that the sequence of matrices that they
generate can be equivalently obtained by moving along at least one time inhomogeneous Markov
chain. This equivalence is further used to apply several results from the Markov chains’ theory
to obtain the convergence guarantees as well as the conditions when MUR converge to the same
solution regardless the initialization.

The similarity between MUR given in Equation (2) and Equation (4) characterizing a Markov
chain naturally raises a question on whether one can be shown to be equivalent to the other. In order
to answer to this question, we first introduce the definition of the Soules matrices and Soules basis
matrices [30] used in the proof of our equivalence result.

Definition 7 An orthogonal matrix U with non-negative first column is called a Soules basis matrix
and P is called a Soules matrix if for every diagonal matrix D = diag(\1, 2, ..., \,) where
AL > Ay > >\, >0, the matrix P = UDUT s non-negative.

The construction of Soules basis matrices U was presented in [30] in order to solve the non-negative
inverse eigenvalue problem (NIEP) [6] that consists in finding a matrix P with the desired spectrum
given by Ay > A9 > --- > X\, > 0. We further call two matrices P and S similar if there exists
an invertible matrix D such that S = D~'PD and note that similar matrices have the same list of
eigenvalues and that their eigenvectors are related through D. As the stationary distribution of the
Markov chain is given by the dominant left eigenvector of the transition matrix, the similarity rela-
tionship allows us to use similar matrices as transition matrices interchangeably. We now formalize
the link between MUR and Markov chains through the following theorem'.

Theorem 8 Consider the NMF problem given in (1) and MUR updates given in (2). Let {P;}° be
Soules matrices with eigenvalues given by vec (XHT / W(i)HHT) and let S; be a row stochastic
matrix similar to P;,Vi. Then, matrices {W(i)}iﬁo can be (up to a scaling factor) generated by
a time inhomogeneous Markov chain with a finite state space of cardinality mk and transition
matrices {S;}5°.

Theorem 8 establishes that the factors generated using MUR can be equivalently obtained by a
time inhomogeneous Markov chain with a finite state space of cardinality mk. The states of this
Markov chain correspond to the product VeC(W(i))UT implying that the elements of matrix W;
at each iteration can be retrieved via a simple multiplication by matrix U and reshaping of the
obtained vector to the desired size. Note that there may exist more than one Markov chain with
such properties implying that the proved equivalence is not bijective in general. This statement
follows from the results on the NIEP that we use in a proof in order to construct matrices {P;}2°;.
Indeed, it is easy to see that the solution of the NIEP may not be unique, once it exists, since
there are mk given eigenvalues with respect to # unknown variables constituting each matrix
P;. Furthermore, matrices {P;}5°, with the required spectrum can be potentially obtained using
any other Soules basis matrix U’ # U. As we argue above, constructing different such matrices
may potentially lead to different Markov chains with transition matrices having different spectral
properties (see Supplementary for an example)). Theorem 8 allows us to analyze MUR as a time

inhomogeneous Markov chain so that we can now establish the conditions that one has to fulfill in

1. We provide all proofs in the Supplementary material and analyze here only the update rules for matrix W as the same
reasoning applies to matrix H as well.
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order to expect MUR to converge to the same solution regardless the initialization where the same
solution is unique up to a permutation and rescaling.

Theorem 9 Under the assumptions of Theorem 8, assume that ||U|| < M for some M < +oc and
that Vi, S; is irreducible, aperiodic and satisfies the strong ergodicity conditions of Theorem 6. Let
P be the space of all Soules matrices with eigenvalues given by vec (XHT / W(i)HHT), ie.,

XHT
WEOHHT

Then, MUR converge to the same non-negative solution regardless the initial initialization when one
of the following conditions are verified:

1. Yi,|PW| = 1;

pl) — (Pe RTkxmk : P = Updiag <vec < )) Ugfor some Up}.

2. Vi and VP, P’ € P, transition matrices S,S' similar to P, P’ have the same stationary
distribution.

The second assumption is very difficult to satisfy in practice for two reasons. First, restricting the
space of all diagonalizable non-negative matrices to only one element for a given set of eigenvalues
cannot be achieved without introducing structural constraints on the matrix P;. Indeed, to the best
of our knowledge, the only variation of NIEP problem that was proved to admit a unique solution
is that related to realizing a set of eigenvalues with an anti-bidiagonal or tridiagonal Jacobi matrices
[16, Theorem 1]. This, in some sense, is in line with those algorithmic contributions on NMF where
uniqueness of the factorization is achieved by enforcing sparsity, minimum polytope volume or
orthogonality constraints on factor matrices (see [11, Section 1.2] for more details).

In practice, however, we are often interested in understanding on what particular properties of
the data sample or on what initialization the speed of the convergence established in Theorem 9
depends. To this end, we provide below a corollary that quantifies the speed of convergence of
MUR in a data-dependent way.

Corollary 10 Let {S®"} be as in Theorem 8 where for each i, we let 01(S;) to be the second
largest singular value of S;. If ||U|| < M for some 0 < M < +o00 and 3Ir* : Vi, 7*S; = 7* then,
Vi € [1,...,mk], we have

ITISiG:) = 7"ll2 < (w*(5) = 1)
=1

[SIES
=
2
»

In a nutshell, this result reveals a surprising dependence of the convergence of MUR on the product
of the second largest singular values of matrices S; (and to that of P; due to the similarity). It is
worth noting that the dependence of the convergence rate of an optimization scheme on the second
largest eigenvalue of an involved quantity was also established, for instance, for genetic [10] and
Google PageRank algorithms [15] but, to the best of our knowledge, no such results were proved
for NMF problem before (see Supplementary material for an illustration on several datasets). We
conclude this section by noting that the established equivalence between MUR and NMF in this
case provides us with the first result of its kind, as the convergence rate of MUR was only studied
previously in a very restrictive setting of supervised factorization in [1]. This, in its turn, shows
the versatility and the complementarity of our approach to analyzing the NMF problem with this
particular optimization scheme.



NMF MEETS TIME-INHOMOGENEOUS MARKOV CHAINS

References

[1] Roland Badeau, Nancy Bertin, and Emmanuel Vincent. Stability analysis of multiplicative up-
date algorithms for non-negative matrix factorization. In International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2011.

[2] Yang Bao, Hui Fang, and Jie Zhang. Topicmf: Simultaneously exploiting ratings and reviews
for recommendation. In AAAI, pages 2-8, 2014.

[3] C. Boutsidis and E. Gallopoulos. Svd based initialization: A head start for nonnegative matrix
factorization. Pattern Recogn., 41(4):1350-1362, 2008. ISSN 0031-3203.

[4] Joseph T. Chang. Stochastic Processes. https://iid.yale.edu/sites/default/
files/files/chang—notes.pdf, 2007. Online; accessed November 4, 2020.

[5] David Donoho and Victoria Stodden. When does NMF give a correct decomposition into
parts? In NIPS, pages 1141-1148, 2004.

[6] Patricia D Egleston, Terry D Lenker, and Sivaram K Narayan. The nonnegative inverse eigen-
value problem. Linear Algebra and its Applications, 379:475 — 490, 2004.

[7] L. Elsner, R. Nabben, and M. Neumann. On single and double soules matrices. Linear Algebra
Appl., 271:323-343, 1998.

[8] Igor Fedorov, Alican Nalci, Ritwik Giri, Bhaskar D. Rao, Truong Q. Nguyen, and Harinath
Garudadri. A unified framework for sparse non-negative least squares using multiplicative
updates and the NMF problem. Signal Processing, 146:79-91, 2018.

[9] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. NMF with the itakura-saito divergence:
With application to music analysis. Neural Computation, 21(3):793-830, 2009.

[10] Steven T. Garren and Richard L. Smith. Estimating the second largest eigenvalue of a markov
transition matrix. Bernoulli, 6(2):215-242, 2000.

[11] Nicolas Gillis. Sparse and unique NMF through data preprocessing. J. Mach. Learn. Res., 13
(1):3349-3386, 2012.

[12] Edward F. Gonzalez and Yin Zhang. Accelerating the lee-seung algorithm for NMF. Technical
report, Rice University, 2005.

[13] J. Hajnal and M. S. Bartlett. The ergodic properties of non-homogeneous finite Markov chains.
Mathematical Proceedings of the Cambridge Philosophical Society, 52(1):67-77, 1956.

[14] D.J. Hartfiel and J. W. Spellmann. Diagonal similarity of irreducible matrices to row stochastic
matrices. Pacific J. Math., 40(1):97-99, 1972.

[15] Taher H. Haveliwala, Sepandar D. Kamvar, and Ar D. Kamvar. The second eigenvalue of the
google matrix, 2003.

[16] Olga Holtz. The inverse eigenvalue problem for symmetric anti-bidiagonal matrices. Linear
Algebra and its Applications, 408:268-274, 2005.


https://iid.yale.edu/sites/default/files/files/chang-notes.pdf
https://iid.yale.edu/sites/default/files/files/chang-notes.pdf

NMF MEETS TIME-INHOMOGENEOUS MARKOV CHAINS

[17] Patrik O. Hoyer and Peter Dayan. NMF with sparseness constraints. J. Mach. Learn. Res., 5:
1457-1469, 2004.

[18] Kejun Huang, Student Member, Nicholas D. Sidiropoulos, and Ananthram Swami. NMF revis-
ited: Uniqueness and algorithm for symmetric decomposition. I[EEE Trans. Signal Processing,
pages 211-224,2014.

[19] Hyunsoo Kim and Haesun Park. Sparse NMF via alternating non-negativity-constrained least
squares for microarray data analysis. Bioinformatics, 23(12):1495-1502, 2007.

[20] Minje Kim and Paris Smaragdis. Mixtures of local dictionaries for unsupervised speech en-
hancement. IEEE Signal Process. Lett., 22(3):288-292, 2015.

[21] Hans Laurberg, Mads Gresbgll Christensen, Mark D. Plumbley, Lars Kai Hansen, and
Sgren Holdt Jensen. Theorems on positive data: On the uniqueness of NMF. Comp. Int.
and Neurosc., 2008.

[22] D.D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401:788=791, 1999.

[23] Chih-Jen Lin. Projected gradient methods for NMF. Neural Comput., 19(10):2756-2779,
2007.

[24] Minnan Luo, Feiping Nie, Xiaojun Chang, Yi Yang, Alexander G. Hauptmann, and Qinghua
Zheng. Probabilistic NMF and its robust extensions for topic modeling. In AAAI, pages 2308—
2314, 2017.

[25] A. Markov. Extension of the Limit Theorems of Probability Theory to a Sum of Variables
Connected in a Chain. In Dynamic Probabilistic Systems (Volume 1: Markov Models), pages
552-577. John Wiley & Sons, Inc., 1971.

[26] Jiali Mei, Yohann de Castro, Yannig Goude, and Georges Hébrail. NMF for time series recov-
ery from a few temporal aggregates. In /ICML, volume 70, pages 2382-2390, 2017.

[27] Lopamudra Mukherjee, Sathya N. Ravi, Vamsi K. Ithapu, Tyler Holmes, and Vikas Singh. An
NMF perspective on binary hashing. In /CCV, pages 4184—-4192, 2015.

[28] Jonathan Le Roux, John R. Hershey, and Felix Weninger. Deep NMF for speech separation.
In ICASSP, pages 6670, 2015.

[29] L. Saloff-Coste and J. Ziniga. Convergence of some time inhomogeneous Markov chains via
spectral techniques. Stochastic Processes and their Applications, 117(8):961-979, 2007.

[30] G.W. Soules. Constructing symmetric nonnegative matrices. Linear and Multilinear Algebra,
13:241-251, 1983.

[31] De Wang, Feiping Nie, and Heng Huang. Fast robust NMF for large-scale human action data
clustering. In IJCAI, pages 2104-2110, 2016.



NMF MEETS TIME-INHOMOGENEOUS MARKOV CHAINS

Supplementary material
Proof of Theorem 4

Proof Let us first consider Equation (2) and rewrite it using the relationship between the Hadamard
product and the vectorization operation as follows:

T
Wit — w o L _
WO HHT

. , XHT

(+1)) _ (9 I
vec (W ) = vec (W ) o vec (W(i)HHT> =

. . XHT

(1)) — ORWT A
vec <W ) vec (W ) diag (VCC (W (i)HHT>> , 3)

where diag(x) stands for a diagonal matrix whose diagonal elements are given by the elements of
vector x and the row vector vec (A ) denotes the vectorization of matrix A.

Let us now sort the values of vec <W()S)LHTHT) using a sorting operator s : R™* — R™* 5o that
XHT S XHT
T\ \womnr )) = =0\ woraT
foralli =1,...,mk — 1. As all elements of vec (W()S)LHTHT> are non-negative by construction, we

can build a Soules matrix P; having the following eigendecomposition

: XH" T
Pi = Udlag (5 <VCC (W_(Z)I_II_IT>>> U y

: XH" T
dlag <5 <VCC <“7(Z)I_II_IT>>> =U PZU,

where U is a Soules basis matrix. Note that we construct Soules matrices P; using the same Soules
basis matrix U for all ¢ as this latter can be used for any list of non-negative eigenvalues. Using
the properties of the eigendecomposition, we can further reestablish the initial order of the values
given in vec (XHT / W(i)HHT) by applying the inverse of s to s (Vec (XHTW(i)HHT)) and
by permuting the eigenvectors of U and U7 accordingly. In what follows, we denote by P; a
symmetric matrix constructed in this way for an unsorted list of eigenvalues. We can now rewrite
(5) in the following form

so that

vec (W(”l)) = vec (W(i)> UTPZ-U
implying
vec <W(i+1)) U7 = vec (W(i)> UTPi. (6)

Finally, denoting vec(W(i))UT by p; allows us to express Equation (6) as p;+1 = p;P; which
in its turn implies

n
Hon = [0 HPz‘-
i=1
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At this point we note that having Vi, U; = U is not a simplification but a mandatory condition to
fulfill as otherwise p;11 = p;P; would imply U; = U; ;1 = I and in this case matrix P; would be
diagonal which presents little interest for our purpose. Without loss of generality, we now assume
that vector p lies in the probability simplex and that each P; is normalized to be row stochastic via
a similarity transformation. Note that while the effect of scaling by a constant ) _ 10 is negligible,
the normalization of P; requires some extra care. To this end, we use the result from [14] showing
that each non-negative matrix is similar to a row-stochastic matrix up to a constant factor r, i.e.,
3 a diagonal matrix D : DP,D~! = rS,. As before, we omit the constant factor r and note that
the similarity relation ensures that P; and S; have the same eigenvalues and that their eigenvectors
are tied through the diagonal scaling D. The obtained construction is then a time inhomogeneous
Markov chain characterized by transition matrices {S;}3°,. This completes the proof. |

Example of Soules matrices leading to different transition matrices

W,

W,

H;

Figure 1: Illustration of 3 different solutions obtained using MUR with random initializations of W and H.
Here different degrees of gray correspond to numbers between O (white) and 5 (dark blue). The true numerical
values for all matrices and the code to reproduce the experiment are given as part of the Supplementary
material.

Let us consider the factorization of X from Figure 1 and show two different Soules basis ma-
trices U and U’ that can be build at the first iteration of MUR leading to two different transition
matrices P and P’. To this end, the first matrix given in Figure 2 (upper row, left) represents the
Soules basis matrix constructed using the original approach of [30], while the second one (Figure
2 (upper row, middle left)) is build using a rooted binary tree splitting method proposed in [7]. We
note that the two matrices have a very different structure and lead to different transition matrices
P and P’ as shown in Figure 2 (upper row, middle right) and (upper row, right). Moreover, the
dominant left eigenvectors of these transition matrices (calculated after normalizing them to be row
stochastic) are clearly different as shown in Figure 2 (bottom row). While with more iterations the
two may eventually converge to the same stationary distribution, this example shows that it may as
well not be the case in general.

Proof of Theorem 5

Proof From Theorem 4, we know that the state space of a Markov chain generating NMF factors
obtained with MUR is given by a sequence {vec(W())U”'}9° . This latter represents a product of
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i [,
e (.

Figure 2: (Top row) Illustration of two Soules basis matrices U, U’ and their corresponding Soules matrices
P, P’; (Bottom row) Stationary distributions 7 and 7’ (transposed for the sake of visibility) calculated as
dominant left eigenvectors of P, P’ normalized to be row stochastic, respectively. The code to reproduce this
figure is given in the Supplementary material.

P’

U

a sequence multiplied by a constant matrix U” so that its convergence implies the convergence of
the sequence of interest { W)} when U7 is bounded by some positive constant M > 0. Once
verified, this condition allows us to analyze the convergence of the corresponding Markov chain and
be sure that it implies the convergence of {W ()1 as well. As for the convergence to the same
solution for different initializations, we analyze two different cases given below.

Case 1.If Vi, | P()| = 1 then 3! Soules matrix P; with eigenvalues given by vec (XHT/ W(i)HHT)
that can be used to construct a similar row-stochastic matrix S;. This implies that there exists ex-
actly one time-inhomogeneous Markov chain that generates factors identical to those obtained by
MUR. In this case, the solution of the NIEP problem used to construct matrices P; is also unique
and we only need to ensure that all matrices S; similar to P; satisfy the conditions of Theorem 3
and its respective hypotheses to obtain the desired convergence guarantee. It should be noted that,
in general, one can always take an arbitrary permutation matrix B to obtain a rearranged matrix
BPB having the same eigenvalues as P. However, here we require the existence of a unique such
matrix for a sorted list of eigenvalues as usually done in NIEP problems.

Case 2. Using the property of the transition matrix of the Markov chain, we note that Vi, m;S; =
m; so that 7; is the left eigenvector corresponding to the largest eigenvalue, i.e., the maximum over
all elements of vector vec (XHT / W(i)HHT). If for any two distinct matrices P,P’ ¢ P®),
transition matrices S, S’ similar to P, P’ are such that

/
aS=m 7S =randr=1"=m

then any matrix P € P(®) can be picked at iteration 7 to construct the transition matrix S; of the
desired Markov chain. Enforcing the conditions from Theorem 3 on these matrices gives the final

result. =
Proof of Corollary 6
Proof The proof follows from Theorem 5 and Theorem 8. |

10
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Experimental study

Apart from providing important insights regarding the behaviour of NMF with MUR, our theoretical
results also suggest a practical way of comparing different initialization strategies proposed in the
literature on NMF problem and their impact on the convergence speed based on Theorem 10. To this
end, we consider a popular NNDSVD initialization method proposed in [3] and the pre-processing
proposed in [11] that are both known for improving the convergence speed. We compare these
methods to a baseline given by the random initialization of the NMF factors in two different settings
where in one setting we factorize a matrix that provably admits a unique factorization, while in the
other we factorize a randomly generated matrix constructed as a mixture of 5 Gaussian distributions
representing the clusters. The goal of the comparison is two-fold: first, we want to verify whether the
result provided in Theorem 10 is confirmed by our observations regarding the speed of convergence
of different methods in practice; second, we want to assess the correlation between the quality of
the factorization when measured by the reconstruction error for different initialization techniques as
well as their ability to reach the global optimum when the corresponding NMF problem admits this
latter.

Unique factorization In this setting, we consider a data matrix constructed using the following
factors H and W

H:

o~ Q9

1 1 «
a 0 0
0 a 1

for some o € (0,1). The data matrix X = WH constructed in such way was shown to have a
unique non-negative factorization for £ = 3 in [21] when a@ = {0.1,0.3}. Thus, we set a = 0.3
and run the considered baselines on X in order to see whether the different initialization techniques
allow to recover the optimal factorization or whether they tend to sacrifice quality for speed by
leading to a worse solution in fewer iterations.

Mixture of Gaussian distributions In this setting, we run the NMF with MUR on a data matrix
having 20000 and 200 instances? for NNDSVD and Gillis’ pre-processing, respectively and vary
the dimensions d of this latter from 10 to 100. The data is generated as a mixture of 5 isotropic
Gaussian distributions centered in the hypercube defined over the interval [10,20] with variance
I,; along all dimensions. Note that in this case, contrary to the setting considered above, the data
matrix is not guaranteed to admit a unique factorization and thus random initialization can lead to
potentially very different obtained factors.

Results The results of this comparison presenting the evolution of the product of second largest
singular values of the transition matrices obtained at each iteration and the corresponding recon-
struction error for both cases are given in Figures 3 and 4. From these figures, we observe that
both non-random initialization techniques have a faster convergence rate in all cases considered as
confirmed by both the product of their second largest singular values of the transition matrix and
by the obtained reconstruction error that tends to stop decreasing earlier than in case of random
initialization. This latter, however, appears to have a very different behaviour depending on the
existence of a unique factorization and the pre-processing used to improve the convergence. In-
deed, we see that for a data matrix admitting a unique factorization both pre-processing techniques

2. We restrict our study to a matrix of a smaller size in the second case due to a prohibitively high computational
complexity of Gillis” method scaling as O(n*-?).
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converge quickly but to a solution of a lower quality that has a high reconstruction error. This is
rather surprising as random initialization in this case recovers the optimal solution leading to an
almost perfect factorization. Such a behaviour can be explained by the fact that both pre-processing
techniques tend to provide a starting point close to a local minimum so that the algorithm struggles
then to escape it and converge to a higher quality global minimum. As for the second scenario, we
see that both methods once again converge much quicker than the random initialization with Gillis’
pre-processing once again leading to a higher reconstruction error. In this case, such a behaviour is
explained by a high sparsity of the factors obtained via Gillis’ pre-processing and was also observed
in the original paper [11, Table 2]. To summarize, we conclude by saying that the established link
between the Markov chains and MUR scheme can be efficiently used in practice in order to analyze
and compare different initialization strategies as in all cases it reflects correctly the convergence rate
of each of them. As for the reconstruction error, we note that the effect of pre-processing leading
to a unique factorization does not necessarily imply that this latter recovers the optimal solution but
merely a solution to which one can converge reasonably quickly without much variance among the
different runs.

Reconstruction error Singular values Reconstruction error Singular values
0.5 —— NNDSVD 10 —— NNDSVD 0225 —— NNDSVD 1.0 —— NNDSVD
—— Random —— Random —— Random —— Random
04 08 0.200 08
0.175
0.6
03 0.150 0.6
0.2 0.4 0.125 04
0.100
0.1 0.2
0.075 02
0.0 0.0 0.050 00
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iterations Iterations Iterations Iterations

Figure 3: Results obtained with NNDSVD compared to random initialization: (left) reconstruction error and
(middle left) product of second singular values of the transition matrices on the data admitting a unique fac-
torization; (middle right) reconstruction error and (right) product of second singular values of the transition

matrices on the mixture of 5 isotropic Gaussian distributions with n = 20000, &k = 5 and d € {10,...,100}.
Reconstruction error Singular values 0.250 Reconstruction error Singular values
0.5 10 —— Unique ’ —— Unique 10 —— Unique
—— Random 0.225 —— Random —— Random
0.4 0.8 0.200 0.8
0.3 —— Unique 0.6 0.175 0.6
—— Random 0150
02 04 0.125 04
0.1 0.2 0.100 0.2
0.075
0.0 0.0 00
. 0.050
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iterations Iterations Iterations Iterations

Figure 4: Results obtained with Gillis’ pre-processing presented in the same order as above with n = 200 for
the case of the mixture of Gaussian distributions. For both cases, the variance (shaded area) around the mean
curve over varying d is represented only for the case of the mixture of Gaussians as for the unique factorization
all the parameters remain fixed. The code to reproduce the two figures is given in the Supplementary material.
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