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Abstract
Adaptivity is an important yet under-studied property in modern optimization theory. The gap between
the state-of-the-art theory and the current practice is striking in that algorithms with desirable theoretical
guarantees typically involve drastically different settings of hyperparameters, such as step-size schemes
and batch sizes, in different regimes. Despite the appealing theoretical results, such divisive strategies
provide little, if any, insight to practitioners to select algorithms that work broadly without tweaking the
hyperparameters. In this work, blending the “geometrization” technique introduced by [27] and the SARAH
algorithm of [39], we propose the Geometrized SARAH algorithm for non-convex finite-sum and stochastic
optimization. Our algorithm is proved to achieve adaptivity to both the magnitude of the target accuracy and
the Polyak-Łojasiewicz (PL) constant, if present. In addition, it achieves the best-available convergence rate
for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.

1. Introduction

We study smooth nonconvex problems of the form

min
x∈Rd

{
f(x)

def
= Efξ(x)

}
, (1)

where the randomness comes from the selection of data points and is represented by the index ξ. If the
number of indices n is finite, then we talk about empirical risk minimization and Efξ(x) can be written in the
finite-sum form, (1/n)

∑n
i=1 fi(x). If n is not finite or if it is infeasible to process the entire dataset, we are

in the online learning setting, where one obtains independent samples of ξ at each step. We assume that an
optimal solution x? of (1) exists and its value is finite: f(x?) > −∞.

The many faces of stochastic gradient descent. We start with a brief review of relevant aspects of
gradient-based optimization algorithms. Since the number of functions n can be large or even infinite,
algorithms that process subsamples are essential. The canonical example is Stochastic Gradient Descent
(SGD) [16, 35, 36], in which updates are based on single data points or small batches of points. The terrain
around the basic SGD method has been thoroughly explored in recent years, resulting in theoretical and
practical enhancements such as Nesterov acceleration [3], Polyak momentum [41, 53], adaptive step sizes
[10, 21, 33, 48], distributed optimization [2, 32, 52], importance sampling [44, 60], higher-order optimization
[24, 55], and several other useful techniques.
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Table 1: Complexity to reach an E‖∇f(x)‖2 ≤ ε2 with L, σ2,∆f = O(1).
Method Complexity Required knowledge

SVRG (non-cvx) [47] O
(
n+ n2/3

ε2

)
L

SCSG (non-cvx) [29] Õ
(

1
ε10/3

∧ n2/3

ε2

)
L

SNVRG (non-cvx) [61] Õ
(

1
ε3
∧
√
n
ε2

)
L, σ2, ε

Õ
(
n+

√
n
ε2

)
L

SARAH (non-cvx) [12, 40, 57] O
(
n+

√
n
ε2

)
L

Q-Geom-SARAH (Theorem 8) Õ
({
n3/2 +

√
n
µ

}
∧ 1
ε3
∧
√
n
ε2

)
L

E-Geom-SARAH (Theorem 9) Õ
((

1
µ∧ε

)2(1+δ)
∧
{
n+

√
n
µ

}
∧ 1
ε4
∧
√
n
ε2

)
L

Non-adaptive Geom-SARAH (Theorem 13) O
({

1
ε4/3(µ∧ε)2/3

∧ n
}

+ 1
µ

{
1

ε4/3(µ∧ε)2/3
∧ n
}1/2

)
L, σ2, ε, µ

A particularly productive approach to enhancing SGD has been to make use of variance reduction, in
which the classical stochastic gradient direction is modified in various ways so as to drive the variance of the
gradient estimator towards zero. This significantly improves the convergence rate and may also enhance the
quality of the output solution. The first variance-reduction method was SAG [49], closely followed by many
more, for instance, [7, 8, 12, 15, 17, 19, 19, 20, 22, 23, 25, 29, 39, 44, 45, 51, 57, 61].

The dilemma of parameter tuning. Formally, each iteration of vanilla and variance-reduced SGD
methods can be written in the generic form x+ = x− ηg, where x ∈ Rd is the current iterate, η > 0 is a step
size and g ∈ Rd is a stochastic estimator of the true gradient∇f(x).

A major drawback of many such methods is their dependence on parameters that are unlikely to be known
in a real-world machine-learning setting. For instance, they may require the knowledge of a uniform bound
on the variance or second moment of the stochastic estimators of the gradient which is simply not available,
and might not even hold in practice. Moreover, some algorithms perform well in either low precision or
high precision regimes and in order to make them perform well in all regimes, they require knowledge
of extra parameters, such as target accuracy, which may be difficult to tune. Another related issue is the
lack of adaptivity of many SGD variants to different modelling regimes. For example, in order to obtain
good theoretical and experimental behavior for non-convex f , one needs to run a custom variant of the
algorithm if the function is known to satisfy some extra assumptions such as the Polyak-Łojasiewicz (PL)
inequality. As a consequence, practitioners are often forced to spend valuable time and resources tuning
various parameters and hyper-parameters of their methods, which poses serious issues in implementation and
practical deployment.

The search for adaptive methods. The above considerations motivate us to impose some algorithm
design restrictions so as to resolve the aforementioned issues. First of all, good algorithms should be adaptive
in the sense that they should perform comparably to methods with tuned parameters without an a-priori
knowledge of the optimal parameter settings. In particular, in the non-convex regime, we might wish to
design an algorithm that does not invoke nor need any bound on the variance of the stochastic gradient, or
any predefined target accuracy in its implementation. In addition, we should desire algorithms which perform
well if the Polyak-Lojasiewicz PL constant (or strong convexity parameter) µ happens to be large and yet
are able to converge even if µ = 0; all automatically, without the need for the method to be altered by the
practitioner.

There have been several works on this topic, originating from works studying asymptotic rate for SGD
with stepsize O(t−α) for α ∈ (1/2, 1) [42, 43, 50] up to the most recent paper [28] which focuses on convex
optimization, e.g. [5, 6, 9, 13, 18, 26, 30, 34, 56, 58, 59].
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Table 2: Complexity to reach Ef(x)− f(x?) ≤ ε2 with L, σ2,∆f = O(1).
Method Complexity Required Knowledge

SVRG (PL) [31] Õ
(
n+ n2/3

µ

)
L

SCSG (PL) [29] Õ
((

1
µε2
∧ n
)

+ 1
µ

(
1
µε2
∧ n
)2/3

)
L, σ2, ε, µ

Õ
(
n+ n2/3

µ

)
L

SNVRG (PL)[61] Õ
((

1
µε2
∧ n
)

+ 1
µ

(
1
µε2
∧ n
)1/2

)
L, σ2, ε, µ

Õ
(
n+

√
n
µ

)
L

SARAH (PL) [40, 57] Õ
(
n+ 1

µ2

)
L

Q-Geom-SARAH (Theorem 8) Õ
((

1
µ2∧µε2

)3(1+δ)/2
∧
{
n3/2 +

√
n
µ

})
L

E-Geom-SARAH (Theorem 9) Õ
((

1
µ2∧µε2

)1+δ
∧
{
n+

√
n
µ

})
L

This line of research has shown that algorithms with better complexity can be designed in a finite-sum
setting with some levels of adaptivity, generally using the previously mentioned technique–variance reduction.
Unfortunately, while these algorithms show some signs of adaptivity, e.g., they do not require the knowledge
of µ, they usually fail to adapt to more than one regimes at once: strongly-convex vs convex loss functions,
non-convex vs gradient-dominated regime and low vs high precision. To the best of our knowledge, the only
paper that tackles multiple such issues is the work of [28]. However, even this work does not provide full
adaptivity as it focuses on the convex setting. We are not aware of any work which manages to provide a
fully adaptive algorithm in the non-convex setting.

Contributions. In this work we present a new method—the geometrized stochastic recursive gradient
(Geom-SARAH) algorithm—that exhibits adaptivity to the PL constant, target accuracy and to the variance
of stochastic gradients. Geom-SARAH is a double-loop procedure similar to the SVRG or SARAH algorithms.
Crucially, our algorithm does not require the computation of the full gradient in the outer loop as performed
by other methods, but makes use of stochastic estimates of gradients in both the outer loop and the inner loop.
In addition, by exploiting a randomization technique “geometrization” that allows certain terms to telescope
across the outer loop and the inner loop, we obtain a significantly simpler analysis. As a byproduct, this
allows us to obtain adaptivity, and our rates either match the known lower bounds [12] or achieve the same
rates as existing state-of-the-art specialized methods, perhaps up to a logarithmic factor; see Table 1 and 2
for the comparison of two versions of Geom-SARAH with existing methods. On a side note, we develop a
non-adaptive version of Geom-SARAH (the last row of Table 1) that strictly outperforms existing methods in
PL settings. Interestingly, when ε ∼ µ, our complexity even beats the best available rate for strongly convex
functions [4]. We would like to point out that our notion of adaptivity is different from the one pursued by
algorithms such as AdaGrad [10] or Adam [21, 48], where they focus on the geometry of the loss surface. In
our case, we focus on adaptivity to different parameters and regimes.

2. Preliminaries

Basic notation and definitions. We use ‖·‖ to denote standard Euclidean norm, we write either min{a, b}
(resp. max{a, b}) or a∧b (resp. a∨b) to denote minimum and maximum, and we use standard bigO notation
to leave out constants1. We adopt the computational cost model of the IFO framework introduced by [1] in

1. As implicitly assumed in all other works, we use O(log x) and O(1/x) as abbreviations of O((log x)∨1) and O((1/x)∨1). For
instance, the term O(1/ε) should be interpreted as O((1/ε)∨1) and the term O(logn) should be interpreted as O((logn)∨1).
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which upon query x, the IFO oracle samples i and out outputs the pair (fi(x),∇fi(x)). A single such query
incurs a unit cost.

Assumption 1 The stochastic gradient of f is L-Lipschitz in expectation. That is,

E‖∇fξ(x)−∇fξ(y)‖2 ≤ L2 ‖x− y‖2 , ∀x, y ∈ Rd. (2)

Assumption 2 The stochastic gradient of f has uniformly bounded variance. That is, there exists σ2 > 0
such that

E ‖∇fξ(x)−∇f(x)‖2 ≤ σ2, ∀x ∈ Rd. (3)

Assumption 3 f satisfies the PL condition2 with parameter µ ≥ 0. That is,

‖∇f(x)‖2 ≥ 2µ(f(x)− f(x?)), ∀x ∈ Rd, where x? = arg min f(x). (4)

We denote ∆f
def
= f(x̃0)−f(x?) to be functional distance to optimal solution. For non-convex objectives,

our goal is to output an ε-approximate first-order stationary point.

Definition 1 We say that x ∈ Rd is an ε-approximate first-order stationary point of (1) if ‖∇f(x)‖2 ≤ ε2.

For a gradient dominated function, the quantity of the interest is the functional distance from an optimum,
characterized in the following definition.

Definition 2 We say that x ∈ Rd is an ε-accurate solution of (1) if f(x)− f(x?) ≤ ε2.

Accuracy independence and almost universality. We review two fundamental definitions introduced
by [28] that serve as a building block for desirable “parameter-free" optimization algorithms. We refer to the
first property as ε-independence.

Definition 3 An algorithm is ε-independent if it guarantees convergence at all accuracies ε > 0.

This is a crucial property as the desired target accuracy is usually not known a-priori. Moreover, an
ε-independent algorithm can provide convergence to any precision without the need for a manual adjustment
of the algorithm or its parameters. To illustrate this, we consider Spider [12] and Spiderboost [57]
algorithms. Both of these enjoy the same complexity O(n+

√
n/ε2) for non-convex smooth functions, but the

stepsize for Spider is ε-dependent, making it impractical as this value is often hard to tune.
The second property is inspired by the notion of universality [37], requiring for an algorithm to not rely

on any a-priori knowledge of smoothness or any other parameter such as the bound on variance.

Definition 4 An algorithm is almost universal if it only requires the knowledge of the smoothness L.

There are several algorithms that satisfy both properties for smooth non-convex optimization, including
SAGA, SVRG [47], Spiderboost [57], SARAH [39], and SARAH-SGD [54]. Unfortunately, these algo-
rithms are not able to provide a good result in both low and high precision regimes, and in order to perform
well, they require the knowledge of extra parameters. This is not the case for our algorithm which is both
almost universal and ε-independent. Moreover, our method is adaptive to the PL constant µ, and to low and
high precision regimes.

2. Functions satisfying this condition are sometimes also called gradient dominated.
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Geometric distribution. Finally, we introduce an important technical tool behind the design of our
algorithm, the geometric distribution, denoted by N ∼ Geom(γ). Recall that Prob(N = k) = γk(1 −
γ), ∀k = 1, 2, . . . , where an elementary calculation shows that EGeom(γ) [N ] = γ/1−γ.

We use the geometric distribution mainly due to its following property, which helps us to significantly
simplify the analysis of our algorithm.

Lemma 5 Let N ∼ Geom(γ). Then for any sequence D0, D1, . . . with E|DN | <∞,

EDN −DN+1 = (1/EN)(D0 − EDN ). (5)

Remark 6 The requirement E|DN | <∞ is essential. A useful sufficient condition is |Dk| = O(Poly(k))
because a geometric random variable has finite moments of any order.

3. Algorithm

Algorithm 1 Geom-SARAH
Input: stepsizes {ηj}, big-batch sizes {Bj}, expected inner-loop queries {mj}, mini-batch sizes {bj},
initializer x̃0, tail-randomized fraction δ
for j = 1, . . . d(1 + δ)T e do
x

(j)
0 = x̃j−1

Sample Jj , |Jj | = Bj

v
(j)
0 = 1/Bj

∑
i∈Jj ∇fi(x

(j)
0 )

Sample Nj ∼ Geom(γj) s.t. ENj = mj/bj
for k = 0, . . . , Nj − 1 do
x

(j)
k+1 = x

(j)
k − ηjv

(j)
k

Sample I(j)
k , |I(j)

k | = bj

v
(j)
k+1 = (1/bj)

∑
i∈I(j)

k

(∇fi(x(j)
k+1)−∇fi(x(j)

k )) + v
(j)
k

end for
end for
GenerateR(T ) supported on {T, . . . , d(1 + δ)T e} with Prob(R(T ) = j) = ηjmj/

∑d(1+δ)Te
j=T ηjmj

Output: x̃R(T )

The algorithm that we propose can be seen as a combination of the structure of SCSG methods [27, 29]
and the SARAH biased gradient estimator v(j)

k+1 = (1/bj)
∑

i∈I(j)
k

(
∇fi(x(j)

k+1)−∇fi(x(j)
k )
)

+ v
(j)
k due to its

recent success in the non-convex setting. Our algorithm consists of several epochs. In each epoch, we start
with an initial point x(j)

0 from which the gradient estimator is computed using Bj sampled indices, which
is not necessarily the full gradient as in the case of classic SARAH or SVRG algorithm. After this step, we
incorporate geometrization of the inner-loop, where the epoch length is sampled from a geometric distribution
with predefined mean mj and in each step of the inner-loop, the SARAH gradient estimator with batch size
bj is used to update the current solution estimate. At the end of each epoch, the last point is taken as the
initial estimate for consecutive epoch. The output of our algorithm is then a random iterate x̃R(T ), where the
indexR(T ) is sampled such that Prob(R(T ) = j) = ηjmj/

∑d(1+δ)Te
j=T+1 ηjmj for j = T, . . . , d(1 + δ)T e. Note

that R(T ) = T when δ = 0. This procedure can be seen tail-randomized iterate which as an analogue of
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tail-averaging in the convex-case [46]. For functions f with finite support (finite n), the sampling procedure
in Algorithm 1 is sampling without replacement. For the infinite support, this is just Bj or bj i.i.d. samples,
respectively. The pseudo-code is shown in Algorithm 1.

Define Tg(ε) and Tf (ε) as the iteration complexity to find an ε-approximate first-order stationary point
and an ε-approximate solution, respectively:

Tg(ε)
def
= min{T : E

∥∥∇f(x̃R(T ))
∥∥2 ≤ ε2,∀T ′ ≥ T}, (6)

Tf (ε)
def
= min{T : E(f(x̃R(T ))− f(x?)) ≤ ε2, ∀T ′ ≥ T}, (7)

where x̃R(T ) is output of given algorithm.
The query complexity to find an ε-approximate first-order stationary point and an ε-approximate solution

are defined as Compg(ε) and Compf (ε), respectively. It is easy to see that

ECompg(ε) =

d(1+δ)Tg(ε)e∑
j=1

(2mj +Bj), ECompf (ε) =

d(1+δ)Tf (ε)e∑
j=1

(2mj +Bj).

4. Convergence Analysis

We conduct the analysis of our method in the way, where we first look at the progress of inner cycle for which
we establish bounds on the norm of the gradient, which is subsequently used to prove convergence of the full
algorithm. We assume f to be L-smooth and satisfy PL condition with µ ≥ 0.

4.1. One Epoch Analysis

We start from a one-epoch analysis that connects consecutive iterates. It lays the foundation for complexity
analysis. The analysis is similar to [11] and presented in Appendix C.

Theorem 7 Assume that 2ηjL ≤ min {1, bj/√mj}, then under assumptions 1 and 2,

E‖∇f(x̃j)‖2 ≤
2bj
ηjmj

E(f(x̃j−1)− f(x̃j)) +
σ2I(Bj < n)

Bj
.

4.2. Complexity Analysis

We consider two versions of our algorithm–Q-Geom-SARAH and E-Geom-SARAH. These two version
differs only in the way how we select the big batch size Bj for our algorithm. For Q-Geom-SARAH, we
select quadratic growth of Bj and E-Geom-SARAH, this is selected to be exponential. The convergence
guarantees follow with all proofs relegated to Appendix.

Theorem 8 (Q-Geom-SARAH) Set the hyperparameters as

ηj =
bj

2L
√
mj

, bj ≤
√
mj , mj = Bj = j2 ∧ n, δ = 1.

Then

ECompg(ε) = Õ
({

L3

µ3
+
σ3

ε3

}
∧
{
n3/2 +

√
nL

µ

}
∧

(L∆f )3/2 + σ3

ε3
∧
√
n(L∆f + σ2)

ε2

)
,

ECompf (ε) = Õ
({

L3

µ3
+

σ3

µ3/2ε3

}
∧
{
n3/2 +

√
nL

µ

})
.
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where Õ only hides universal constantsand logarithmic terms.
In Appendix B.1, we state the detailed complexity bound in Theorem 10 without hiding any logarithmic

terms. Theorem 8 shows an unusually strong adaptivity in that the last two terms match the state-of-the-art
complexity [12] for general smooth non-convex optimization while it may be further improved when PL
constant is large without any tweaks.

There is a gap between the complexity of Q-Geom-SARAH and the best achievable rate by non-adaptive
algorithms in the PL case. This motivates us to consider another variant of Geom-SARAH that performs
better for PL objectives while still have guarantees for general smooth nonconvex objectives.

Theorem 9 (E-Geom-SARAH) Fix any α > 1 and δ ∈ (0, 1]. Set the hyperparameters as

ηj =
bj

2L
√
mj

, bj ≤
√
mj , where mj = α2j ∧ n, Bj = dα2j ∧ ne.

Then

ECompg(ε) = Õ
({

L2(1+δ)

µ2(1+δ)
+
(σ
ε

)2(1+δ)
}
∧
{
n+

√
nL

µ

}
∧

(L∆f )2 + σ4

ε4
∧
√
n(L∆f + σ2)

ε2

)
,

ECompf (ε) = Õ

({
L2(1+δ)

µ2(1+δ)
+

(
σ2

µε2

)1+δ
}
∧
{
n+

√
nL

µ

})
.

where Õ hides sub-polynomial terms defined in Appendix B.1, and constants that depend on α.

In Appendix B.1, we state the detailed complexity bound in Theorem 12 without hiding any sub-
polynomial terms. Note that in order to provide convergence result for all the cases we need δ to be arbitrarily
small positive constant, thus one might almost ignore factor 1 + δ in the complexity results. Recall that δ = 0
impliesR(T ) = T meaning that the output of an algorithm is the last iterate, which is common setting, e.g.
for Spiderboost or SARAH, under assumption µ > 0.
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[23] Jakub Konečný, Zheng Qu, and Peter Richtárik. S2CD: Semi-stochastic coordinate descent. Optimiza-
tion Methods and Software, 32(5):993–1005, 2017.

[24] Dmitry Kovalev, Konstantin Mishchenko, and Peter Richtárik. Stochastic newton and cubic newton
methods with simple local linear-quadratic rates. arXiv preprint arXiv:1912.01597, 2019.

[25] Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don’t jump through hoops and remove those
loops: Svrg and katyusha are better without the outer loop. ALT-The 31st International Conference on
Algorithmic Learning Theory, 2020.

[26] Guanghui Lan, Zhize Li, and Yi Zhou. A unified variance-reduced accelerated gradient method for
convex optimization. Advances in Neural Information Processing Systems, 2019.

[27] Lihua Lei and Michael I Jordan. Less than a single pass: Stochastically controlled stochastic gradient
method. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017.

[28] Lihua Lei and Michael I Jordan. On the adaptivity of stochastic gradient-based optimization. SIAM
Journal on Optimization (SIOPT), 2019.

[29] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization via scsg
methods. In Advances in Neural Information Processing Systems, pages 2348–2358, 2017.

[30] Yehuda Kfir Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and
acceleration. In Advances in Neural Information Processing Systems, pages 6500–6509, 2018.

[31] Zhize Li and Jian Li. A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. In Advances in Neural Information Processing Systems, pages 5564–5574, 2018.
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Figure 1: Comparison of convergence with respect to norm of the gradient for different high (top row) low
precision (bottom row) VR methods. Datasets: mushrooms (left) w8a (middle) ijcnn1 (right).

Appendix A. Experiments

To support our theoretical result, we conclude several experiments using logistic regression with non-convex
penalty Ψλ(x) = λ/2

∑d
j=1

x2
j/1+x2

j . The objective that we minimize is of the form

1/n
n∑
i=1

log
(

1 + e−yiw
>
i x
)

+ Ψλ(x),

where wi’s are the features, yi’s the labels and λ > 0 is a regularization parameter. This fits to our framework
with Lfi = ‖ai‖2/4 +λ. We compare our adaptive methods against state-of-the-art methods in this framework–
SARAH [40], SVRG [47], Spiderboost [57], adaptive and fixed version of SCSG [29] with big batch sizes
B = cj3/2 ∧ n for some constant c. We use all the methods with their theoretical parameters. We use SARAH
and Spiderboost with constant step size 1/2L, which implies batch size to be b =

√
n. In this scenario,

Spiderboost and SARAH are the same algorithm and we refer to both as SARAH. The same step size is
also used for SVRG which requires batch size b = n2/3. The same applies to SCSG and our methods and we
adjust parameter accordingly, e.g. this applies that for our methods we set bj =

√
mj . For E-Geom-SARAH,

we chose α = 2. We also include SGD methods with the same step size for comparison. All the experiments
are run with λ = 0.1. We use three dataset from LibSVM3: mushrooms (n = 8, 124, p = 112), w8a
(n = 49, 749, p = 300), and ijcnn1 (n = 49, 990, p = 22).

We run two sets of experiments– low and high precision. Firstly, we compare our adaptive methods
with the ones that can guarantee convergence to arbitrary precision ε – SARAH, SVRG and adaptive SCSG.
Secondly, we conclude the experiment where we compare our adaptive methods against ones that should
provide better convergence in low precision regimes– SARAH and SVRG with big batch size B = 1024,
adaptive SCSG and SGD with batch size equal to 32. For all the experiments, we display functional value
and norm of the gradient with respect to number of epochs (IFO calls divided by n). For all Figures 2 and 1,

3. available on https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 2: Comparison of convergence with respect to functional value for different high (top row) low
precision (bottom row) VR methods. Datasets: mushrooms (left) w8a (middle) ijcnn1 (right).

we can see that our adaptive method perfoms the best in all the regimes and the only method that reaches
comparable performance is SCSG.

Appendix B. Detailed Theoretical Results

B.1. Theorems with all terms included

We state more detailed complexity bounds for Q-Geom-SARAH and E-Geom-SARAH by revealing the
logarithmic and sub-polynomial terms. Throughout this subsection, we define ∆ as ∆f + σ2/L.

Theorem 10 (Q-Geom-SARAH) Set the hyperparameters as

ηj =
bj

2L
√
mj

, bj ≤
√
mj , mj = Bj = j2 ∧ n, δ = 1.

Then

ECompg(ε) = O
({

L3

µ3
+
σ3

ε3
+ log3

(
µ∆

ε2

)}
∧
{
n3/2 +

(
n+

√
nL

µ

)
log

(
L∆√
nε2

)}
∧

{
(L∆)3/2

ε3
+
σ3

ε3
log3

(σ
ε

)}
∧
{√

nL∆

ε2
+

√
nσ2

ε2
log3 n

})
,

ECompf (ε) = O
({

L3

µ3
+

σ3

µ3/2ε3
+ log3

(
∆

ε2

)}
∧
{
n3/2 +

(
n+

√
nL

µ

)
log

(
∆

ε2

)})
,

where O only hides universal constants.

Remark 11 Theorem 10 continues to hold if ηjL = θbj/
√
mj for any 0 < θj < 1/2 and mj , Bj ∈

[a1j
2, a2j

2] for some 0 < a1 < a2 <∞ for sufficiently large j.
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Let es denote the exponential square-root, i.e. es(x) = exp{
√
x}. It is easy to see that log x =

O(es(log x)) and es(log x) = O (xa) for any a > 0.

Theorem 12 (E-Geom-SARAH) Fix any α > 1 and δ ∈ (0, 1]. Set the hyperparameters as

ηj =
bj

2L
√
mj

, bj ≤
√
mj , where mj = α2j ∧ n, Bj = dα2j ∧ ne.

Then

ECompg(ε) = O
({

L2(1+δ)

µ2(1+δ)
es

(
2 logα

{
µ∆

ε2

})
+
(σ
ε

)2(1+δ)
}

log2 n

∧
{
n log

(
L

µ

)
+

(
n+

√
nL

µ

)
log

(
L∆√
nε2

)}
∧ (L∆)2

δ2ε4
∧
√
nL∆ log n

δε2

)
,

ECompf (ε) = O
({

L2(1+δ)

µ2(1+δ)
es

(
2 logα

{
∆

ε2

})
+

(
σ2

µε2

)1+δ
}

log2 n

∧
{
n log

(
L

µ

)
+

(
n+

√
nL

µ

)
log

(
∆

ε2

)})
,

where O only hides universal constants and constants that depend on α.

B.2. Better rates for non-adaptive Geom-SARAH

In this section, we provide the versions of our algorithms, which are neither almost universal nor ε-independent,
but they either reach the known lower bounds or best achievable results known in literature. We include
this result for two reasons. Firstly, we want to show there is a small gap between results in Section 4.2
and the best results, which might be obtained. We conjecture that this gap is inevitable. Secondly, our
complexity result for the functional gap beats the best known complexity result known in literature which is
O
(
log3B{B +

√
B/µ} log(1/ε)

)
, where B = O ({σ2/µε2} ∧ n) [61], where our complexity result does not

involve log3B factor. Finally, we obtain very interesting result for the norm of the gradient, which we discuss
later in this section. The proofs are relegated into Appendix C.

Theorem 13 (Non-adaptive) Set the hyperparameters as

ηj =
bj

2L
√
mj

, bj ≤
√
mj , Bj = mj = B.

1. If B =
(

σ2

4µε2
∧ n
)

and δ = 0 then

ECompf (ε) = O

((
B +

√
BL

µ

)
log

(
∆f

ε2

))
.

2. If B =
({

8σ2

ε2
+ 8σ4/3L2/3

ε4/3µ2/3

}
∧ n
)

and δ = 0 then

ECompg(ε) = O

((
B +

√
BL

µ

)
log

L∆f√
Bε2

)
.

14



Looking into these result, there is one important thing to note. While these methods reach state-of-the-art
performance for PL objectives, they provide no guarantees for the case µ = 0.

For the ease of presentation we assume σ2,∆f , L = O(1). For Q-Geom-SARAH, we can see that in
term of Õ notation, we match the best reachable rate in case µ = 0. For the case µ > 0, we see slight
degradation in performance for both high and low precision regimes. For E-Geom-SARAH, we can see a bit
different results. There is a 1/ε degradation comparing to the low precision case and exact match for high
precision case with µ = 0. For the case µ > 0, E-Geom-SARAH matches the best achievable rate for high
precision and also for in low precision regime in the case when rate is dominated by factor 1/ε2. Comparison
to other methods together with the dependence on parameters can be found in Tables 1 and 2.

One interesting fact to note is that in the second case of Theorem 13, if µ ∼ ε and L,∆f , σ
2 = O(1),B ∼

1/ε2 and ECompg(ε) = O (1/ε2 log (1/ε)). This is even logarithmically better than the rate O(1/ε2 log3(1/µ))
obtained by [4] for strongly-convex functions. Note that a strongly convex function with modulus µ is always
µ-PL. We plan to further investigate this strong result in the future.

Appendix C. Proofs

C.1. Proof of Lemma 5

By definition,

E(DN −DN+1) =
∑
n≥0

(Dk −Dk+1) · γk(1− γ)

= (1− γ)(D0 −
∑
k≥1

Dk(γ
k−1 − γk)) = (1− γ)

1

γ
D0 −

∑
k≥0

Dk(γ
k−1 − γk)


= (1− γ)

1

γ
D0 −

1

γ

∑
k≥0

Dkγ
k(1− γ)

 =
1− γ
γ

(D0 − EDN ),

where the last equality is implied by the condition that E|DN | <∞.
In order to use Lemma 5, one needs to show E|DN | < ∞. We start with the following lemma as the

basis to apply geometrization. The proof is distracting and relegated to the end of this section.

Lemma 14 Assume that ηjL ≤ 1. Then E|D(s)
Nj
| <∞ for s = 1, 2, 3, where

D
(1)
k = Ej

∥∥∥ν(j)
k −∇f(x

(j)
k )
∥∥∥2
, D

(2)
k = Ejf(x

(j)
k ), D

(3)
k = Ej

∥∥∥∇f(x
(j)
k )
∥∥∥2
,

and Ej denotes the expectation over the randomness in j-th outer loop.

Based on Lemma 14, we prove two lemmas, which helps us to establish the sequence that is used to prove
convergence. Throughout the rest of the section we assume that assumption 1 and 2 hold.

Lemma 15 For any j,

Ej
∥∥∥ν(j)

Nj
−∇f(x̃j)

∥∥∥2
≤
mjη

2
jL

2

b2j
Ej
∥∥∥ν(j)

Nj

∥∥∥2
+
σ2I(Bj ≤ n)

Bj
,

where Ej denotes the expectation over the randomness in j-th outer loop.
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Proof Let Ej,k and Varj,k denote the expectation and variance operator over the randomness of I(j)
k . Since

I(j)
k is independent of x(j)

k ,

Ej,kν
(j)
k+1 = ν

(j)
k + (∇f(x

(j)
k+1)−∇f(x

(j)
k )).

Thus,
ν

(j)
k+1 −∇f(x

(j)
k+1) = ν

(j)
k −∇f(x

(j)
k ) +

(
ν

(j)
k+1 − ν

(j)
k − Ej,k(ν

(j)
k+1 − ν

(j)
k )
)
.

Since I(j)
k is independent of (ν

(j)
k , x

(j)
k ),

Covj,k

(
ν

(j)
k −∇f(x

(j)
k ), ν

(j)
k+1 − ν

(j)
k

)
= 0.

As a result,

Ej,k
∥∥∥ν(j)

k+1 −∇f(x
(j)
k+1)

∥∥∥2
=
∥∥∥ν(j)

k −∇f(x
(j)
k )
∥∥∥2

+ Varj,k(ν
(j)
k+1 − ν

(j)
k ). (8)

By Lemma 22,

Varj,k(ν
(j)
k+1 − ν

(j)
k ) = Var

 1

bj

∑
i∈I(j)

k

(∇fi(x(j)
k+1)−∇fi(x(j)

k ))


≤ 1

bj

1

n

n∑
i=1

∥∥∥∇fi(x(j)
k+1)−∇fi(x(j)

k )− (∇f(x
(j)
k+1)−∇f(x

(j)
k ))

∥∥∥2
(9)

≤ 1

bj

1

n

n∑
i=1

∥∥∥∇fi(x(j)
k+1)−∇fi(x(j)

k )
∥∥∥2
.

Finally by assumption 1,

1

n

n∑
i=1

∥∥∥∇fi(x(j)
k+1)−∇fi(x(j)

k )
∥∥∥2
≤ L2

∥∥∥x(j)
k+1 − x

(j)
k

∥∥∥2
= η2

jL
2
∥∥∥ν(j)

k

∥∥∥2
.

By (8),

Ej,k
∥∥∥ν(j)

k+1 −∇f(x
(j)
k+1)

∥∥∥2
=
∥∥∥ν(j)

k −∇f(x
(j)
k )
∥∥∥2

+
η2
jL

2

bj

∥∥∥ν(j)
k

∥∥∥2
.

Let k = Nj and take expectation over all randomness in Ej . By Lemma 14, we can apply Lemma 5 on

Dk = Ej
∥∥∥ν(j)

k −∇f(x
(j)
k )
∥∥∥2

. Then we have

0 ≤ Ej
(
‖ν(j)
Nj
−∇f(x

(j)
Nj

)‖2 − ‖ν(j)
Nj+1 −∇f(x

(j)
Nj+1)‖2

)
+
η2
jL

2

bj
Ej‖ν(j)

Nj
‖2

=
bj
mj

Ej
(
‖ν(j)

0 −∇f(x
(j)
0 )‖2 − ‖ν(j)

Nj
−∇f(x

(j)
Nj

)‖2
)

+
η2
jL

2

bj
Ej‖ν(j)

Nj
‖2.

Finally, by Lemma 22,

Ej‖ν(j)
0 −∇f(x

(j)
0 )‖2 ≤ σ2I(Bj < n)

Bj
. (10)

The proof is then completed.
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Lemma 16 For any j,

Ej ‖∇f(x̃j)‖2 ≤
2bj
ηjmj

Ej(f(x̃j−1)− f(x̃j)) + Ej
∥∥∥ν(j)

Nj
−∇f(x̃j)

∥∥∥2
− (1− ηjL)Ej

∥∥∥ν(j)
Nj

∥∥∥2
,

where Ej denotes the expectation over the randomness in j-th outer loop.

Proof By assumption (1),

f(x
(j)
k+1) ≤ f(x

(j)
k ) +

〈
∇f(x

(j)
k ), x

(j)
k+1 − x

(j)
k

〉
+
L

2

∥∥∥x(j)
k − x

(j)
k+1

∥∥∥2

= f(x
(j)
k )− η

〈
∇f(x

(j)
k ), ν

(j)
k

〉
+
η2
jL

2

∥∥∥ν(j)
k

∥∥∥2

= f(x
(j)
k ) +

ηj
2

∥∥∥ν(j)
k −∇f(x

(j)
k )
∥∥∥2
− ηj

2

∥∥∥∇f(x
(j)
k )
∥∥∥2
− ηj

2

∥∥∥ν(j)
k

∥∥∥2
+
η2
jL

2

∥∥∥ν(j)
k

∥∥∥2
. (11)

Let j = Nj and take expectation over all randomness in Ej . By Lemma 14, we can apply Lemma 5 with

Dk = Ejf(x
(j)
k ) and Dk = Ej

∥∥∥∇f(x
(j)
k )
∥∥∥2

. Thus,

0 ≤ Ej
(
f(x

(j)
Nj

)− f(x
(j)
Nj+1)

)
+
ηj
2
Ej
∥∥∥ν(j)

Nj
−∇f(x

(j)
Nj

)
∥∥∥2
− ηj

2
Ej
∥∥∥∇f(x

(j)
Nj

)
∥∥∥2
− ηj

2
(1− ηjL)Ej

∥∥∥ν(j)
Nj

∥∥∥2

=
bj
mj

Ej
(
f(x

(j)
0 )− f(x

(j)
Nj

)
)

+
ηj
2
Ej
∥∥∥ν(j)

Nj
−∇f(x

(j)
Nj

)
∥∥∥2
− ηj

2
Ej
∥∥∥∇f(x

(j)
Nj

)
∥∥∥2
− ηj

2
(1− ηjL)Ej

∥∥∥ν(j)
Nj

∥∥∥2

=
bj
mj

Ej (f(x̃j−1)− f(x̃j)) +
ηj
2
Ej
∥∥∥ν(j)

Nj
−∇f(x

(j)
Nj

)
∥∥∥2
− ηj

2
Ej ‖∇f(x̃j)‖2 −

ηj
2

(1− ηjL)Ej
∥∥∥ν(j)

Nj

∥∥∥2
.

The proof is then completed.

Theorem 7 is then proved by combining Lemma 15 and Lemma 16.
Proof [Proof of Theorem 7] By Lemma 15 and Lemma 16,

E‖∇f(x̃j)‖2 ≤
2bj
ηjmj

E(f(x̃j−1)− f(x̃j)) +
σ2I(Bj < n)

Bj
−

(
1− ηjL−

mjη
2
jL

2

b2j

)
E‖ν(j)

Nj
‖2.

Under condition 2ηjL ≤ min
{

1,
bj√
mj

}
,

1− ηjL−
mj(ηjL)2

b2j
≥ 1− 1

2
− 1

4
≥ 0,

which concludes the proof.

Proof [Proof of Lemma 14] By (9) and assumption 2,

Varj,k(ν
(j)
k+1 − ν

(j)
k ) ≤ 2

bjn

(
n∑
i=1

∥∥∥∇fi(x(j)
k+1)−∇f(x

(j)
k+1)

∥∥∥2
+

n∑
i=1

∥∥∥∇fi(x(j)
k )−∇f(x

(j)
k )
∥∥∥2
)

≤ 4σ2

bj
≤ 4σ2.
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By (8) and taking expectation over all randomness in epoch j,

Ej
∥∥∥ν(j)

k+1 −∇f(x
(j)
k+1)

∥∥∥2
≤ Ej

∥∥∥ν(j)
k −∇f(x

(j)
k )
∥∥∥2

+ 4σ2.

Then
Ej
∥∥∥ν(j)

k −∇f(x
(j)
k )
∥∥∥2
≤
∥∥∥ν(j)

0 −∇f(x
(j)
0 )
∥∥∥2

+ 4kσ2 ≤ (4k + 1)σ2 = poly(k), (12)

where the last inequality uses (10). By remark 6, we obtain that E|D(1)
Nj
| <∞.

On the other hand, by (11), since ηjL ≤ 1,

f(x
(j)
k+1) +

ηj
2

∥∥∥∇f(x
(j)
k )
∥∥∥2
≤ f(x

(j)
k ) +

ηj
2

∥∥∥ν(j)
k −∇f(x

(j)
k )
∥∥∥2
≤ f(x

(j)
k ) + (2k + 1)ηjσ

2,

where the last inequality uses (12). Let

M
(j)
k = f(x

(j)
k+1)− f(x?) +

ηj
2

∥∥∥∇f(x
(j)
k )
∥∥∥2
.

Then
M

(j)
k ≤M (j)

k−1 + (2k + 1)ηjσ
2.

Applying the above inequality recursively, we have

M
(j)
k ≤M (j)

0 + (k2 + 2k)ηjσ
2 = poly(k).

As a result,

0 ≤ f(x
(j)
k+1)− f(x?) ≤M (j)

k−1 = poly(k), 0 ≤
∥∥∥∇f(x

(j)
k )
∥∥∥2
≤ 1

ηj
M

(j)
k = poly(k).

By remark 6, we obtain that

E|f(x
(j)
Nj

)− f(x?)| <∞, E|D(3)
Nj
| = E

∥∥∥∇f(x
(j)
Nj

)
∥∥∥2
<∞.

Since f(x?) > −∞, E|D(2)
Nj
| <∞.

C.2. Preparation for Complexity Analysis

Although Theorem 8 and 9 consider the tail-randomized iterate, we start by studying two conventional output
– the randomized iterate and the last iterate. Throughout this subsection we let

λj = ηjmj/bj .

The first lemma states a bound for expected gradient norm of the randomized iterate.

Lemma 17 Given any positive integer T , letR be a random variable supported on {1, . . . , T} with

P(R = j) ∝ λj

Then

E ‖∇f(xR)‖2 ≤
2E (f(x̃0)− f(x?)) + σ2

∑T
j=1 λjI(Bj < n)/Bj∑T

j=1 λj

18



Proof By Theorem 7,

λjE ‖∇f(x̃j)‖2 ≤ 2 (Ef(x̃j−1)− Ef(x̃j)) +
σ2λjI(Bj < n)

Bj
.

By definition,

E ‖∇f(xR)‖2 =

∑T
j=1 E ‖∇f(x̃j)‖2 λj∑T

j=1 λj

≤
2
∑T

j=1 (Ef(x̃j−1)− Ef(x̃j)) + σ2
∑T

j=1 λjI(Bj < n)/Bj∑T
j=1 λj

=
2 (Ef(x̃0)− Ef(x̃T )) + σ2

∑T
j=1 λjI(Bj < n)/Bj∑T

j=1 λj
.

The proof is then completed by the fact that f(x̃T ) ≥ f(x?).

The next lemma provides contraction results for expected gradient norm and function value suboptimality
of the last iterate.

Lemma 18 Define the following Lyapunov function

Lj = E
(
λj ‖∇f(x̃j)‖2 + 2(f(x̃j)− f(x?))

)
.

Then under the assumption 3 with µ possibly being zero,

Lj ≤
1

µλj−1 + 1
Lj−1 +

σ2λjI(Bj < n)

Bj
, (13)

and

E (f(x̃j)− f(x?)) ≤ 1

µλj + 1
E (f(x̃j−1)− f(x?)) +

λj
µλj + 1

σ2I(Bj < n)

2Bj
. (14)

Proof When µ = 0, the lemma is a direct consequence of Theorem 7. Assume µ > 0 throughout the rest of
the proof. Let

χj =
µλj

µλj + 1
.

Then by assumption 3,

E(f(x̃j)− f(x?)) = (1− χj)E(f(x̃j)− f(x?)) + χjE(f(x̃j)− f(x?))

≤ (1− χj)E(f(x̃j)− f(x?)) +
χj
2µ

E ‖∇f(x̃j)‖2

=
1

2(µλj + 1)

(
λjE ‖∇f(x̃j)‖2 + 2E(f(x̃j)− f(x?))

)
=

1

2(µλj + 1)
Lj .
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By Theorem 7,

Lj ≤ 2E(f(x̃j−1)− f(x?)) +
σ2λjI(Bj < n)

Bj

≤ 1

µλj−1 + 1
Lj−1 +

σ2λjI(Bj < n)

Bj
.

On the other hand, by Theorem 5,

2µE(f(x̃j)− f(x?)) ≤ E‖∇f(x̃j)‖2 ≤
2

λj
E(f(x̃j−1)− f(x̃j)) +

σ2I(Bj < n)

Bj
.

Rearranging terms concludes the proof.

The third lemma shows that Lj and E(f(x̃j)− f(x?)) are uniformly bounded.

Lemma 19 For any j > 0,

Lj ≤ ∆j
def
= 2∆f +

 ∑
t≤j:Bt<n

λt
Bt

σ2.

Proof By (13), since µ ≥ 0,

Lj ≤ Lj−1 +
σ2λjI(Bj < n)

Bj
.

Moreover, by Theorem 7,

L1 ≤ 2E(f(x̃0)− f(x?)) +
λ1σ

2I(B1 < n)

B1
.

Telescoping the above inequalities yields the bound for Lj .

The last lemma states refined bounds for E ‖∇f(x̃j)‖2 and E(f(x̃j)− f(x?)) based on Lemma 18 and
Lemma 19.

Lemma 20 Fix any constant c ∈ (0, 1). Suppose Bj can be written as

Bj = dB̃j ∧ ne,

for some strictly increasing sequence B̃j . Assume that λj is non-decreasing and

B̃j−1λj

B̃jλj−1

≥
√
c.

Let
Tµ(c) = min{j : λj > 1/µc}, Tn = min{j : B̃j ≥ n},

where Tµ(c) =∞ if no such j exists, e.g. for µ = 0. Then for any j > Tµ(c),

E ‖∇f(x̃j)‖2 ≤ min


 j−1∏
t=Tµ(c)

1

µλt

 ∆Tµ(c)

λj
+
σ2I(j > Tµ(c))

(1−
√
c)B̃j

,

(
1

µλTn + 1

)(j−Tn)+ ∆Tn

λj

 ,
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and

E (f(x̃j)− f(x?)) ≤ min


 j∏
t=Tµ(c)+1

1

µλt

∆Tµ(c) +
σ2I(j > Tµ(c))

2(1−
√
c)µB̃j

,

(
1

µλTn + 1

)(j−Tn)+

∆Tn

 ,

where
∏b
t=a ct = 1 if a > b.

Proof We first prove the bounds involving Tµ(c). Assume Tµ(c) <∞. Then for j > Tµ(c),

1

µλj + 1
≤ 1

µλj−1 + 1
<

1

µλj−1
< c. (15)

By (13), (14) and the condition that λj ≥ λj−1, we have

Lj ≤
1

µλj−1
Lj−1 +

σ2λjI(Bj < n)

Bj
≤ 1

µλj−1
Lj−1 +

σ2λj

B̃j
,

and

E (f(x̃j)− f(x?)) ≤ 1

µλj
E (f(x̃j−1)− f(x?)) +

σ2I(Bj < n)

2µBj

≤ 1

µλj
E (f(x̃j−1)− f(x?)) +

σ2

2µB̃j
.

Applying the above inequalities recursively and using Lemma 19 and (15), we obtain that

λjE ‖∇f(x̃j)‖2 ≤ Lj ≤

 j−1∏
t=Tµ(c)

1

µλt

LTµ(c) + σ2
j∑

t=Tµ(c)+1

cj−tλt

B̃t

(i)

≤

 j−1∏
t=Tµ(c)

1

µλt

∆Tµ(c) + σ2
j∑

t=Tµ(c)+1

(
√
c)j−tλj

B̃j

=

 j−1∏
t=Tµ(c)

1

µλt

∆Tµ(c) +
σ2λj

(1−
√
c)B̃j

where (i) uses the condition that B̃j−1λj/B̃jλj−1 ≥
√
c and thus Bt ≥ Bj(

√
c)(j−t). Similarly,

E (f(x̃j)− f(x?)) ≤

 j∏
t=Tµ(c)+1

1

µλt

∆Tµ(c) +
σ2

2(1−
√
c)µB̃j

.

Next, we prove the bounds involving Tn. Similar to the previous step, the case with j ≤ Tn can be easily
proved. When j > Tn, Bj = n and thus

Lj ≤
(

1

µλTn + 1

)
Lj−1, E (f(x̃j)− f(x?)) ≤

(
1

µλTn + 1

)
E (f(x̃j−1)− f(x?)) .

This implies the bounds involving Tn.

Combining Lemma 17 and Lemma 20, we obtain the convergence rate of the randomized iterate.
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Theorem 21 Given any positive integer T , letR be a random variable supported on {T, . . . , d(1 + δ)T e}
with

P(R = j) ∝ λj .

Then under the settings of Lemma 20,

E ‖∇f(x̃R)‖2 ≤ min

{ T−1∏
t=Tµ(c)

1

µλt

 ∆Tµ(c)

λT
+
σ2I(T > Tµ(c))

(1−
√
c)B̃T

,

(
1

µλTn + 1

)(T−Tn)+ ∆Tn

λT
,

2∆T + σ2
∑d(1+δ)T e

j=T λjI(Bj < n)/Bj∑d(1+δ)T e
j=T λj

}
,

and

E (f(x̃R)− f(x?)) ≤ min


 T∏
t=Tµ(c)+1

1

µλt

∆Tµ(c) +
σ2I(T > Tµ(c))

2(1−
√
c)µB̃T

,

(
1

µλTn + 1

)(T−Tn)+

∆Tn

 ,

where we set
∏b
t=a ct = 1 if a > b.

Proof By Lemma 20, for any j ∈ [T, d(1 + δ)T e],

E ‖∇f(x̃j)‖2 ≤ min


 j−1∏
t=Tµ(c)

1

µλt

 ∆Tµ(c)

λj
+
σ2I(j > Tµ(c))

(1−
√
c)B̃j

,

(
1

µλTn + 1

)(j−Tn)+ ∆Tn

λj


≤ min


 j−1∏
t=Tµ(c)

1

µλt

 ∆Tµ(c)

λT
+
σ2I(T > Tµ(c))

(1−
√
c)B̃j

,

(
1

µλTn + 1

)(j−Tn)+ ∆Tn

λT

 .

As a result,

E ‖∇f(x̃R)‖2 =

∑d(1+δ)T e
j=T+1 λjE ‖∇f(x̃j)‖2∑d(1+δ)T e

j=T+1 λj

≤ min


 T−1∏
t=Tµ(c)

1

µλt

 ∆Tµ(c)

λT
+
σ2I(T > Tµ(c))

(1−
√
c)B̃j

,

(
1

µλTn + 1

)(T−Tn)+ ∆Tn

λT

 .

Similarly we can prove the bound for E(f(x̃j) − f(x?)). To prove the third bound for E ‖∇f(x̃R)‖2, we
first notice that x̃R can be regarded as the randomized iterate with x̃T being the initializer. By Lemma 17,

E ‖∇f(x̃R)‖2 ≤
2E (f(x̃T )− f(x?)) + σ2

∑d(1+δ)T e
j=T+1 λjI(Bj < n)/Bj∑d(1+δ)T e

j=T+1 λj
.

By Lemma 19,
E (f(x̃T )− f(x?)) ≤ ∆T ,

which concludes the proof. The bound for E(f(x̃R)− f(x?)) can be proved similarly.
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C.3. Complexity Analysis: Proof of Theorem 10

Under this setting,

2λjL =
2ηjmj

bj
=
√
mj = jI(j <

√
n) +

√
nI(j ≥

√
n).

Let c = 1/8. It is easy to verify that B̃j−1λj/B̃jλj−1 ≥ 1/2 >
√
c. Moreover, by Lemma 24,

L
∑

t≤j:Bt<n

λt
Bt

=
∑

t<
√
n∧j

1

t
≤ 1 + log(

√
n ∧ j).

Recalling the definition of ∆ in Lemma 19,

∆j ≤ 2∆f +

 ∑
t≤j:Bt<n

λt
Bt

σ2 ≤ 2∆f +
σ2

L
+

2σ2

L
log(n ∧ j). (16)

Now we treat each of the three terms in the bound of E ‖∇f(x̃j)‖2 in Theorem 21 separately.

(First term.) Write Tµ for Tµ(c) = Tµ(1/8). By definition,

Tµ = min

{
j : λj ≥

1

µ

}
=

{
d2L/µe (d2L/µe ≤

√
n)

∞ (otherwise)

Let

Tg1(ε) = Tµ +
log(2µ∆Tµ/ε

2)

log 8
+

2σ

ε
.

When Tg1(ε) =∞, it is obvious that Tg(ε) ≤ Tg1(ε). When Tg1(ε) <∞, for any T ≥ Tg1(ε),T−1∏
t=Tµ

1

µλt

 ∆Tµ

λT
≤ cT−Tµ

∆Tµ

λT
≤
(

1

8

) log(2µ∆Tµ
/ε2)

log 8 ∆Tµ

λTµ
=

ε2

2µλTµ
≤ ε2

2
.

Note that B̃j = j2 in this case,
σ2

(1−
√
c)B̃T

≤ 2σ2

T 2
≤ ε2

2
.

Recalling the definition (6) of Tg(ε), we obtain that

Tg(ε) ≤ Tg1(ε).

(Second term.) By definition,

Tn = min{j : Bj = n} = d
√
ne, λTn = Tn/2L.

Let

Tg2(ε) = Tn +

(
1 +

2L

µ
√
n

)
log

(
2L∆Tn√
nε2

)
.

23



By Lemma 24,

Tg2(ε)− Tn ≥
log(2L∆Tn/

√
nε2)

log(1 + µ
√
n/2L)

.

When T ≥ Tg2(ε), (
1

µλTn + 1

)(T−Tn)+ ∆Tn

λT
≤
√
nε2

2L∆Tn

∆Tn

λTn
≤ ε2.

Therefore, we have
Tg(ε) ≤ Tg2(ε).

(Third term.) Note that

2L
2T∑
j=T

λjI(Bj < n)/Bj =
2T∑
j=T

I(j <
√
n)/j ≤

2T∑
j=T

I(j <
√
n)/T ≤ T + 1

T
≤ 2.

and

2L

2T∑
j=T

λj =

2T∑
j=T

(
jI(j <

√
n) +

√
nI(j ≥

√
n)
)
≥

2T∑
j=T

(T ∧
√
n) ≥ T 2 ∧

√
nT.

Let
∆̃ = L∆f + σ2.

By Theorem 21 and (16),

E ‖∇f(x̃j)‖2 ≤ 8

(
∆̃

T 2 ∧
√
nT

+
σ2 log(T ∧

√
n)

T 2 ∧
√
nT

)
.

Let

Tg3(ε) =
4
√

∆̃

ε
+

16∆̃√
nε2

, Tg4(ε) = 2 +
4σ

ε

√
2 log

(
4σ

ε
∨ 1

)
+

16σ2 log
√
n√

nε2
.

If T ≥ Tg3(ε),
∆̃

T 2 ∧
√
nT
≤ max

{
∆̃

T 2
,

∆̃√
nT

}
≤ ε2

16
.

If T ≥ Tg4(ε), by Lemma 25 with a =
√
n and x = ε/4σ,

log(T ∧
√
n)

T 2 ∧
√
nT

≤ ε2

16σ2
.

Therefore,
Tg(ε) ≤ Tg3(ε) ∨ Tg4(ε).

Putting three pieces together, we conclude that

Tg(ε) ≤ Tg1(ε) ∧ Tg2(ε) ∧ (Tg3(ε) ∨ Tg4(ε)).
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In this case, the expected computational complexity is

ECompg(ε) =

2Tg(ε)∑
j=1

(2mj +Bj) = 3

2Tg(ε)∑
j=1

(j2 ∧ n)

≤ 3 min


2Tg(ε)∑
j=1

j2, nTg(ε)

 = O
(
T 3
g (ε) ∧ nTg(ε)

)
.

Dealing with Tg1(ε) and Tg2(ε). First we prove that(
T 3
g1(ε) ∧ nTg1(ε)

)
∧
(
T 3
g2(ε) ∧ nTg2(ε)

)
=O

({
L3

µ3
+
σ3

ε3
+ log3

(
µ∆

ε2

)}
∧
{
n3/2 +

(
n+

√
nL

µ

)
log

(
L∆√
nε2

)})
. (17)

We distinguish two cases.

• If Tµ ≤ Tn, since Tg2(ε) > Tn and T 3
n ≤ nTnthen(

T 3
g1(ε) ∧ nTg1(ε)

)
∧
(
T 3
g2(ε) ∧ nTg2(ε)

)
= T 3

g1(ε),

which proves (17).

• If Tµ > Tn, then (
T 3
g1(ε) ∧ nTg1(ε)

)
∧
(
T 3
g2(ε) ∧ nTg2(ε)

)
≤ nTg2(ε).

It is left to prove

n3/2 +

(
n+

√
nL

µ

)
log

(
L∆√
nε2

)
= O

(
L3

µ3
+
σ3

ε3
+ log3

(
µ∆

ε2

))
.

Since Tµ >
√
n/2, we have

√
n = O

(
L
µ

)
. This entails that

n3/2 = O
(
L3

µ3

)
, and n+

√
nL

µ
= O

(
L2

µ2

)
.

As a result, (
n+

√
nL

µ

)
log

(
L∆√
nε2

)
= O

(
L2

µ2

{
log

(
µ∆

ε2

)
+ log

(
L√
nµ

)})
=O

(
L2

µ2

{
log

(
µ∆

ε2

)
+ log

(
L

µ

)})
.

(17) is then proved by the fact that

L2

µ2
log

(
µ∆

ε2

)
≤ L3

µ3
+ log3

(
µ∆

ε2

)
,

L2

µ2
log

(
L

µ

)
= O

(
L3

µ3

)
.
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Dealing with Tg3(ε). We prove that

T 3
g3(ε) ∧ nTg3(ε) = O

(
∆̃3/2

ε3
∧
√
n∆̃

ε2

)
. (18)

We distinguish two cases.

• If ∆̃ ≤ nε2, then
∆̃√
nε2
≤

√
∆̃

ε
≤
√
n, and

∆̃3/2

ε3
≤
√
n∆̃

ε2
.

As a result,

Tg3(ε) = O

(√
∆̃

ε

)
.

Thus,

T 3
g3(ε) ∧ nTg3(ε) = O

(
T 3
g3(ε)

)
= O

(
∆̃3/2

ε3

)
= O

(
∆̃3/2

ε3
∧
√
n∆̃

ε2

)
.

• If ∆̃ ≥ nε2, then
∆̃√
nε2
≥

√
∆̃

ε
≥
√
n, and

∆̃3/2

ε3
≥
√
n∆̃

ε2
.

As a result,

Tg3(ε) = O

(
∆̃√
nε2

)
.

Therefore,

T 3
g3(ε) ∧ nTg3(ε) = O (nTg3(ε)) = O

(√
n∆̃

ε2

)
= O

(
∆̃3/2

ε3
∧
√
n∆̃

ε2

)
.

(18) is then proved by putting two pieces together..

Dealing with Tg4(ε). Note that

Tg4(ε) = O
(
σ

ε

√
log
(σ
ε

)
+
σ2 log

√
n√

nε2

)
= O

(
σ

ε
log
(σ
ε

)
+
σ2 log

√
n√

nε2

)
.

We prove that

T 3
g4(ε) ∧ nTg4(ε) = O

({
σ3

ε3
∧
√
nσ2

ε2

}
log3

(σ
ε
∧
√
n
))

. (19)

We distinguish two cases.
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• If σ2 ≤ nε2, since the mapping y 7→ log y/y is decreasing on [3,∞) (see the proof of Lemma 25),

σ/ε

log(σ/ε)
= O

( √
n

log
√
n

)
=⇒ σ2 log

√
n√

nε2
= O

(σ
ε

log
(σ
ε

))
.

As a result,
Tg4(ε) = O

(σ
ε

log
(σ
ε

))
= O

(σ
ε

log
(σ
ε
∧
√
n
))

.

Thus,

T 3
g4(ε) ∧ nTg4(ε) = O

(
T 3
g4(ε)

)
= O

(
σ3

ε3
log3

(σ
ε
∧
√
n
))

= O
({

σ3

ε3
∧
√
nσ2

ε2

}
log3

(σ
ε
∧
√
n
))

.

• If σ2 ≥ nε2, similar to the above case,
√
n

log
√
n

= O
(

σ/ε

log(σ/ε)

)
=⇒ σ

ε
log
(σ
ε

)
= O

(
σ2 log

√
n√

nε2

)
.

As a result,

Tg4(ε) = O
(
σ2 log

√
n√

nε2

)
= O

(
σ2

√
nε2

log
(σ
ε
∧
√
n
))

.

Thus,

T 3
g4(ε) ∧ nTg4(ε) = O (nTg4(ε)) = O

(√
nσ2

ε2
log
(σ
ε
∧
√
n
))

= O
({

σ3

ε3
∧
√
nσ2

ε2

}
log3

(σ
ε
∧
√
n
))

.

(19) is then proved by putting two pieces together..

Dealing with Tg3(ε) ∨ Tg4(ε). Note that

(Tg3(ε) ∨ Tg4(ε))3 ∧ n(Tg3(ε) ∨ Tg4(ε)) = O
(
T 3
g3(ε) ∧ nTg3(ε) + T 3

g4(ε) ∧ nTg4(ε)
)
.

Using the fact that a ∧ b+ c ∧ d ≤ (a+ c) ∧ (b+ d) and by (18) and (19), we have

T 3
g3(ε) ∧ nTg3(ε) + T 3

g4(ε) ∧ nTg4(ε)

=O

({
∆̃3/2

ε3
+
σ3

ε3
log3

(σ
ε

)}
∧

{√
n∆̃

ε2
+

√
nσ2

ε2
log3 n

})
.

Summary Putting (17) and (18) together and using the fact that ∆̃ = O(L∆), we prove the bound for
ECompg(ε). As for ECompf (ε), by Theorem 21, we can directly apply (17) by replacing ∆/λT by ∆ and
σ2 with σ2/µ.

C.4. Complexity Analysis: Proof of Theorem 12

Under this setting,

2λjL =
2ηjmj

bj
=
√
mj = αjI(j < logα n) +

√
nI(j ≥ logα n).

27



Let c = 1/4α4. Then
B̃j−1λj

B̃jλj−1

≥ 1

α2
>
√
c.

On the other hand,

L
∑

t:Bt<n

λt
Bt

=
1

2

∑
t<
√
n

α−t ≤ 1

2(1− α−1)
=

α

2(α− 1)
.

Recalling the definition of ∆j in Lemma 19,

∆j ≤ 2∆f +

( ∑
t:Bt<n

λt
Bt

)
σ2 ≤ 2∆f +

α

2(α− 1)

σ2

L
, ∆′. (20)

As in the proof of Theorem 8, we treat each of the three terms in the bound of E ‖∇f(x̃j)‖2 in Theorem 21
separately.

(First term.) Write Tµ for Tµ(c) = Tµ(1/4α4). By definition,

Tµ = min

{
j : λj >

4α2

µ

}
=

{
dlogα (8L/µ)e+ 4

(⌈
8Lα4/µ

⌉
≤
√
n
)

∞ (otherwise)
,

and
Tn = min{j : Bj = n} = d(logα n)/2e.

Let

A(ε) = max

{
Tµ +

√
2 logα

(
2µ∆′

ε2

)
, logα

(
2σ

ε

)}
,

and
Tg1(ε) = A(ε)I(A(ε) ≤ Tn) +∞I(A(ε) > Tn).

When Tg1(ε) = ∞, it is obvious that Tg(ε) ≤ Tg1(ε) = ∞. When Tg1(ε) < ∞, i.e. Tµ ≤ A(ε) ≤ Tn, for
any T ≥ Tg1(ε),T−1∏

t=Tµ

1

µλt

 ∆′

λT
=

 T∏
t=Tµ

1

µλt

 (µ∆′) ≤ exp

−
T∧A(ε)∑
t=Tµ

log(µλt)

 (µ∆′).

For any t ∈ [Tµ, A(ε)], since t ≤ Tn, we have λt = αt and thus

log(µλt) = log(µλTµ) + (logα)(t− Tµ) ≥ (logα)(t− Tµ).

Then
T∧A(ε)∑
t=Tµ

log(µλt) ≥
logα

2
(bA(ε)c − Tµ)2 ≥ log

(
2µ∆′

ε2

)
.

This implies that T−1∏
t=Tµ

1

µλt

 ∆′

λT
≤ ε2

2
.
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On the other hand, note that B̃j = α2j in this case, when T > Tg1(ε),

Tg1(ε) ≥ log(2σ/ε)

logα
=⇒ σ2

(1−
√
c)B̃T

≤ ε2

4(1−
√
c)
≤ ε2

2
,

where the last inequality follows from the fact that

4(1−
√
c) = 4

(
1− 1

2α2

)
≥ 2.

Putting pieces together we have
Tg(ε) ≤ Tg1(ε).

(Second term.) Let

Tg2(ε) = Tn +

(
1 +

2L

µ
√
n

)
log

(
2L∆′√
nε2

)
.

Using the same argument as in the proof of Theorem 10,

Tg(ε) ≤ Tg2(ε).

(Third term.) Note that

2L

d(1+δ)T e∑
j=T

λjI(Bj < n)/Bj =

d(1+δ)T e∑
j=T

I(j <
√
n)α−j ≤

∞∑
j=1

α−j =
1

α− 1
.

and

2L

d(1+δ)T e∑
j=T

λj =

d(1+δ)T e∑
j=T

(
αjI(j < Tn) +

√
nI(j ≥ Tn)

)
≥
d(1+δ)T e∑
j=T+1

(αj ∧
√
n) ≥ αd(1+δ)T e ∧ δ

√
nT.

Let
∆̃ = 2L∆′ + σ2/(α− 1).

By Theorem 21,

E ‖∇f(x̃j)‖2 ≤
2L∆′ + σ2/(α− 1)

αd(1+δ)T e ∧ δ
√
nT

=
∆̃

αd(1+δ)T e ∧ δ
√
nT

.

Let

Tg3(ε) = max

{
1

1 + δ
logα

(
∆̃

ε2

)
,

∆̃

δ
√
nε2

}
.

Then
Tg(ε) ≤ Tg3(ε).
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Putting three pieces together, we conclude that

Tg(ε) ≤ Tg1(ε) ∧ Tg2(ε) ∧ Tg3(ε).

In this case, the expected computational complexity is

ECompg(ε) =

d(1+δ)Tg(ε)e∑
j=1

(2mj +Bj) = 3

d(1+δ)Tg(ε)e∑
j=1

(α2j ∧ n)

≤ 3 min


d(1+δ)Tg(ε)e∑

j=1

α2j , nTg(ε)

 = O
(
α2(1+δ)Tg(ε) ∧ nTg(ε)

)
.

Dealing with Tg1(ε) and Tg2(ε). First we prove that(
α2(1+δ)Tg1(ε) ∧ nTg1(ε)

)
∧
(
α2(1+δ)Tg2(ε) ∧ nTg2(ε)

)
=O

({
L2(1+δ)

µ2(1+δ)
es

(
2 logα

{
µ∆′

ε2

})
+
σ2(1+δ)

ε2(1+δ)

}
log2 n ∧

{
n log

(
L

µ

)
+

(
n+

√
nL

µ

)
log

(
L∆′√
nε2

)})
.

(21)

We distinguish two cases.

• If Tg1(ε) ≤ Tn/(1 + δ), since Tg2(ε) > Tn,(
α2(1+δ)Tg1(ε) ∧ nTg1(ε)

)
∧
(
α2(1+δ)Tg2(ε) ∧ nTg2(ε)

)
= α2(1+δ)Tg1(ε)

= O

(
L2(1+δ)

µ2(1+δ)
es

(
2 logα

{
µ∆′

ε2

})
+
σ2(1+δ)

ε2(1+δ)

)

= O

({
L2(1+δ)

µ2(1+δ)
es

(
2 logα

{
µ∆′

ε2

})
+
σ2(1+δ)

ε2(1+δ)

}
log2 n

)
,

which proves (21).

• If Tg1(ε) > Tn/(1 + δ), then(
α2(1+δ)Tg1(ε) ∧ nTg1(ε)

)
∧
(
α2(1+δ)Tg2(ε) ∧ nTg2(ε)

)
≤ nTg2(ε)

= O
(
n log

(
L

µ

)
+

(
n+

√
nL

µ

)
log

(
L∆′√
nε2

))
.

It is left to prove that

n log

(
L

µ

)
+

(
n+

√
nL

µ

)
log

(
L∆′√
nε2

)
=O

({
L2(1+δ)

µ2(1+δ)
es

(
2 logα

{
µ∆′

ε2

})
+
σ2(1+δ)

ε2(1+δ)

}
log2 n

)
. (22)

We consider the following two cases.
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– If L/µ >
√
n,

n log

(
L

µ

)
+

(
n+

√
nL

µ

)
log

(
L∆′√
nε2

)
≤
√
nL

µ
log

(
L

µ

)
+

2
√
nL

µ
log

(
L∆′√
nε2

)
= O

(√
nL

µ
log

{
L2∆′

µ
√
nε2

})
= O

(√
nL

µ
log

(
µ∆′

ε2

)
+

√
nL

µ
log

(
1√

nL2µ2

))
The first term can be bounded by

√
nL

µ
log

(
µ∆′

ε2

)
≤ L2

µ2
log

(
µ∆′

ε2

)
= O

(
L2(1+δ)

µ2(1+δ)
es

(
2 logα

{
µ∆′

ε2

})
log2 n

)
.

To bound the second term, we consider two cases.

∗ If L/µ > n,

√
nL

µ
log

(
L2

√
nµ2

)
≤ 2L3/2

µ3/2
log

(
L

µ

)
= O

(
L2

µ2

)
= O

(
L2(1+δ)

µ2(1+δ)
es

(
2 logα

{
µ∆′

ε2

})
log2 n

)
.

∗ If
√
n < L/µ < n,

√
nL

µ
log

(
L2

√
nµ2

)
≤ 2L

√
n log n

µ
≤ 2L2 log n

µ2
= O

(
L2(1+δ)

µ2(1+δ)
es

(
2 logα

{
µ∆′

ε2

})
log2 n

)
.

(22) is then proved by putting pieces together.

– If L/µ ≤
√
n.

n log

(
L

µ

)
+

(
n+

√
nL

µ

)
log

(
L∆′√
nε2

)
≤ n log n+ 2n log

(
L∆′√
nε2

)
= n log n+ 2n log

(
L

µ
√
n

)
+ 2n log

(
µ∆′

ε2

)
= O

(
n log n+ n logα

(
µ∆′

ε2

))
Since Tg1(ε) > Tn/(1 + δ),

n ≤ α2(1+δ)Tg1(ε) = O

(
L2(1+δ)

µ2(1+δ)
es

(
2 logα

{
µ∆′

ε2

})
+
σ2(1+δ)

ε2(1+δ)

)
. (23)

It is left to prove that

n

log2 n
logα

(
µ∆′

ε2

)
= O

(
L2(1+δ)

µ2(1+δ)
es

(
2 logα

{
µ∆′

ε2

})
+
σ2(1+δ)

ε2(1+δ)

)
. (24)

We distinguish two cases.

∗ If logα(µ∆′/ε2) ≤ 2 log2 n, (24) is proved by (23).
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∗ If logα(µ∆′/ε2) > 2 log2 n,

es

(
2 logα

{
µ∆′

ε2

})
≥ es

(
logα

{
µ∆′

ε2

}
/2

)2

≥ n · es

(
logα

{
µ∆′

ε2

}
/2

)
.

Note that

logα

(
µ∆′

ε2

)
= O

(
es

(
logα

{
µ∆′

ε2

}
/2

))
.

Therefore,
n

log2 n
logα

{
µ∆′

ε2

}
= O

(
es

(
2 logα

{
µ∆′

ε2

}))
,

which proves (24).

Therefore, (22) is proved.

Dealing with Tg3(ε). If δ = 0, the bound is infinite and thus trivial. Assume δ > 0. We prove that

α2(1+δ)Tg3(ε) ∧ nTg3(ε) = O

(
∆̃2

δ2ε4
∧
√
n∆̃ log n

δε2

)
. (25)

Let
h(y) =

1

1 + δ
logα(y)− y

δ
√
n
.

It is easy to see that

h′(y) =
1

y(1 + δ) logα
− 1

δ
√
n
.

Thus h(y) is decreasing on [0, y∗] and increasing on [y∗,∞) where

y∗ =
δ
√
n

(1 + δ)
√
α
.

Now we distinguish two cases.

• If h(y∗) ≤ 0, then h(y) ≤ 0 for all y > 0 and thus h(∆̃/ε2) ≤ 0. As a result,

h

(
∆̃

ε2

)
≤ 0 =⇒ Tg3(ε) ≤ ∆̃

δ
√
nε2

.

If ∆̃/δε2 ≤
√
n,

Tg3(ε) = O(1) =⇒ α2(1+δ)Tg3(ε) ∧ nTg3(ε) = O(1),

and hence (25) is proved by recalling the footnote in page 3. Otherwise, note that

α2(1+δ)Tg3(ε) ∧ nTg3(ε) = O(nTg3(ε)) = O

(√
n∆̃

δε2

)
.

Since ∆̃/δε2 >
√
n,

√
n∆̃

δε2
= O

(
∆̃2

δ2ε4

)
.

Therefore, (25) is proved.
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• If h(y∗) > 0, noting that h(0) = h(∞) = −∞, there must exist 0 < y∗1 < y∗ < y∗2 < ∞ such that
h(y∗1) = h(y∗2) = 0 and h(y) ≥ 0 iff y ∈ [y∗1, y

∗
2]. First we prove that

y∗1 = O (1) , y∗2 = O(δ
√
n log n). (26)

As for y∗1 , if y∗ ≤ 4, then y∗1 ≤ y∗ = O(1). If y∗ > 4, let

y = 1 +
4

y∗
.

Now we prove y∗1 ≤ y. It is sufficient to prove h(y) ≥ 0 and y ≤ y∗. In fact, a simple algebra shows
that

h(y∗) ≥ 0 =⇒ y∗ ≥ e =⇒ y ≤ 4 ≤ y∗.

On the other hand, by Lemma 24

log y ≥ 4/y∗

1 + 4/y∗
≥ 2

y∗
.

Recalling that y∗ = δ
√
n/(1 + δ) logα,

h(y) ≥ 2

(1 + δ)(logα)y∗
− 1

δ
√
n

(
1 +

4

y∗

)
=

1

δ
√
n

(
2− 1− 4

y∗

)
≥ 0.

Therefore, y∗1 = O(1).

As for y∗2 , let C > 0 be any constant, then for sufficiently large C,

(C + 1)δ
√
n logα n ≥ y∗ =

δ
√
n

(1 + δ) logα
.

On the other hand,

h((C + 1)δ
√
n logα(n)) = logα(C logα n)− C logα(δ

√
n).

Then for sufficiently large C,
h((C + 1)δ

√
n logα(n)) ≤ 0.

Recalling that h(y) is decreasing on [y∗,∞) and h(y∗2) = 0, (26) must hold. Based on (26), (25) can
be equivalently formulated as

α2(1+δ)Tg3(ε) ∧ nTg3(ε) = O

(
∆̃2

δ2ε2

{
∆̃2

ε2
∧ y∗2

})
. (27)

Now we consider three cases.

– If ∆̃/ε2 ≥ y∗2 ,

h

(
∆̃

ε2

)
≤ 0 =⇒ Tg3(ε) =

∆̃

δ
√
nε2

.
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Then

α2(1+δ)Tg3(ε) ∧ nTg3(ε) = O(nTg3(ε)) = O

(√
n∆̃

δε2

)
= O

(
∆̃

δ2ε2
y∗2

)
where the last equality uses the fact that

y∗2 ≥ y∗ =
δ
√
n

(1 + δ) logα
.

This proves (27).

– If ∆̃/ε2 ≤ y∗1 ,

h

(
∆̃

ε2

)
≤ 0 =⇒ Tg3(ε) =

∆̃

δ
√
nε2

.

By (26),
Tg3(ε) = O(1) =⇒ α2(1+δ)Tg3(ε) ∧ nTg3(ε) = O(1),

and hence (25) is proved by recalling the footnote in page 3.

– If ∆̃/ε2 ∈ [y∗1, y
∗
2],

h

(
∆̃

ε2

)
≥ 0 =⇒ Tg3(ε) =

1

1 + δ
logα

(
∆̃

ε2

)
.

Then

α2(1+δ)Tg3(ε) ∧ nTg3(ε) = O
(
α2(1+δ)Tg3(ε)

)
= O

(
∆̃2

ε4

)
= O

(
∆̃

ε2

{
∆̃

ε2
∧ y∗2

})
,

which proves (27) since δ = O(1).

Summary Putting (21) and (25) together and using the fact that ∆′, ∆̃ = O(L∆), we prove the bound for
ECompg(ε). As for ECompf (ε), by Theorem 21, we can directly apply (21) by replacing ∆/λT by ∆ and
σ2 with σ2/µ.

C.5. Complexity analysis: Proof of Theorem 13

For the first claim, we set δ = 0 thusR(T ) = T . Applying (13) recursively with the fact
∑T

i=0 1/(1 + x)i ≤
(1 + x)/x for x > 0, we obtain

E
(
f(x̃R(T ))− f(x?)

)
≤ 1

(µλ+ 1)T
E (f(x̃0)− f(x?)) +

σ2I(B < n)

2µB
,

where λ =
√
B/2L. SettingB =

(
n ∧ σ2

4µε2

)
, the second term is less than ε2/2. For T ≥

(
1 + 2L

µ
√
B

)
log

2∆f

ε2

also the first term is less han ε2/2 which follows from Lemma 24. As the cost of each epoch is 2B this result
implies that the total complexity is

O

((
B +

√
BL

µ

)
log

∆f

ε2

)
.
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For the second claim, we use (13) recursively together with Theorem 7 and with the fact
∑∞

i=0 1/(1 +
x)i ≤ (1 + x)/x for x > 0, we obtain

LT ≤
L1

(µλ+ 1)T−1
+
σ2λI(B < n)

B

1 + λµ

λµ
.

Further by Theorem 7,

L1 ≤ 2∆f +
σ2λI(B < n)

B
.

Using definition of Lj and δ = 0, we get

E‖∇f(x̃R(T ))‖2 ≤
2∆f

λ(µλ+ 1)T−1
+
σ2I(B < n)

B

(
2 +

1

λµ

)
≤

2∆f

λ(µλ+ 1)T−1
+
σ2I(B < n)

B

(
2 +

2L√
Bµ

)

The choice of B to be
({

8σ2

ε2
+ 8σ4/3L2/3

ε4/3µ2/3

}
∧ n
)

guarantees that the second term is less than ε2/2. By the
same reasoning as for the second claim, we obtain following complexity

O

((
B +

√
BL

µ

)
log

L∆f√
Bε2

)
.

Appendix D. Miscellaneous

Lemma 22 Let z1, . . . , zM ∈ Rd be an arbitrary population and J be a uniform random subset of [M ]
with size m. Then

Var

 1

m

∑
j∈J

zj

 ≤ I(m < M)

m
· 1

M

M∑
j=1

‖zj‖22.

Lemma 23 For any positive integer n,

n∑
t=1

1

t
≤ 1 + log n.

Proof Since x 7→ 1/x is decreasing,

n∑
t=1

1

t
= 1 +

n∑
t=2

1

t
≤ 1 +

∫ n

1

dx

x
= 1 + log n.

Lemma 24 For any x > 0,
1

log(1 + x)
≤ 1 +

1

x
.
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Proof Let g(x) = (1 + x) log(1 + x)− x. Then

g′(x) = 1 + log(1 + x)− 1 = log(1 + x) ≥ 0.

Thus g is increasing on [0,∞). As a result, g(x) ≥ g(0) = 0.

Lemma 25 For any x > 0 and a > 0, let

y(x, a) = 2 +

√
1

x2
log

(
1

x2
∨ 1

)
+

log a

ax2
.

Then for any y ≥ y(x, a),
log(y ∧ a)

y(y ∧ a)
≤ x2.

Proof Let h(y) = (log y)/y and H(y) = (log(y ∧ a))/(y(y ∧ a)). Then

h′(y) =
1− log y

y2
.

Thus h(y) is decreasing on [0, e] and increasing on [e,∞). As a result,

H(y) = max

{
log y

y2
,
log a

ya

}
.

If x2 > 1/2e, since y ≥ y(x, a) ≥ 2 and h(y) attains its minimum at y = e with h(e) = 1/e,

H(y(x, a)) = h(y(x, a))/y(x, a) ≤ h(e)/2 ≤ x2.

If x2 ≤ 1/2e. First we note that
log a

y(x, a)a
≤ x2,

On the other hand,

y(x, a) ≥

√
1

x2
log

(
1

x2

)
≥
√

2e log(2e) ≥ e.

Since h(y) is decreasing on [e,∞)

log y(x, a)

y(x, a)2
≤

log
(

1
x

√
log
(

1
x2

))
1
x2 log

(
1
x2

) ≤
log
(

1
x

√
1
x2 − 1

)
1
x2 log

(
1
x2

) ≤ x2.
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