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Abstract
We consider1 the task of minimizing the sum of three convex functions, where the first
one F is smooth, the second one is nonsmooth and proximable and the third one is the
composition of a nonsmooth proximable function with a linear operator L. First, we propose
a new primal dual algorithm called PDDY to solve such problem. PDDY can be seen as
an instance of Davis–Yin splitting involving operators which are monotone under a new
metric depending on L. This representation of PDDY eases the non asymptotic analysis of
PDDY: it enables us to prove its sublinear convergence (resp. linear convergence if strong
convexity is involved), even when a variance reduced stochastic gradient of F is used instead
of the full gradient. Moreover, we surprisingly obtain as a special case an algorithm for the
minimization of a strongly convex F under affine constraints Lx = b, linearly converging
without projecting onto the constraints space.

1. Introduction

Many problems in statistics, machine learning or signal processing can be formulated as
high-dimensional convex optimization problems [3, 9, 41, 43, 47, 48]. These optimization
problems typically involve a smooth term F and a nonsmooth regularizationG, and are often
solved using a (variant of) the proximal Stochastic Gradient Descent (SGD) [2]. However,
in many cases, G is not proximable, i.e., its proximity operator does not admit a closed
form expression.

In particular, structured regularizations [9, 17] like the total variation regularization over
a graph [7, 14, 21, 51] or the overlapping group lasso [3] are known to have an expensive
proximity operator [45]. Another example is the case of affine constraints on the optimiza-
tion problem. This corresponds to G being an indicator function and the proximity operator
of G being the projection onto the constraints space. This projection requires the resolu-
tion of a high-dimensional linear system [4] often intractable. The context of decentralized
optimization [16, 52], in which a network of computing agents aims at jointly minimizing
an objective function by performing local computations and exchanging information along
the edges, is a particular case of the context of linearly constrained optimization. In this
particular case, projecting onto the constraints space is equivalent to averaging across the
network, which is prohibited. Finally, when G is a sum of several regularizers, G is not

1. This paper is a short version of [46]
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proximable even if the regularizers are proximable, because the proximity operator is not
linear.

Although in these examples G is not proximable, G takes the form G = R+H ◦L where
R,H are proximable and L is a linear operator2. Therefore, we study the problem

Problem (1) : minimize
x∈X

F (x) +R(x) +H(Lx), (1)

where X is a real Hilbert space, F is a smooth convex function, R,H are nonsmooth convex
functions and L is a linear operator.

Related works. Splitting algorithms: Algorithms allowing to minimize a function in-
volving several nonsmooth proximable terms are called splitting algorithms. At the core
of splitting algorithms is the Douglas-Rachford (or ADMM) algorithm [22, 36] which is,
under reasonable assumptions, the only splitting algorithm that can minimize the sum of
two nonsmooth functions R +H [44]. To minimize G = R +H ◦ L, the Douglas-Rachford
algorithm can be generalized to the Primal Dual Hybrid Gradient (PDHG) algorithm, also
called Chambolle-Pock algorithm [8]. Behind the success of PDHG is the ability to handle
such a composite function G and hence the regularizations mentioned above. However, in
signal processing and machine learning applications, the objective function usually involves
a smooth data fitting term F . In order to cover these applications, splitting algorithms
like Condat–Vũ [13, 50] and PD3O [53] were proposed to solve the Problem (1). These
algorithms are primal dual in nature, i.e., their iterates take the form (xk, yk) ∈ X × Y,
where Y is another real Hilbert space, xk converges to a solution of Problem (1) and yk

converges to a solution of a dual of Problem (1).
Stochastic splitting algorithms: In machine learning applications, the gradient of F is

often intractable and replaced by a cheaper stochastic gradient. These stochastic gradients
can be classified in two classes: variance reduced (VR) stochastic gradients [19, 20, 23, 29]
and generic stochastic gradients, see e.g. [33, 39]. VR stochastic gradients are stochastic
gradient estimators of the full gradient that ensure convergence to an exact solution, as for
deterministic algorithms. The variance reduction enables to speedup stochastic algorithms
and eventually recover the convergence rates of their deterministic counterparts. In the case
where L = I, Problem (1) was considered with generic stochastic gradients in [54] and with
VR stochastic gradients in [42]. In the general case L 6= I that is of interest in this paper,
the resolution of (1) was considered with a generic stochastic gradient in [5, 55].

Contributions and technical challenges. In this paper we consider the resolution of
Problem (1) with VR stochastic gradients, which enables for faster convergence compared
to non VR approaches e.g. [55].

More precisely, we propose a new algorithm called Primal–Dual Davis–Yin (PDDY) to
solve (1). This algorithm is obtained as a carefully designed instance of the DYS involving
operators which are monotone under a metric depending on L. This DYS representation
enables us to prove convergence rates for PDDY, a task which would be lengthy and technical
if such a representation was not obtained prior to proving the convergence rates. We analyze
PDDY with a deterministic gradient and with a variance reduced stochastic gradient. Both
settings are cast into a single assumption which can be elegantly plugged into our analysis

2. In these contexts, H ◦L is not proximable as well (the symbol ◦ stands for the composition of functions).

2



Dualize, Split, Randomize

of PDDY, thanks to the flexibility of our framework. In the supplementary material, we
also analyze PD3O [53] with a VR stochastic gradient. Our nonasymptotic results w.r.t
PD3O and PDDY have recently been accelerated in the case of deterministic gradients [16].
Moreover, we show how the PD3O algorithm and the Condat–Vũ algorithms can also be
seen as instances of DYS involving monotone operators. Such representation was not known
for the Condat–Vũ algorithms.

One byproduct of our results is the discovery of one of the first linearly converging
algorithm for the minimization of a smooth strongly convex function under affine con-
straints [37], without projecting onto the constraints space. In the particular case where
a full gradient is used and L∗L is a gossip matrix [52], this algorithm leads to a new de-
centralized algorithm whose complexity competes with optimization algorithms specifically
designed for the decentralized optimization problem, see Table 1 in [52]. Our decentralized
algorithm has recently led to an optimal decentralized algorithm [32].

2. Primal–Dual Formulations and Optimality Conditions

The necessary notions and notations of convex analysis and operator theory are introduced
in the Appendix. Let X and Y be finite-dimensional real Hilbert spaces, L : X → Y be a
linear operator, F,R ∈ Γ0(X ), and H ∈ Γ0(Y). We assume that F is ν-smooth, for some
ν > 0. We assume, as usual, that there exists x? ∈ X such that 0 ∈ ∇F (x?) + ∂R(x?) +
L∗∂H(Lx?). Then x? is solution to (1). Therefore, there exists y? ∈ ∂H(Lx?) ⊂ Y such
that 0 ∈M(x?, y?), where M is the set-valued operator defined by

M(x, y) :=
ï
∇F (x) + ∂R(x) + L∗y
−Lx + ∂H∗(y)

ò
. (2)

Conversely, for every solution to 0 ∈M(x?, y?), x? is a solution to (1) and y? ∈ arg min(F +
R)∗ ◦ (−L∗) +H∗.

Finally, one can check that the operator M defined in (2) is monotone. Moreover, we
have

M(x, y) =
ï
∂R(x)

0

ò
︸ ︷︷ ︸
:=A(x,y)

+
ï

L∗y
−Lx + ∂H∗(y)

ò
︸ ︷︷ ︸

:=B(x,y)

+
ï
∇F (x)

0

ò
︸ ︷︷ ︸

:=C(x,y)

, (3)

and each term at the right hand side of (3) is maximal monotone, see Corollary 25.5 in [4].

3. The proposed PDDY Algorithm

We now set Z := X × Y, where X and Y are the spaces defined in Section 2. Solving the
optimization problem (1) boils down to finding a zero (x?, y?) of the monotone operator M
defined in (2). Since M = A + B + C, where the operator C is cocoercive, a natural idea
is to apply the Davis–Yin splitting (DYS) algorithm [18], shown above. More precisely, if
γ < 2/ν, the iterates (zk, uk, vk) of the algorithm DYS(A,B,C) or DYS(B,A,C) converge
to some fixed point (z?, u?, v?) such that u? = z? and z? is a zero of M .
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Davis–Yin Algorithm DYS(A,B,C) [18]
1: Input: v0 ∈ Z, γ > 0
2: for k = 0, 1, 2, . . . do
3: zk = JγB(vk)
4: uk+1 = JγA(2zk − vk − γC(zk))
5: vk+1 = vk + uk+1 − zk
6: end for

Stochastic PDDY algorithm (proposed)(
deterministic version: gk+1 = ∇F (xk)

)
1: Input: p0 ∈ X , y0 ∈ Y, γ > 0, τ > 0
2: for k = 0, 1, 2, . . . do
3: yk+1 = proxτH∗

(
yk+τL(pk−γL∗yk)

)
4: xk = pk − γL∗yk+1

5: sk+1 = proxγR
(
2xk − pk − γgk+1)

6: pk+1 = pk + sk+1 − xk
7: end for

However, the resolvent of B is often intractable. In this section, we show that precon-
ditioning is the solution; that is, we exhibit a positive definite linear operator P , such that
DYS(P−1A,P−1B,P−1C) and DYS(P−1B,P−1A,P−1C) are tractable.

Let γ > 0 and τ > 0 be real parameters such that γτ‖L‖2 < 1. Consider the positive
definite operator

P :=
ï
I 0
0 γ

τ I − γ
2LL∗

ò
. (4)

Since A, B, C are maximal monotone in Z, P−1A,P−1B,P−1C are maximal monotone
in ZP . Moreover, P−1C is 1/ν-cocoercive in ZP . Importantly, we have:

P−1C : (x, y) 7→
(
∇F (x), 0

)
, JγP−1B : (x, y) 7→

(
proxγR(x), y

)
, (5)

JγP−1A : (x, y) 7→ (x′, y′), where
õ
y′ = proxτH∗

(
y + τL(x− γL∗y)

)
x′ = x− γL∗y′. (6)

If we plug these explicit steps into the Davis–Yin algorithm DYS(P−1A,P−1B,P−1C), we
obtain the PD3O algorithm, see [53]. We propose to plug these explicit steps into the
DYS(P−1B,P−1A,P−1C), and we identify the variables as vk = (pk, qk), zk = (xk, yk),
uk = (sk, dk) and the fixed points as v? = (p?, q?), z? = (x?, y?), u? = (s?, d?). Hence,
s? = x? is a solution of Problem (1) and d? = y? is a solution to the dual problem. After
some simplifications, we obtain the new Primal–Dual Davis–Yin (PDDY) algorithm, shown
above, for Problem (1).

The convergence of PDDY is a consequence of the convergence of DYS(P−1B,P−1A,P−1C)
along with the fact that the zeros of P−1M = P−1A + P−1B + P−1C are the zeros of
M = A+B + C.

Theorem 1 (Convergence of the PDDY Algorithm) Suppose that γ ∈ (0, 2/ν) and
that τγ‖L‖2 < 1. Then the sequences (xk)k∈N and (sk)k∈N (resp. the sequence (qk)k∈N)
generated by the PDDY Algorithm converge to some solution x? to Problem (1) (resp. some
y? ∈ arg min(F +R)∗ ◦ (−L∗) +H∗).

Note that PDDY converges for larger step sizes than the Condat–Vũ algorithms, see [13].
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4. Non-Asymptotic Analysis of the stochastic PDDY algorithm

In the stochastic version of PDDY, the gradient ∇F (xk) is replaced by a stochastic gradient
gk+1. More precisely, we consider a filtered probability space (Ω,F , (Fk)k,P), an (Fk)-
adapted stochastic process (gk)k, we denote by E the mathematical expectation and by Ek
the conditional expectation w.r.t. Fk. The following assumption is made on the process
(gk)k∈N.

Assumption 1 There exist α, β, δ ≥ 0, ρ ∈ (0, 1] and a (Fk)k-adapted stochastic process
denoted by (σk)k, such that, for every k ∈ N, Ek(gk+1) = ∇F (xk), Ek(‖gk+1−∇F (x?)‖2) ≤
2αDF (xk, x?) + βσ2

k , and Ek(σ2
k+1) ≤ (1− ρ)σ2

k + 2δDF (xk, x?).

Assumption 1 is a consequence of the smoothness of F and the choice of the stochastic
gradient estimator, see [23]. Assumption 1 is satisfied by several stochastic gradient es-
timators used in machine learning, including the full gradient, some kinds of coordinate
descent [25], variance reduction [20, 24, 27, 31], and also compressed gradients used to
reduce the communication cost in distributed optimization [28], see Table 1 in [23].

We now analyze the proposed Stochastic PDDY Algorithm, shown above. We obtain
sublinear convergence if M is not strongly monotone (Theorem 2) and linear convergence
if M is strongly monotone (Theorem 3).

Theorem 2 (M monotone) Suppose that Assumption 1 holds. Let κ := β/ρ, γ, τ > 0
be such that γ ≤ 1/2(α+ κδ) and γτ‖L‖2 < 1. Define V 0 := ‖v0 − v?‖2P + γ2κσ2

0, where
v0 = (p0, y0). Then,

E
Ä
DF (x̄k, x?) +DH∗(ȳk+1, y?) +DR(s̄k+1, s?)

ä
≤ V 0

kγ
,

where x̄k = 1
k

∑k−1
j=0 x

j, ȳk+1 = 1
k

∑k
j=1 y

j and s̄k+1 = 1
k

∑k
j=1 s

j.

Theorem 3 (M strongly monotone) Suppose that Assumption 1 holds. Also, suppose
that H is 1/µH∗-smooth, F is µF -strongly convex and R is µR-strongly convex, where µR > 0
and µH∗ > 0. For every κ > β/ρ and every γ, τ > 0 such that γ ≤ 1/(α+ κδ), γτ‖L‖2 < 1
and γ2 ≤ µH∗

‖L‖2µR
, define η := 2

(
µH∗ − γ2‖L‖2µR

)
≥ 0,

V k := (1 + γµR)‖pk − p?‖2 + (1 + τη)‖yk − y?‖2γ,τ + κγ2σ2
k, (7)

and
r := max

Å 1
1 + γµR

, 1− ρ+ β

κ
,

1
1 + τη

ã
(8)

Then,
EV k ≤ rkV 0. (9)

Note that Theorem 3 does not assume R smooth, contrary to its analogue for PD3O, see [53]
or Theorem 9 in the Appendix.

Now, we consider the particular case R ≡ 0 and H : y 7→ (0 if y = b, +∞ else), for some
b ∈ ran(L). In this case, Problem (1) boils down to minx F (x) s.t. Lx = b. Moreover, this
instance of the stochastic PDDY algorithm does not make use of projections onto the affine
space {x ∈ X , Lx = b} (it only makes calls to L and L∗) while converging linearly.
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Theorem 4 Suppose that Assumption 1 holds, that F is µF -strongly convex, for some
µF > 0, and that y0 ∈ ran(L). Let y? be the unique element of ran(L) such that ∇F (x?) +
L∗y? = 0, and ω(L∗L) > 0 be the smallest positive eigenvalue of L∗L. For every κ > β/ρ
and every γ, τ > 0 such that γ ≤ 1/α+ κδ and γτ‖L‖2 < 1, we define

V k := ‖xk − x?‖2 + (1 + τγω(L∗L)) ‖yk − y?‖2γ,τ + κγ2Eσ2
k, (10)

and
r := max

Å
1− γµF , 1− ρ+ β

κ
,

1
1 + τγω(L∗L)

ã
< 1. (11)

Then, for every k ≥ 0,
EV k ≤ rkV 0. (12)

Furthermore, this instance of the stochastic PDDY algorithm can be written using W =
L∗L, c = L∗b and primal variables in X only; this version, called PriLiCoSGD, is shown
in the Appendix. Now, consider that F = 1

M

∑M
m=1 Fm is a finite sum of functions, that

W is a gossip matrix of a network with M nodes [52], and that c = 0. In this case,
PriLiCoSGD is a new decentralized algorithm. Theorem 4 applies and shows that, with the
full gradient, ε-accuracy is reached after O(max(κ, χ) log(1/ε)) iterations, where κ is the
condition number of F and χ = ‖W‖/ω(W ). This complexity is better or equivalent to
the one of recently proposed deterministic decentralized algorithms, like EXTRA, DIGing,
NIDS, NEXT, Harness, Exact Diffusion, see Table 1 of [52], [35, Theorem 1] and [1]. With a
stochastic gradient, the rate of our algorithm is also better than [38, Equation 99]. Finally,
our decentralized algorithm has been accelerated in a recent paper to obtain the first optimal
first-order algorithm for smooth and strongly convex decentralized optimization [32]. Their
main complexity result is based on an extension of Theorem 4.
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Figure 1: Results for the PCA-Lasso experiment. Left: convergence in the objective, middle:
convergence in norm, right: the effect of the stepsizes.
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Figure 2: Results for the MNIST experiment. Left: convergence in the objective, middle:
convergence in norm, right: the effect of the stepsizes.

Appendix A. Experiments

In this section, we present numerical experiments for the PDDY, PD3O and Condat–Vũ
(CV) [13, Algorithm 3.1] algorithms. SGD was always used with a small γ, such as 0.01

ν .
where ν is the smoothness constant of F . For stochastic methods, we used a batch size of 16
for better parallelism, while the sampling type is specified in the figures. The stepsizes were
tuned with log-grid-search for all methods. We used closed-form expressions to compute ν
for all problems and tuned the stepsizes for all methods by running logarithmic grid search
with factor 1.5 over multiples of 1

ν .
We observed that the performances of these algorithms are nearly identical, when the

same stepsizes are used, so we do not provide their direct comparison in the plots. Instead,
we 1) compare different stochastic oracles, 2) illustrate how convergence differs in functional
suboptimality and distances, and 3) show how the stepsizes affect the performance.

PCA-Lasso In a recent work [49, Eq. (12)] the following difficult PCA-based Lasso
problem was introduced: minx 1

2‖Wx − a‖2 + λ‖x‖1 + λ1
∑m
i=1 ‖Lix‖, where W ∈ Rn×p,

a ∈ Rn, λ, λ1 > 0 are given. We generate 10 matrices Li randomly with standard normal
i.i.d. entries, each with 20 rows. W and y are taken from the ’mushrooms’ dataset from the
libSVM package [11]. We chose λ = ν

10n and λ1 = 2ν
nm , where ν, the smoothness of F , is

needed to compensate for the fact that we do not normalize the objective.

MNIST with Overlapping Group Lasso Now we consider the problem where
F is the `2-regularized logistic loss and a group Lasso penalty. Given the data matrix
W ∈ Rn×p and vector of labels a ∈ {0, 1}n, F (x) = 1

n

∑n
i=1 fi(x) + λ

2‖x‖
2 is a finite sum,

12
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Figure 3: Results for the Fused Lasso experiment. Left: convergence with respect to the
objective function, middle: convergence in norm, right: illustration of the effect of the
stepsizes.

fi(x) = −
(
ai log

(
h(w>i x)

)
+ (1− ai) log

(
1− h(w>i x)

))
, where, λ = 2ν

n , wi ∈ Rp is the i-th
row of W and h : t → 1/(1 + e−t) is the sigmoid function. The nonsmooth regularizer,
in turn, is given by λ1

∑m
j=1 ‖x‖Gj , where λ1 = ν

5n , Gj ⊂ {1, . . . , p} is a given subset of
coordinates and ‖x‖Gj is the `2-norm of the corresponding block of x. To apply splitting
methods, we use L = (I>G1

, . . . , I>Gm
)>, where IGj is the operator that takes x ∈ Rp and

returns only the entries from block Gj . Then, we can use H(y) = λ1
∑m
j=1 ‖y‖Gj , which is

separable in y and, thus, proximable. We use the MNIST datasetw [34] of 70000 black and
white 28× 28 images. For each pixel, we add a group of pixels Gj adjacent to it, including
the pixel itself. Since there are some border pixels, groups consist of 3, 4 or 5 coordinates,
and there are 784 penalty terms in total.

Fused Lasso Experiment In the Fused Lasso problem, we are given a feature
matrix W ∈ Rn×p and an output vector a, which define the least-squares smooth objective
F (x) = 1

2‖Wx− a‖2. This function is regularized with λ
2‖x‖

2 and λ1‖Dx‖1, where λ = ν
n ,

λ1 = ν
10n and D ∈ R(p−1)×p has entries Di,i = 1, Di,i+1 = −1, for i = 1, . . . , p − 1,

and Dij = 0 otherwise. We use the ’mushrooms’ dataset from the libSVM package. Our
numerical findings for this problem are very similar to the ones for PCA-Lasso. In particular,
larger values of γ seem to perform significantly better and the value of the objective function
does not oscillate, unlike in the MNIST experiment. The results are shown in Figure 3.
The proposed Stochastic PDDY algorithm with the SAGA estimator performs best in this
setting.

Summary of results We can see from the plots that stochastic updates make the
convergence extremely faster, sometimes even without variance reduction. The stepsize
plots suggest that it is best to keep γτ close to 1

‖L‖2 , while the optimal value of γ might
sometimes be smaller than 1

ν . This is especially clearly seen from the fact that SGD works
sufficiently fast even despite using γ inversely proportional to the number of iterations.

Appendix B. Mathematical Background

We introduce some notions of convex analysis and operator theory, see the textbooks [4, 6]
for more details. In the paper, all Hilbert spaces are supposed of finite dimension.
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B.1. Convex functions

Let Z be a real Hilbert space, with its inner product 〈· , ·〉 and norm ‖ · ‖ = 〈· , ·〉1/2. Let
G : Z → R ∪ {+∞} be a convex function. The domain of G is the convex set dom G =
{z ∈ Z : G(z) 6= +∞}. G is proper if its domain is nonempty and lower semicontinuous
if the convex set {z ∈ Z : G(z) ≤ `} is closed, for every ` ∈ R. We denote by Γ0(Z)
the set of convex, proper, lower semicontinuous functions from Z to R ∪ {+∞}. We define
the subdifferential of G as the set-valued operator ∂G : z ∈ Z 7→ {y ∈ Z : (∀z′ ∈
Z) G(z) + 〈z′ − z, y〉 ≤ G(z′)}. If G is differentiable at z ∈ Z, ∂G(z) = {∇G(z)}, where
∇G(z) denotes the gradient of G at z. In this case, the Bregman divergence of G is defined
by

DG(x, x′) := G(x)−G(x′)− 〈∇G(x′), x− x′〉. (13)

Moreover, G is ν-smooth if it is differentiable on Z and ∇G is ν-Lipschitz continuous, for
some ν > 0. We denote by G∗ the conjugate of G, defined by G∗ : z 7→ supz′∈Z{〈z, z′〉 −
G(z′)}, which belongs to Γ0(Z). We define the proximity operator of G as the single-valued
operator proxG : z ∈ Z 7→ arg minz′∈Z

{
G(z′) + 1

2‖z − z
′‖2
}
. Finally, given any b ∈ Z, we

define the indicator function ιb : z 7→ {0 if z = b, +∞ else}, which belongs to Γ0(Z).

B.2. Monotone operators

Consider a set-valued operatorM : Z ⇒ Z. The inverseM−1 ofM is defined by the relation
z′ ∈M(z)⇔ z ∈M−1(z′). The set of zeros ofM is zer(M) = M−1(0) = {z ∈ Z, 0 ∈M(z)}.
The operator M is monotone if 〈w − w′, z − z′〉 ≥ 0, whenever u ∈ A(z) and u′ ∈ A(z′),
and strongly monotone if there exists µ > 0, such that 〈w − w′, z − z′〉 ≥ µ‖z − z′‖2. The
resolvent operator of M is defined by JM = (I +M)−1, where I denotes the identity. If M
is monotone, then JM (z) is either empty or single-valued. M is maximal monotone if JM (z)
is single-valued, for every z ∈ Z. We identify single-valued operators as operators from Z
to Z. If G ∈ Γ0(Z), then ∂G is maximal monotone, J∂G = proxG, zer(∂G) = arg minG
and (∂G)−1 = ∂G∗.

A single-valued operator M on Z is ξ-cocoercive if ξ‖M(z) − M(z′)‖2 ≤ 〈M(z) −
M(z′), z − z′〉. The resolvent of a maximal monotone operator is 1-cocoercive and ∇G is
1/ν-cocoercive, for any ν-smooth function G.

Let X ,Y be real Hilbert spaces and let L : X → Y be a linear operator. The adjoint of L
is denoted by L∗ : Y → X , and the operator norm of L is ‖L‖ = sup{‖Lx‖, x ∈ X , ‖x‖ ≤ 1}.
The largest eigenvalue of LL∗ is ‖LL∗‖ = ‖L‖2 = ‖L∗‖2. Let P : Z → Z be a linear and
symmetric operator (P ∗ = P ). P is positive semidefinite if 〈Pz, z〉 ≥ 0, for every z ∈ Z,
and positive definite if, additionally, 〈Pz, z〉 = 0 implies z = 0. In this latter case, the inner
product induced by P is defined by 〈z, z′〉P = 〈Pz, z′〉 and the norm induced by P is defined
by ‖z‖2P = 〈z, z〉P . We denote by ZP the space Z endowed with 〈·, ·〉P . Finally, we denote
‖ · ‖γ,τ the norm induced by γ

τ I − γ
2LL∗ on Y.

B.3. Primal–Dual Optimality

Let x? be a minimizer of Problem (1). Assuming a standard qualification condition, for
instance that 0 belongs to the relative interior of dom(H) − Ldom(R), then for every
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x ∈ X ,
∂(F +R+H ◦ L)(x) = ∇F (x) + ∂R(x) + L∗∂H(Lx),

see for instance Theorem 16.47 of [4]. Then,

x? ∈ arg min
x∈X

{F (x) +R(x) +H(Lx)}

⇔ 0 ∈ ∇F (x?) + ∂R(x?) + L∗∂H(Lx?)
⇔ ∃y? ∈ ∂H(Lx?) such that 0 ∈ ∇F (x?) + ∂R(x?) + L∗y?

⇔ ∃y? ∈ Y such that 0 ∈ ∇F (x?) + ∂R(x?) + L∗y? and 0 ∈ −Lx? + ∂H∗(y?),

where we used ∂H∗ = (∂H)−1. Moreover, such y? ∈ Y satisfies

0 ∈ −L∂(F +R)∗(−L∗y?) + Lx? and 0 ∈ −Lx? + ∂H∗(y?),

therefore 0 ∈ ∂(F +R)∗ ◦ (−L∗)(y?) + ∂H∗(y?) and

y? ∈ arg min(F +R)∗ ◦ (−L∗) +H∗.

In summary, there exist r? ∈ ∂R(x?) and h? ∈ ∂H∗(y?) such thatï
0
0

ò
=
ï
∇F (x?) + r? + L∗y?

−Lx? + h?

ò
. (14)

In the sequel, we let (x?, y?) ∈ zer(M) and r?, h? be any elements such that Equation (14)
holds.

We denote the Bregman divergence of the smooth function F between any two points x, x
is DF (x, x′) := F (x)−F (x′)−〈∇F (x′), x−x′〉, and DR(x, x?) := R(x)−R(x?)−〈r?, x−x?〉,
DH∗(y, y?) := H∗(y)−H∗(y?)− 〈h?, y − y?〉.

The inclusion (14) characterizes the first-order optimality conditions associated with the
convex–concave Lagrangian function defined as

L (x, y) := (F +R)(x)−H∗(y) + 〈Lx, y〉. (15)

For every x ∈ X , y ∈ Y, we define the duality gap at (x, y) as L (x, y?)−L (x?, y). Then

Lemma 5 (Duality gap) For every x ∈ X , y ∈ Y, we have

L (x, y?)−L (x?, y) = DF (x, x?) +DR(x, x?) +DH∗(y, y?). (16)

Proof Using the optimality conditions (3), we have

DF (x, x?) +DR(x, x?) = (F +R)(x)− (F +R)(x?)− 〈∇F (x?) + r?, x− x?〉
= (F +R)(x)− (F +R)(x?) + 〈L∗y?, x− x?〉
= (F +R)(x)− (F +R)(x?) + 〈y?, Lx〉 − 〈y?, Lx?〉.

We also have

DH∗(y, y?) = H∗(y)−H∗(y?)− 〈h?, y − y?〉
= H∗(y)−H∗(y?)− 〈Lx?, y − y?〉
= H∗(y)−H∗(y?)− 〈Lx?, y〉+ 〈y?, Lx?〉.
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Stochastic PD3O algorithm (proposed)(
deterministic version: gk+1 = ∇F (xk)

)
1: Input: p0 ∈ X , y0 ∈ Y, γ > 0, τ > 0
2: for k = 0, 1, 2, . . . do
3: xk = proxγR(pk)
4: wk = 2xk − pk − γgk+1

5: yk+1 = proxτH∗
(
yk+τL(wk−γL∗yk)

)
6: pk+1 = xk − γgk+1 − γL∗yk+1

7: end for

PriLiCoSGD (proposed)(
deterministic version: gk+1 = ∇F (xk)

)
1: Input: x0 ∈ X , γ > 0, τ > 0
2: for k = 0, 1, 2, . . . do
3: tk+1 = xk − γgk+1

4: ak+1 = ak + τW (tk+1 − γak)− τc
5: xk+1 = tk+1 − γak+1

6: end for

Summing the two last equations, we have

DF (x, x?) +DR(x, x?) +DH∗(y, y?)
= (F +R)(x)− (F +R)(x?) +H∗(y)−H∗(y?)− 〈Lx?, y〉+ 〈y?, Lx〉
= L (x, y?)−L (x?, y).

For every x ∈ X , y ∈ Y, Lemma 5 and the convexity of F,R,H∗ imply that

L (x?, y) ≤ L (x?, y?) ≤ L (x, y?). (17)

So, the duality gap L (x, y?) − L (x?, y) is nonnegative, and it is zero if x is a solution
to Problem (1) and y is a solution to the dual problem miny∈Y(F + R)∗(−L∗y) + H∗(y),
see Section 15.3 of [4]. The converse is true under mild assumptions, for instance strict
convexity of the functions around x? and y?.

Appendix C. Primal Dual Algorithms and their DYS representation

In this section, we show how other primal dual algorithms can be obtained as preconditioned
instances of DYS, similarly to PDDY.

C.1. The PD3O Algorithm

As mentioned in Section 3, if we apply DYS(P−1A,P−1B,P−1C), then we recover exactly
the PD3O algorithm proposed in [53]. Although it is not derived this way, its interpretation
as a primal–dual Davis–Yin algorithm is mentioned by its author. Its convergence properties
are the same as for the PDDY Algorithm, as stated in Theorem 1.

We can note that in a recent work [40], the PD3O algorithm has been shown to be an
instance of the Davis–Yin algorithm, with a different reformulation, which does not involve
duality. Whether this connection could yield different insights on the PD3O algorithm is
left for future investigation.
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C.1.1. Non-Asymptotic Analysis of the stochastic PD3O algorithm

Similarly to the stochastic PDDY algorithm, we can obtain convergence rates for the
stochastic PD3O with a VR stochastic gradient thanks to its DYS representation.

We obtain sublinear convergence if M is not strongly monotone (Theorem 6) and linear
convergence if M is strongly monotone (Theorem 9).

Theorem 6 Suppose that Assumption 1 holds. Let κ := β/ρ, γ, τ > 0 be such that
γ ≤ 1/2(α+ κδ) and γτ‖L‖2 < 1. Set V 0 := ‖v0 − v?‖2P + γ2κσ2

0, where v0 = (p0, y0).
Then,

E
Ä
L (x̄k, y?)−L (x?, ȳk+1)

ä
≤ V 0

kγ
,

where x̄k = 1
k

∑k−1
j=0 x

j and ȳk+1 = 1
k

∑k
j=1 y

j.

In the deterministic case gk+1 = ∇F (xk), we recover the same rate as in [53, Theorem
2].

Remark 7 (Primal–Dual gap) Deriving a similar bound on the stronger primal–dual
gap (F +R+H ◦ L)(x̄k) + ((F +R)∗ ◦ −L+H∗)(ȳk) requires additional assumptions; for
instance, even for the Chambolle–Pock algorithm, which is the particular case of the PD3O,
PPDY and Condat–Vũ algorithm when F = 0, the best available result [10, Theorem 1] is
not stronger than Theorem 6.

Remark 8 (Particular case of SGD) In the case where H = 0 and L = 0, the Stochas-
tic PD3O Algorithm boils down to proximal stochastic gradient descent (SGD) and Theo-
rem 6 implies that E

(
(F +R)(x̄k)− (F +R)(x?)

)
≤ V 0/(γk). This O(1/k) ergodic con-

vergence rate unifies known results on SGD in the non-strongly-convex case, where the
stochastic gradient satisfies Assumption 1. This covers coordinate descent and variance-
reduced versions, as discussed previously.

Theorem 9 (M strongly monotone and R smooth) Suppose that Assumption 1 holds.
Also, suppose that H is 1/µH∗-smooth, F is µF -strongly convex, and R is µR-strongly con-
vex and λ-smooth, where µ := µF + 2µR > 0 and µH∗ > 0. For every κ > β/ρ and every
γ, τ > 0 such that γ ≤ 1/(α+ κδ) and γτ‖L‖2 < 1, define

V k := ‖pk − p?‖2 + (1 + 2τµH∗) ‖yk − y?‖2γ,τ + κγ2σ2
k, (18)

and
r := max

Å
1− γµ

(1 + γλ)2 ,

Å
1− ρ+ β

κ

ã
,

1
1 + 2τµH∗

ã
. (19)

Then,
EV k ≤ rkV 0. (20)

In the deterministic case gk+1 = ∇F (xk), we recover the same rate as in [53, Theorem
2], under the similar assumptions3.

Since ‖xk − x?‖ ≤ ‖pk − p?‖, Theorem 9 also implies linear convergence of the primal
variable xk to x?, with same convergence rate.
3. Additionally, we correct some typos in the rate of [53].
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Remark 10 (Particular case) In the case where R = H = 0 and L = 0, then the
Stochastic PD3O Algorithm boils down to Stochastic Gradient Descent (SGD), where the
stochastic gradient oracle satisfies Assumption 1. Moreover, the value of r boils down to r =
max

Ä
1− γµ,

Ä
1− ρ+ β

κ

ää
. Consider the applications of SGD covered by Assumption 1, and

mentioned in Section 4. Then, as proved in [23], the value r = max
Ä
1− γµ,

Ä
1− ρ+ β

κ

ää
matches the best known convergence rates for these applications, with an exception for
some coordinate descent algorithms. However, if H = 0 and L = 0 but R 6= 0, then
the Stochastic PD3O Algorithm boils down to Proximal SGD, and r boils down to r =
max

Ä
1− γµ

(1+γλ)2 ,
Ä
1− ρ+ β

κ

ää
, whereas the best known rates for Proximal SGD under As-

sumption 1 is max
Ä
1− γµ,

Ä
1− ρ+ β

κ

ää
.

C.2. The Condat–Vũ Algorithms

Let γ > 0 and τ > 0 be real parameters. We define the operators

Ā(x, y)=
ï
∂R(x) + L∗y
−Lx

ò
, B̄(x, y)=

ï
0

∂H∗(y)

ò
, C(x, y)=

ï
∇F (x)

0

ò
, Q =

ï
K 0
0 I

ò
, (21)

where K := γ
τ I − γ

2L∗L. Then, M = Ā + B̄ + C. If γτ‖L‖2 < 1, K and Q are positive
definite. In that case, since Ā, B̄, C are maximal monotone in Z = X × Y, Q−1Ā, Q−1B̄,
Q−1C are maximal monotone in ZQ. Moreover, we have:

Q−1C : (x, y) 7→
(
K−1∇F (x), 0

)
, JγQ−1B̄ : (x, y) 7→

(
x, proxγH∗(y)

)
, (22)

JγQ−1Ā : (x, y) 7→ (x′, y′), where
õ
x′ = proxτR

(
(I − τγL∗L)x− τL∗y

)
y′ = y + γLx′.

(23)

We claim without proof that if we plug these explicit steps into the Davis–Yin algorithm
DYS(Q−1Ā,Q−1B̄,Q−1C) or DYS(Q−1B̄,Q−1Ā,Q−1C), we recover the two forms of the
Condat–Vũ algorithm [13, 50]; that is, Algorithms 3.1 and 3.2 of [13], respectively. The
Condat–Vũ algorithm has the form of a primal–dual forward–backward algorithm [12, 15,
26, 30]. But we have just seen that it can be viewed as a primal–dual Davis–Yin algorithm,
with a different metric, as well.

Appendix D. Proofs

D.1. Fundamental equality of the DYS Algorithm

The proofs of our non-asymptotic rates are a combination of the DYS representation of our
algorithms along with the following general inequality w.r.t. the DYS algorithm.

Lemma 11 Let (vk, zk, uk) ∈ Z3 be the iterates of the DYS(A,B,C) algorithm, and
(v?, z?, u?) ∈ Z3 be a fixed point of the DYS(A,B,C) algorithm:

z? = JγB(v?), u? = JγA
(
2z? − v? − γC(z?)

)
, u? = z?. (24)

Then, for every k ≥ 0, there exist bk ∈ B(zk), b? ∈ B(z?), ak+1 ∈ A(uk+1) and a? ∈ A(u?)
such that

‖vk+1 − v?‖2 = ‖vk − v?‖2 − 2γ〈bk − b?, zk − z?〉 − 2γ〈C(zk)− C(z?), zk − z?〉 (25)
− 2γ〈ak+1 − a?, uk+1 − u?〉 − γ2‖ak+1 + bk − (a? + b?) ‖2 + γ2‖C(zk)− C(z?)‖2.

18
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Proof Since zk = JγB(vk), zk ∈ vk − γB(zk) by definition of the resolvent operator.
Therefore, there exists bk ∈ B(zk) such that zk = vk − γbk. Similarly,

uk+1 ∈ 2zk − vk − γC(zk)− γA(uk+1) = vk − 2γbk − γC(zk)− γA(uk+1).

Therefore, there exists ak+1 ∈ A(uk+1) such that
zk = vk − γbk
uk+1 = vk − 2γbk − γC(zk)− γak+1

vk+1 = vk + uk+1 − zk.
(26)

Moreover,
vk+1 = vk − γbk − γC(zk)− γak+1. (27)

Similarly, there exist a? ∈ A(u?), b? ∈ B(z?) such that
z? = v? − γb?
u? = v? − 2γb? − γC(z?)− γa?
v? = v? + u? − z?,

(28)

and
v? = v? − γb? − γC(z?)− γa?. (29)

Therefore, using (27) and (29),

‖vk+1 − v?‖2 = ‖vk − v?‖2 − 2γ〈ak+1 + bk + C(zk)− (a? + b? + C(z?)) , vk − v?〉
+ γ2‖ak+1 + bk + C(zk)− (a? + b? + C(z?)) ‖2.

By expanding the last square at the right hand side, and by using (26) and (28) in the inner
product, we get

‖vk+1 − v?‖2 = ‖vk − v?‖2

− 2γ〈bk + C(zk)− (b? + C(z?)) , zk − z?〉
− 2γ〈ak+1 − a?, uk+1 − u?〉
− 2γ〈bk + C(zk)− (b? + C(z?)) , γbk − γb?〉
− 2γ〈ak+1 − a?, 2γbk + γC(zk) + γak+1 − (2γb? + γC(z?) + γa?)〉
+ γ2‖ak+1 + bk − (a? + b?) ‖2

+ γ2‖C(zk)− C(z?)‖2

+ 2γ2〈ak+1 + bk − (a? + b?) , C(zk)− C(z?)〉.

Then, the last five terms at the right hand side simplify to

γ2‖C(zk)− C(z?)‖2 − γ2‖ak+1 + bk − (a? + b?) ‖2,

and we get the result.
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D.2. Proofs related to the Stochastic PDDY Algorithm

We start by proving Equation (6) using the notations of Section 3.

Lemma 12 JγP−1A maps (x, y) to (x′, y′), such thatõ
y′ = proxτH∗

(
y + τL(x− γL∗y)

)
x′ = x− γL∗y′. (30)

Proof Let (x, y) and (x′, y′) ∈ Z, such that

P

ï
x′ − x
y′ − y

ò
∈ −γ

ï
+ L∗y′

−Lx′ + ∂H∗(y′)

ò
,

where
P =

ï
I 0
0 γ

τ I − γ
2LL∗

ò
.

We shall express (x′, y′) as a function of (x, y). First,

x′ = x− γL∗y′.

Moreover, y′ is given by(γ
τ
I − γ2LL∗

)
(y′) ∈

(γ
τ
I − γ2LL∗

)
(y) + γLx′ − γ∂H∗(y′)

∈
(γ
τ
I − γ2LL∗

)
(y) + γL

(
x− γL∗y′

)
− γ∂H∗(y′).

Therefore, the term γ2LL∗y′ disappears from both sides and

y′ ∈ y − γτLL∗y − τ∂H∗(y′) + τLx.

Finally,
y − γτLL∗y + τLx ∈ y′ + τ∂H∗(y′),

and
y′ = proxτH∗(y − γτLL∗y + τLx).

Recall that the PDDY algorithm is equivalent to DYS(P−1B,P−1A,P−1C). We denote
by vk = (pk, qk), zk = (xk, yk), uk = (sk, dk) the iterates of DYS(P−1B,P−1A,P−1C),
where pk, xk, sk ∈ X and qk, yk, dk ∈ Y.

Using (6), the step
zk = JγP−1A(vk),

is equivalent to õ
xk = pk − γL∗yk
yk = proxτH∗

(
(I − τγLL∗)qk + τLpk

)
.

Then, the step
uk+1 = JγP−1B

(
2zk − vk − γP−1C(zk)

)
20
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is equivalent to õ
sk+1 = proxγR

(
2xk − pk − γ∇F (xk)

)
dk+1 = 2yk − qk.

Finally, the step
vk+1 = vk + uk+1 − zk

is equivalent to õ
pk+1 = pk + sk+1 − xk
qk+1 = qk + dk+1 − yk.

Similarly, the fixed points v? = (p?, q?), z? = (x?, y?), u? = (s?, d?) of DYS(P−1B,P−1A,P−1C)
satisfy 

x? = p? − γL∗y?
y? = proxτH∗

(
(I − τγLL∗)q? + τLp?

)
s? = proxγR

(
2x? − p? − γ∇F (x?)

)
d? = 2y? − q?
p? = p? + s? − x?
q? = q? + d? − y?,

and the iterates of the stochastic PDDY algorithm satisfy
xk = pk − γL∗yk
yk = proxτH∗

(
(I − τγLL∗)qk + τLpk

)
sk+1 = proxγR

(
2xk − pk − γgk+1)

dk+1 = 2yk − qk
pk+1 = pk + sk+1 − xk
qk+1 = qk + dk+1 − yk.

Lemma 13 Suppose that (gk) satisfies Assumption 1. Then, the iterates of the Stochastic
PDDY Algorithm satisfy

Ek‖vk+1 − v?‖2P + κγ2Ekσ2
k+1 ≤ ‖vk − v?‖2P + κγ2

Å
1− ρ+ β

κ

ã
σ2
k

− 2γ(1− γ(α+ κδ))DF (xk, x?)
− 2γ〈∂H∗(yk)− ∂H∗(y?), yk − y?〉
− 2γEk〈∂R(sk+1)− ∂R(s?), sk+1 − s?〉.

Proof
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Applying Lemma 11 for DYS(P−1B,P−1A,P−1C) using the norm induced by P , we
have

‖vk+1 − v?‖2P = ‖vk − v?‖2P
− 2γ〈P−1A(zk)− P−1A(z?), zk − z?〉P
− 2γ〈P−1C(zk)− P−1C(z?), zk − z?〉P
− 2γ〈P−1B(uk+1)− P−1B(u?), uk+1 − u?〉P
+ γ2‖P−1C(zk)− P−1C(z?)‖2P
− γ2‖P−1B(uk+1) + P−1A(zk)−

(
P−1B(u?) + P−1A(z?)

)
‖2P

= ‖vk − v?‖2P
− 2γ〈A(zk)−A(z?), zk − z?〉
− 2γ〈C(zk)− C(z?), zk − z?〉
− 2γ〈B(uk+1)−B(u?), uk+1 − u?〉
+ γ2‖P−1C(zk)− P−1C(z?)‖2P
− γ2‖P−1B(uk+1) + P−1A(zk)−

(
P−1B(u?) + P−1A(z?)

)
‖2P .

Using

A(zk) =
ï

L∗yk

−Lxk + ∂H∗(yk)

ò
B(uk+1) =

ï
∂R(sk+1)

0

ò
C(zk) =

ï
gk+1

0

ò
,

and

A(z?) =
ï

L∗y?

−Lx? + ∂H∗(y?)

ò
B(u?) =

ï
∂R(s?)

0

ò
C(z?) =

ï
∇F (x?)

0

ò
,

we have,

‖vk+1 − v?‖2P ≤ ‖vk − v?‖2P
− 2γ〈∂H∗(yk)− ∂H∗(y?), yk − y?〉
− 2γ〈gk+1 −∇F (x?), xk − x?〉
− 2γ〈∂R(sk+1)− ∂R(s?), sk+1 − s?〉
+ γ2‖gk+1 −∇F (x?)‖2.
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Applying the conditional expectation w.r.t. Fk and using Assumption 1,

Ek‖vk+1 − v?‖2P ≤ ‖vk − v?‖2P
− 2γ〈∂H∗(yk)− ∂H∗(y?), yk − y?〉
− 2γ〈∇F (xk)−∇F (x?), xk − x?〉
− 2γEk〈∂R(sk+1)− ∂R(s?), sk+1 − s?〉

+ γ2
Ä
2αDF (xk, x?) + βσ2

k

ä
.

Using the convexity of F ,

Ek‖vk+1 − v?‖2P ≤ ‖vk − v?‖2P
− 2γ〈∂H∗(yk)− ∂H∗(y?), yk − y?〉
− 2γEk〈∂R(sk+1)− ∂R(s?), sk+1 − s?〉
− 2γDF (xk, x?)

+ γ2
Ä
2αDF (xk, x?) + βσ2

k

ä
.

Using Assumption 1,

Ek‖vk+1 − v?‖2P + κγ2Ekσ2
k+1 ≤ ‖vk − v?‖2P + κγ2

Å
1− ρ+ β

κ

ã
σ2
k

− 2γ(1− γ(α+ κδ))DF (xk, x?)
− 2γ〈∂H∗(yk)− ∂H∗(y?), yk − y?〉
− 2γEk〈∂R(sk+1)− ∂R(s?), sk+1 − s?〉.

D.2.1. Proof of Theorem 2

Using Lemma 13 and the convexity of F,R,H∗,

Ek‖vk+1 − v?‖2P+κγ2Ekσ2
k+1 ≤ ‖vk − v?‖2P + κγ2

Å
1− ρ+ β

κ

ã
σ2
k

− 2γ
(
1− γ(α+ κδ)

) Ä
DF (xk, x?) +DH∗(yk, y?) + EkDR(sk+1, s?)

ä
.

Since 1− ρ+ β/κ = 1, γ ≤ 1/2(α+ κδ). Set

V k = ‖vk − v?‖2P + κγ2σ2
k.

Then
EkV k+1 ≤ V k − γEk

Ä
DF (xk, x?) +DH∗(yk, y?) +DR(sk+1, s?)

ä
.

Taking the expectation,

γE
Ä
DF (xk, x?) +DH∗(yk, y?) +DR(sk+1, s?)

ä
≤ EV k − EV k+1.
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Iterating and using the nonnegativity of V k,

γ
k−1∑
j=0

E
Ä
DF (xk, x?) +DH∗(yk, y?) +DR(sk+1, s?)

ä
≤ EV 0. (31)

We conclude using the convexity of the Bregman divergence in its first variable.

D.2.2. Proof of Theorem 3

We first use Lemma 13 along with the strong convexity of R,H∗. Note that yk = qk+1. We
have

Ek‖vk+1 − v?‖2P + κγ2Ekσ2
k+1 ≤ ‖vk − v?‖2P + κγ2

Å
1− ρ+ β

κ

ã
σ2
k

− 2γµH∗Ek‖qk+1 − q?‖2 − 2γµREk‖sk+1 − s?‖2.

Note that sk+1 = pk+1 − γL∗yk. Therefore, sk+1 − s? = (pk+1 − p?)− γL∗(yk − y?). Using
Young’s inequality −‖a+ b‖2 ≤ −1

2‖a‖
2 + ‖b‖2, we have

−Ek‖sk+1 − s?‖2 ≤ −1
2Ek‖p

k+1 − p?‖2 + γ2‖L‖2Ek‖qk+1 − q?‖2.

Hence,

Ek‖vk+1 − v?‖2P + κγ2Ekσ2
k+1 ≤ ‖vk − v?‖2P + κγ2

Å
1− ρ+ β

κ

ã
σ2
k

− 2γ
(
µH∗ − γ2‖L‖2µR

)
Ek‖qk+1 − 2τEk‖qk+1

− q?‖2 − γµREk‖pk+1 − p?‖2

≤ ‖vk − v?‖2P + κγ2
Å

1− ρ+ β

κ

ã
σ2
k

− q?‖2γ,τ
(
µH∗ − γ2‖L‖2µR

)
− γµREk‖pk+1 − p?‖2.

Set η = 2
(
µH∗ − γ2‖L‖2µR

)
≥ 0. Then

(1 + γµR)Ek‖pk+1 − p?‖2 + (1 + τη)Ek‖qk+1 − q?‖2γ,τ + κγ2Ekσ2
k+1

≤ ‖vk − v?‖2P + κγ2
Å

1− ρ+ β

κ

ã
σ2
k.

Set
V k = (1 + γµR)‖pk − p?‖2 + (1 + τη)‖qk − q?‖2γ,τ + κγ2σ2

k

and
r = max

Å 1
1 + γµR

, 1− ρ+ β

κ
,

1
1 + τη

ã
.

Then
EkV k+1 ≤ rV k.
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D.3. Proofs related to the Stochastic PD3O Algorithm

Recall that the PD3O algorithm is equivalent to DYS(P−1A,P−1B,P−1C). We denote by
vk = (pk, qk), zk = (xk, yk), uk = (sk, dk) the variables in DYS(P−1A,P−1B,P−1C), with
pk, xk, sk ∈ X and qk, yk, dk ∈ Y.

Then, the step
zk = JγP−1B(vk),

is equivalent to õ
xk = proxγR(pk)
yk = qk.

Using (6), the step
uk+1 = JγP−1A(2zk − vk − γP−1C(zk)),

is equivalent toõ
sk+1 = (2xk − pk − γ∇F (xk))− γL∗dk+1

dk+1 = proxτH∗
(
(I − γτLL∗)(2yk − qk) + τL(2xk − pk −∇F (xk))

)
.

Finally, the step
vk+1 = vk + uk+1 − zk,

is equivalent to õ
pk+1 = pk + sk+1 − xk
qk+1 = qk + dk+1 − yk.

Similarly, the fixed points v? = (p?, q?), z? = (x?, y?), u? = (s?, d?) of DYS(P−1A,P−1B,P−1C)
satisfy 

x? = proxγR(p?)
y? = q?

s? = (2x? − p? − γ∇F (x?))− γL∗d?
d? = proxτH∗ ((I − γτLL∗)(2y? − q?) + τL(2x? − p? −∇F (x?)))
p? = p? + s? − x?
q? = q? + d? − y?.

and the iterates of the stochastic PD3O algorithm satisfy
xk = proxγR(pk)
yk = qk

sk+1 = (2xk − pk − γgk+1)− γL∗dk+1

dk+1 = proxτH∗
(
(I − γτLL∗)(2yk − qk) + τL(2xk − pk − gk+1)

)
pk+1 = pk + sk+1 − xk
qk+1 = qk + dk+1 − yk.
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Lemma 14 Assume that F is µF -strongly convex, for some µF ≥ 0, and that (gk) satisfies
Assumption 1. Then, the iterates of the Stochastic PD3O Algorithm satisfy

Ek‖vk+1 − v?‖2P + κγ2Ekσ2
k+1 ≤ ‖vk − v?‖2P + κγ2

Å
1− ρ+ β

κ

ã
σ2
k

− 2γ(1− γ(α+ κδ))DF (xk, x?)− γµF ‖xk − x?‖2

− 2γ〈∂R(xk)− ∂R(x?), xk − x?〉 (32)
− 2γEk〈∂H∗(dk+1)− ∂H∗(d?), dk+1 − d?〉
− γ2Ek

∥∥P−1A(uk+1) + P−1B(zk)

−
(
P−1A(u?) + P−1B(z?)

) ∥∥2
P
.

Proof Applying Lemma 11 for DYS(P−1A,P−1B,P−1C) using the norm induced by P
we have

‖vk+1 − v?‖2P = ‖vk − v?‖2P
− 2γ〈P−1B(zk)− P−1B(z?), zk − z?〉P
− 2γ〈P−1C(zk)− P−1C(z?), zk − z?〉P
− 2γ〈P−1A(uk+1)− P−1A(u?), uk+1 − u?〉P
+ γ2‖P−1C(zk)− P−1C(z?)‖2P
− γ2‖P−1A(uk+1) + P−1B(zk)−

(
P−1A(u?) + P−1B(z?)

)
‖2P

= ‖vk − v?‖2P
− 2γ〈B(zk)−B(z?), zk − z?〉
− 2γ〈C(zk)− C(z?), zk − z?〉
− 2γ〈A(uk+1)−A(u?), uk+1 − u?〉
+ γ2‖P−1C(zk)− P−1C(z?)‖2P
− γ2‖P−1A(uk+1) + P−1B(zk)−

(
P−1A(u?) + P−1B(z?)

)
‖2P .

Using

A(uk+1) =
ï

L∗dk+1

−Lsk+1 + ∂H∗(dk+1)

ò
B(zk) =

ï
∂R(xk)

0

ò
C(zk) =

ï
gk+1

0

ò
,
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and

A(u?) =
ï

L∗d?

−Ls? + ∂H∗(d?)

ò
B(z?) =

ï
∂R(x?)

0

ò
C(z?) =

ï
∇F (x?)

0

ò
,

we have

‖vk+1 − v?‖2P = ‖vk − v?‖2P
− 2γ〈∂R(xk)− ∂R(x?), xk − x?〉
− 2γ〈gk+1 −∇F (x?), xk − x?〉
− 2γ〈∂H∗(dk+1)− ∂H∗(d?), dk+1 − d?〉
+ γ2‖gk+1 −∇F (x?)‖2

− γ2‖P−1A(uk+1) + P−1B(zk)−
(
P−1A(u?) + P−1B(z?)

)
‖2P .

Taking conditional expectation w.r.t. Fk and using Assumption 1,

Ek‖vk+1 − v?‖2P ≤ ‖vk − v?‖2P
− 2γ〈∂R(xk)− ∂R(x?), xk − x?〉
− 2γ〈∇F (xk)−∇F (x?), xk − x?〉
− 2γEk〈∂H∗(dk+1)− ∂H∗(d?), dk+1 − d?〉

+ γ2
Ä
2αDF (xk, x?) + βσ2

k

ä
− γ2Ek‖P−1A(uk+1) + P−1B(zk)−

(
P−1A(u?) + P−1B(z?)

)
‖2P .

Using strong convexity of F ,

Ek‖vk+1 − v?‖2P ≤ ‖vk − v?‖2P
− γµF ‖xk − x?‖2

− 2γDF (xk, x?)

+ γ2
Ä
2αDF (xk, x?) + βσ2

k

ä
− 2γ〈∂R(xk)− ∂R(x?), xk − x?〉
− 2γEk〈∂H∗(dk+1)− ∂H∗(d?), dk+1 − d?〉
− γ2Ek‖P−1A(uk+1) + P−1B(zk)−

(
P−1A(u?) + P−1B(z?)

)
‖2P .
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Using Assumption 1,

Ek‖vk+1 − v?‖2P + κγ2Ekσ2
k+1 ≤ ‖vk − v?‖2P + κγ2

Å
1− ρ+ β

κ

ã
σ2
k

− γµF ‖xk − x?‖2

− 2γ(1− γ(α+ κδ))DF (xk, x?)
− 2γ〈∂R(xk)− ∂R(x?), xk − x?〉
− 2γEk〈∂H∗(dk+1)− ∂H∗(d?), dk+1 − d?〉
− γ2Ek

∥∥P−1A(uk+1) + P−1B(zk)

−
(
P−1A(u?) + P−1B(z?)

) ∥∥2
P
.

D.3.1. Proof of Theorem 6

Using Lemma 14, convexity of F,R,H∗, and Lemma 5,

Ek‖vk+1 − v?‖2P + κγ2Ekσ2
k+1 ≤ ‖vk − v?‖2P + κγ2

Å
1− ρ+ β

κ

ã
σ2
k

− 2γ(1− γ(α+ κδ))Ek
Ä
L (xk, d?)−L (x?, dk+1)

ä
.

Recall that 1− ρ+ β/κ = 1, γ ≤ 1/2(α+ κδ). Set

V k = ‖vk − v?‖2P + κγ2σ2
k.

Then,
EkV k+1 ≤ V k − γEk

Ä
L (xk, d?)−L (x?, dk+1)

ä
.

Taking the expectation,

γE
Ä
L (xk, d?)−L (x?, dk+1)

ä
≤ EV k − EV k+1.

Iterating and using the nonnegativity of V k,

γ
k−1∑
j=0

E
(
L (xj , d?)−L (x?, dj+1)

)
≤ EV 0.

We conclude using the convex-concavity of L.

D.3.2. Proof of Theorem 9

We first use Lemma 14 along with the strong convexity of R,H∗. Note that yk = qk and
therefore qk+1 = qk + dk+1 − qk = dk+1. We have

Ek‖pk+1 − p?‖2 + Ek‖qk+1 − q?‖2γ,τ + 2γµH∗Ek‖qk+1 − q?‖2 + κγ2Ekσ2
k+1

≤ ‖pk − p?‖2 + ‖qk − q?‖2γ,τ − γµ‖xk − x?‖2

+ κγ2
Å

1− ρ+ β

κ

ã
σ2
k − 2γ(1− γ(α+ κδ))DF (xk, x?)
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Noting that for every q ∈ Y, ‖q‖2γ,τ = γ
τ ‖q‖

2−γ2‖L∗q‖2 ≤ γ
τ ‖q‖

2, and taking γ ≤ 1/(α+κδ),

Ek‖pk+1 − p?‖2 + (1 + 2τµH∗)Ek‖qk+1 − q?‖2γ,τ + κγ2Ekσ2
k+1

≤ ‖pk − p?‖2 + ‖qk − q?‖2γ,τ − γµ‖xk − x?‖2 + κγ2
Å

1− ρ+ β

κ

ã
σ2
k.

Finally, since R is λ-smooth, ‖pk− p?‖2 ≤ (1 + 2γλ+ γ2λ2)‖xk−x?‖2. Indeed, in this case,
applying Lemma 11 with A = 0, C = 0 and B = ∇R, we obtain that if xk = proxγR(pk)
and x? = proxγR(p?), then

‖xk − x?‖2 = ‖pk − p?‖2 − 2γ〈∇R(xk)−∇R(x?), xk − x?〉 − γ2‖∇R(xk)−∇R(x?)‖2

≥ ‖pk − p?‖2 − 2γλ‖xk − x?‖2 − γ2λ2‖xk − x?‖2.

Hence,

Ek‖pk+1 − p?‖2 + (1 + 2τµH∗)Ek‖qk+1 − q?‖2γ,τ + κγ2Ekσ2
k+1

≤ ‖pk − p?‖2 + ‖qk − q?‖2γ,τ −
γµ

(1 + γλ)2 ‖p
k − p?‖2 + κγ2

Å
1− ρ+ β

κ

ã
σ2
k.

Thus, set
V k = ‖pk − p?‖2 + (1 + 2τµH∗) ‖qk − q?‖2γ,τ + κγ2σ2

k,

and
r = max

Å
1− γµ

(1 + γλ)2 ,

Å
1− ρ+ β

κ

ã
,

1
1 + 2τµH∗

ã
.

Then,
EkV k+1 ≤ rV k.

D.4. Proof of Theorem 4

We first derive the following lemma:

Lemma 15 Let x ∈ ran(L∗), the range space of L∗. There exists an unique y ∈ ran(L)
such that L∗y = x. Moreover, for every y ∈ ran(L),

ω(L)‖y‖2 ≤ ‖L∗y‖2, (33)

where ω(L) is the smallest positive eigenvalue of LL∗ (or L∗L).

Proof Using basic linear algebra, LL∗x = 0 implies L∗x ∈ ran(L∗) ∩ ker(L) therefore
L∗x = 0. Hence, ker(LL∗) ⊂ ker(L∗) and therefore ran(L) ⊂ ran(LL∗). Since LL∗ is
real symmetric, for every y ∈ ran(LL∗), 〈y, LL∗y〉 ≥ ω(L)‖y‖2, where ω(L) is the smallest
positive eigenvalue of LL∗. Therefore, for every y ∈ ran(L), ‖L∗y‖2 ≥ ω(L)‖y‖2. Moreover,
L∗y = 0 implies y = 0 on ran(L), therefore there is at most one solution y in ran(L) to the
equation L∗y = x. The existence of a solution follows from x ∈ ran(L∗).

Now, we prove Theorem 4. First, we define y?. In the case R = 0 and H = ιb,
Equation (14) states that ∇F (x?) ∈ ran(L∗). Using Lemma 15, there exists an unique
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y? ∈ ran(L) such that ∇F (x?) + L∗y? = 0. Noting that y? = d? = q? and applying
Lemma 14 with γ ≤ (α+ κδ),

Ek‖pk+1 − p?‖2 + Ek‖qk+1 − q?‖2γ,τ + κγ2Ekσ2
k+1 ≤ ‖pk − p?‖2 + ‖qk − q?‖2γ,τ

− γµF ‖xk − x?‖2

+ κγ2
Å

1− ρ+ β

κ

ã
σ2
k

− γ2‖P−1A(uk+1)− P−1A(u?)‖2P .

Since the component of P−1A(uk+1)− P−1A(u?) in X is L∗dk+1 − L∗d?, we have

Ek‖pk+1 − p?‖2 + Ek‖qk+1 − q?‖2γ,τ + κγ2Ekσ2
k+1 ≤ ‖xk − x?‖2 + ‖qk − q?‖2γ,τ

− γµF ‖pk − p?‖2

+ κγ2
Å

1− ρ+ β

κ

ã
σ2
k

− γ2‖L∗dk+1 − L∗d?‖2.

Inspecting the iterations of the algorithm, one can see that d0 ∈ ran(L) implies dk+1 ∈
ran(L). Since d? ∈ ran(L), dk+1 − d? ∈ ran(L). Therefore, using Lemma 15, ω(L)‖dk+1 −
d?‖2 ≤ ‖L∗dk+1 − L∗d?‖2. Since qk+1 = dk+1 = yk+1 and xk = pk,

Ek‖xk+1 − x?‖2 + (1 + γτω(L))Ek‖yk+1 − y?‖2γ,τ + κγ2Ekσ2
k+1

≤ (1− γµF )‖xk − x?‖2 + ‖yk − y?‖2γ,τ + κγ2
Å

1− ρ+ β

κ

ã
σ2
k.

Setting
V k = ‖xk − x?‖2 +

(
1 + τγω(L)

)
‖yk − y?‖2γ,τ + κγ2σ2

k,

and
r = max

Å
1− γµ, 1− ρ+ β

κ
,

1
1 + τγω(L)

ã
,

we have
EkV k+1 ≤ rV k.
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