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Abstract
The Graphical LASSO method represents sparse inter-variable relationships in the form of a precision
matrix. In this study, we propose a new method “Latent Structured Graphical LASSO” that reflect
prespecified group structure of variables by introducing a regularization scheme similar to the Latent
Group LASSO framework. To represent importance of each group and variable relationship, a group
weight and latent variables that are decomposed from each element of a precision matrix are used.
We adopt a hierarchical Bayesian model with a prior of multivariate Student’s t-distribution for
sparsity enhancement and an optimization method based on a variational EM algorithm. We applied
the method to two real-world datasets, namely, actual spot rates and credit card fraud, and verified the
effectiveness using sparseness, AUC, and correlation anomaly scores. The results indicate that the
method can extract sparse relationships between variables considering underlying group structure.

1. Introduction

Knowledge discovery from high-dimensional networks and graphs is an important issue in data min-
ing for many social and science phenomena. In particular, if a system is composed of multiple factors,
it is natural for us to assume that there are interdependencies between the variables and to understand
the system by extracting these relationships from the data [10]. To extract a sparse Gaussian graphical
model, Banerjee et al. [3] and Friedman et al. [7] have proposed the Graphical LASSO, which
assumes that the precision matrix of a Gaussian likelihood follows a Laplace distribution introducing
sparsity. However, because the Graphical LASSO assumes that each relationship is drawn from the
same distribution, this assumption is inappropriate for problems where the relationships correspond
to several different classes. In other words, when structures are hidden between relationships, the
Graphical LASSO based on a simple L1 regularized sparse model often cannot capture behavior
well, because an equivalent penalty is added to all relationships [20, 22, 23].

In this paper, we propose a new method for extracting structured-sparsity inherent in a Gaussian
graphical model by applying the Latent Group LASSO framework [1, 2, 13, 18]. It is natural to
consider that some kind of structured-sparsity exists in a Gaussian graphical model, so it is important
for interpretation to express such features with models. Here, structured-sparsity means that we
regard one or more relationships as a group allowing duplication, compare the relevance of each
group, and infer a sparse precision matrix along the group structure. Although there are various
studies that introduce structure to the Graphical LASSO [5, 8, 15, 19, 21], the proposed method
differs greatly in that we set up a stochastic model for individual groups and infer the Gaussian
graphical model, especially using latent variables. In particular, Tao et al. proposed a method based
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on overlapping group norm [19], but the proposed method is more flexible in that it optimizes based
on a stochastic model and also tunes the relevance of individual groups.

2. Related Work

2.1. Group LASSO with Latent Variables

The Group LASSO [22] provides sparse solutions for each group along a given discrete structure.
It achieves differently structured sparsity with appropriate sparsity-including norms that often
correspond to convex relaxations of combinatorial penalties on the support (i.e., non-zero pattern) of
the parameter vectors. While most of these norms induce intersection-closed sets of non-zero patterns,
Jacob et al. [13] and Bach et al. [1, 2] introduced a different latent formulation of sparsity-inducing
norms that yields union-closed sets of non-zero patterns, using the latent variables. In this paper, we
denote this method as the Latent Group LASSO.

Let the index set I = {1, . . . ,M} of the model parameters be ω = [ω1, . . . , ωM ]>, and let
G ⊆ 2I be a discrete structure given in advance. Here, 2I is the power set of I. In the Latent Group
LASSO, the parameter vector ω is represented as a sum of latent vectors νG, which are identically
zero at indices not in G ∈ G. Let the weightsW(G) set our prior belief in subset G being relevant
whereW : 2I → R+. Here, R+ is the set of positive real numbers. In particular, a smallerW(G)
means that subset G is more relevant; if G is irrelevant, then W(G) = ∞. The corresponding
regularization term of the Latent Group LASSO is then

Ω(ω) =
∑
G∈G
‖νG‖2W(G)

1
2 . (1)

Note that νG ∈ RM is a vector such that all its components with indices in I \G are zero, and ω
is given by ω =

∑
G∈G νG. Figure 3 in Appendix A shows the difference between the solutions

obtained with the Group LASSO and the Latent Group LASSO. The Latent Group LASSO infers not
only latent variables {νG}G but also the relevance {W(G)}G from the data. Since it is not similar
to the Group LASSO, we need to introduce a probabilistic model for optimization. The specific
optimization method adapted for the proposed method is described in Appendix C.

2.2. Formulation of Graphical LASSO

Let D = {x(n)|x(n) ∈ RM , n = 1, . . . , N} be the observation data normalized to mean 0 and stan-
dard deviation 1. Furthermore, if the data matrix isX = [x(1), . . . ,x(N)]>, the sample covariance
matrix is given as Υ ≡ XX>/N . The purpose of the Graphical LASSO [3] is to find a sparse
precision matrix Λ such that Λij 6= 0 if xi and xj have an essential dependency, while Λij = 0 if
they are only weakly related due to non-essential factors. Actually, the Graphical LASSO is a convex
programming problem, and Friedman et al. [7] proposed an efficient subgradient algorithm to solve
this problem. Here, focusing on a specific variable xi, we appropriately rearrange Λ, Σ ≡ Λ−1, and
Υ so that the elements related to xi are the last row and column and decomposed as follows.

Λ,Σ,Υ =

[
Li li
l>i λi

]
,

[
Si si
s>i σi

]
,

[
Ui ui
u>i vi

]
(2)
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Since Λ is a positive definite matrix, its diagonal elements must be positive. Therefore, the optimal
solution of the Graphical LASSO satisfies the following two equations.

σ∗i = vi + ρ (3)

ω∗i = arg min
ωi

{
1

2

∥∥∥∥S− 1
2

i ui − S
1
2
i ωi

∥∥∥∥2 + ρ ‖ωi‖1

}
(4)

where ωi ≡ S−1i si and ρ is the regularization coefficient. To obtain the optimal sparse precision
matrix Λ∗, (3) and (4) are repeated for x1, . . . , xM , x1, . . . until convergence.

3. Proposed Method

In this section, we formally describe the proposed method, called the “Latent Structured Graphical
LASSO,” which applies latent structured regularization learning to the Graphical LASSO framework.
We introduce a group structure G into the off-diagonal components of a precision matrix Λ, obtain
the sparse optimal precision matrix Λ∗ along the group structure, and adopt the Latent Group LASSO
framework in the regularization term to achieve it.

Let yi ≡ S
− 1

2
i ui (corresponding to the response vector) and Zi ≡ S

1
2
i (corresponding to the

design matrix) in (4) for simplicity of notation. Note that we regard Λij and Λji as the same
parameter since the precision matrix is generally a symmetric matrix. That is, since Λ ∈ RM×M
for D = {x(n)|x(n) ∈ RM , n = 1, . . . , N}, the number of essential parameters for off-diagonal
components in this case is M(M − 1)/2. We flexibly set the group structure G in these parameters
according to prior knowledge and criteria. Since unnecessary groups are reduced as a result of the
optimization, we can arbitrarily set a possible group G in the group structure G (see Appendix B).

In the proposed method, we set the group structure G for all off-diagonal components, so we
optimize them collectively. For this reason, we combine variables as ω = [ω>1 , . . . ,ω

>
M ]> and

y = [y>1 , . . . ,y
>
M ]>. Moreover, let Z be the block diagonal matrix of Z1, . . . ,ZM , where they are

arranged diagonally in Z. This combinations include duplicates due to the symmetry of the precision
matrix, but we adopt them for simplicity of notation. Of course, we can obtain an equivalent optimal
solution even if we formulate without duplicates. From the preparation so far, we solve the following
optimization problem, adding a regularization term based on the Latent Group LASSO.

ω∗ = arg min
ω=

∑
G∈G νG

{
1

2
‖y −Zω‖2 +

∑
G∈G
‖νG‖2W(G)

1
2

}
(5)

We can obtain the sparse optimal off-diagonal components l∗ = [l∗>1 , . . . , l∗>M ]> of the precision
matrix Λ∗ according to l∗i = −λiω∗i from ω∗ obtained in this way.

For the diagonal components, since we use a different regularization term in (5) from that in (4),
we cannot use simple updating rules like (3). Therefore, fixing the off-diagonal components to l∗,
we obtain them by maximizing the likelihood function for λ = [λ1, . . . , λM ]>, i.e.,

λ∗ = arg max
λ

{
log

N∏
n=1

N
(
x(n)

∣∣0,Λ−1 (λ, l∗)
)}

(6)

where Λ(λ, l∗) means the precision matrix in which the diagonal components are λ and the off-
diagonal components are l∗. Thus, even if we update the diagonal components, since (6) is the
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Figure 1: Graph structure and currency clustering calculated from actual spot rates dataset.

maximum likelihood estimation based on observation data D, we have confirmed that the properties
that the precision matrix must satisfy such as regularity and positive definiteness are satisfied. In
numerical calculations, we extract the final optimal solution by repeating the update with (5) and (6)
until Λ∗ converges.

We optimize the off-diagonal components with (5) by applying the method proposed by Sher-
vashidze & Bach [18]. They introduce β > 0 as a hyperparameter that enhances more sparsity. In
this paper, we present some results tuned for β and summarize the more detailed optimization flow
of the proposed method in Appendix C and D.

4. Experiments

4.1. Actual Spot Rates

This experiment used real data on daily spot prices (foreign currency in dollars), and we considered
the effect of changes in input graph structure G on estimation. Here, the currencies used in this
dataset are AUD (Australia), BEF (Belgium), CAD (Canada), CHF (Switzerland), DEM (Germany),
ESP (Spain), FRF (France), GBP (United Kingdom), JPY (Japan), NLG (Netherlands), NZD (New
Zealand), and SEK (Sweden) [11].

After normalization, we show the results of estimation using the Graphical LASSO, where (a’)
ρ = 0.3, (a”) ρ = 0.6, and (a”’) ρ = 0.9, and the proposed method, where (b’) β = 1.5 and G
is assigned one relationship to one group. Then (c) β = 2.1 and G has a group structure based
on the relationships between variables as described later, in Figure 1. In each of the figures, the
absolute values of the precision matrix represent the thickness of the edge on the same scale, in
addition, red means positive values and blue means negative values. Moreover, the colors of each
node mean clustering based on the affinity propagation [6]. Throughout, we may infer results such
that the continental nations of Western Europe, which include Germany (DEM) and countries that
could be called part of the “Franc Economic Zone,” have a deeper relationship. However, in the
Graphical Lasso, the existence of a connection tends to be ambiguous because all relations are given
the same weight. In contrast, as shown in (b’) and (b”) showing the top 20 weights in ascending order
ofW(G), the proposed method can clearly extract relationships even with actual data, and at the
same time, can estimate the degree of irrelevanceW satisfying desirable properties ofW(G)→∞
corresponding to νG → 0. Due to this, we considerW(G) to be a useful index for quantitatively
evaluating a group structure. By the way, looking at (b’), the color of the node suggests the existence
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Table 1: Sparsity and AUC scores for test data.

MLE OAS BS GL β = 0.0 β = 0.1 β = 0.2

SPARSITY 0.9149 0.9152 0.9326 0.9175 0.9184 0.9190 0.9377
AUC 0.9494 0.9494 0.9502 0.9495 0.9494 0.9494 0.9505

of this cluster in the affinity propagation method. Therefore, we regard this as prior knowledge and
add a group structure that makes all the connections in {BEF, CHF, DEM, FRF, NLG} and {CAD,
ESP, GBP, SEK} to G used in (b’) and induce {CAD, ESP, GBP, SEK} to be easily created. The
result of using such an input group structure is (c). Consequently, we can obtain a new graph that
considers the effects of clusters {CAD, ESP, GBP, SEK} on the basis of our prior knowledge.

4.2. Credit Card Fraud Detection

Figure 2: Percentile value of anomalies ‖d‖2.

In this experiment, we compare the performance of
the precision matrices extracted through the anomaly
detection task with a credit card fraud detection
dataset. Due to confidentiality issues, This dataset
contains features V1, V2, ..., V28 that are the result
of a principal component analysis (PCA) transfor-
mation and features “Time” and “Amount” which
have not been transformed [17]. Here, we used 29
features, V1, V2, ..., V28, and “Amount,” and then,
the test data included 1.0% fraudulent transactions. After normalization, we inferred the precision
matrices from the Graphical LASSO (GL), which tuned the regularization coefficients by likelihood
cross-validation, and the proposed method for several β. In addition, we define the anomalies di for
xi used in this task as di ∝ − log p(x′i|x′−i,D), where D is the training dataset, and x′−i means a
vector obtained by removing the i-th element from test sample x′. Moreover, we defined the outlier
for each test sample as a 2-norm of the outlier vector, i.e., ‖d‖2.

Figure 2 shows the outliers ‖d‖2 of the test data for each method plotted against each percentile.
From this figure, up to the 99th percentile, the outliers were almost the same for all methods, but then,
the outliers of the proposed method increased dramatically compared with the Graphical LASSO
(GL). This trend is very reasonable because the test data contained 1% fraudulent transactions.

Furthermore, as shown by Table 1, we calculated the sparsity of a precision matrix and the area
under curve of the receiver operating characteristic (AUC) scores. Here, the maximum likelihood
estimation (MLE), oracle approximating shrinkage (OAS) and basic shrinkage (BS) were added as
comparison methods [4, 14]. Moreover, in this experiment, we used the Gini index proposed by
Hurley & Rickard [9] as the most robust measurement for evaluating sparsity. The range of the Gini
index is [0, 1], and the higher its value, the sparser a precision matrix. As a result, we believe that the
proposed method is highly effective even in tasks that apply precision matrices such as abnormality
detection and change point detection while maintaining sufficient sparsity.
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5. Conclusion and Future Work

In this paper, we proposed a new regularized method that introduces latent variables and a group
structure for all relationships to the Graphical LASSO framework. Using the proposed method,
we can incorporate our own interests and prior knowledge into the proposed method and extract a
precision matrix along the way from the data. As future work, we are trying to create a more accurate
model by optimizing the pre-input group structure G itself and to extend the method to a mixture
normal distribution, as studied for the Graphical LASSO [12].
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Figure 3: Difference between Group LASSO and Latent Group LASSO.

Appendix A. Group LASSO vs. Latent Group LASSO

Fig. 3 shows the difference between the solutions obtained with Group LASSO and Latent Group
LASSO. We consider the group structure of G = {G1, G2, G3} for ω = [ω1, ω2, ω3, ω4, ω5, ω6]

>.
In Fig. 3, red, green, and yellow respectively represent G1, G2, and G3. As a result of learning, red
and yellow groups are selected. As a result of learning with Group LASSO, variables belonging to
G2 among those belonging to G1 and G3 are reduced to 0. With Latent Group LASSO, however,
variables contained only in G2 are reduced to 0.

Appendix B. Input Structure

To discover the structure underlying the precision matrix Λ, we consider what group structure G
should be given in advance. Basically, as a result of optimization, the weight of unnecessary groups
isW(G)→∞, and the corresponding latent variable is νG → 0, so it is no problem to include all
possible groups in G, allowing duplication. If we consider combinatorial explosions, we can set G on
the basis of some criteria. For example, as shown in section 4.1, we may determine G on the basis of
characteristics specific to observation data, such as country or region. Alternatively, if we do not have
a priori knowledge, we can use the results obtained by other methods such as the Graphical LASSO
in advance. In any case, by setting G according to our interests, we can compare the relevance of G
throughW(G).

Actually, the proposed method also includes a regularization term equivalent to the Graphical
LASSO, that is, if G = {{1}, . . . , {M(M − 1)/2}} and ∀W(G) (G ∈ G) are always fixed to the
same value, (5) is equivalent to regularization term (4) of the Graphical LASSO corresponding to
ρ =W(G)

1
2 . Note that there are M(M − 1)/2 off-diagonal parameters in the M -dimensional data

due to the symmetry of the precision matrix. Although there are some errors due to differences
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Figure 4: Group structure introduced to off-diagonal components. Note that index assignment we
have shown is example, and lower part of this figure shows case where M = 5. For such
assignments, we can group single connection, such as GA and GB , or group multiple
connections based on domain knowledge of x, such as GC or GD. After optimization of
proposed method, irrelevant groups becomeW(G) → ∞ and therefore corresponding
νG → 0. IfW(G) <∞, we can evaluate relevance withW(G) magnitude.

in optimization methods, we have confirmed in this situation that the proposed method extracts a
precision matrix similar to the Graphical LASSO. Therefore, we can implicitly compare the results
obtained with the Graphical LASSO by including {1}, . . . , {M(M − 1)/2} in G in the proposed
method. Figure 4 schematically illustrates the contents of this section.

Appendix C. Optimization Flow

The Latent Group LASSO uses K linear regression problems with design matrices Zk and response
vectors yk for k ∈ {1, 2, , . . . , K} obtained by dividing observation data D into K pieces. For each
Zk and yk, the classical Gaussian linear model with i.i.d. noise of variance σ2, i.e.,

yk ∼ N (Zkωk, σ2I), (7)

is assumed with the Latent Group LASSO. Here, I is an identity matrix. Moreover, for each k and
group structure G, ωk is represented as a sum of latent vectors {νkG}G∈G such as

ωk =
∑
G∈G

νkG. (8)

9
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Therefore, the distribution followed by yk is equal to

yk ∼ N

(
Zk
∑
G∈G

νkG, σ
2I

)
. (9)

For the prior distribution of {νkG}G∈G , it is assumed that the following properties are satisfied. First,
{νkG}G∈G are jointly independent. Second, for ∀G ∈ G, νkG has an isotropic density with inverse
scale parameterW(G), i.e.,

p(νkG|W(G)) = qG(‖νkG‖2W(G)
1
2 )f(G)

|G|
2 , (10)

where qG is a heavy-tailed distribution that induces a sparse solution and only depends on G through
its cardinality |G|. Finally, as νkG are assumed independent,

p(ωk|W) =
∏
G∈G

p(νkG|W(G)). (11)

In this statistical model, the log likelihood of parameter vectors is
∑

G∈G log qG(‖νkG‖2W(G)
1
2 ),

which very closely resembles norm (1). Consequently, maximum a posteriori (MAP) estimation
using prior distribution (10) for the latent variable νkG corresponds to regularization learning using
(1). As a result, by maximizing the marginal likelihood for {W(G)}G∈G , i.e.,

p({yk}k|W) =
K∏
k=1

∫
p
(
yk
∣∣∣Zkωk, σ2I

)
p
(
ωk
∣∣∣W)dωk, (12)

we can obtain the optimal solution ofW(G) of a group G in the Latent Group LASSO.
Empirically, when the variance of the prior distribution p(νkG|W(G)) is smaller than the variance

σ2 of the likelihood,W(G) may be underestimated. To solve this problem, Shervashidze & Bach
[18] introduced β > 0 as a control parameter of the estimation result and proposed a method of
obtaining an appropriate estimation result ofW(G) by tuning β. Specifically, since we usually do not
have prior knowledge about p(W(G)), a uniform distribution in p(W(G)) is implicitly assumed with
(11). The method using control parameter β makesW(G) be overestimated as p(W(G)) ∝ W(G)β .
In this case, (11) becomes

p(ωk|W) =
∏
G∈G

p(νkG|W(G))p(W(G)). (13)

After the above optimization procedure, if we want to determine ω∗ uniquely, we can use statistics
for {ωk∗}k, such as the mean, or the solution obtained by optimizing (5) with the Group LASSO
usingW∗.

In this paper, we used a multivariate Student’s t-distribution as the probability density function
of latent variable νkG, i.e.,

p(νkG|W(G), θ) =

(
W(G)

2π

) |G|
2 Γ

(
θ + |G|

2

)
Γ(θ)

(
1 +
‖νkG‖22W(G)

2

)−θ− |G|
2

,

where θ is a parameter governing the shape of the distribution. The smaller θ is, the heavier-tailed
the distribution (for θ ≤ 1, there is no finite variance). We carried out all experiments with θ = 1.5
and K = 100.
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Algorithm 1 Latent Structured Graphical LASSO
Input:
Set K-divided normalized data {Dk}k, group structure G, and hyper-parameters of qG
Calculate {Υk}k from {Dk}k
Initialize {Λk}k, {Σk}k ← {Υk−1}k, {Υk}k
repeat

Calculate {yk}k and {Zk}k
Optimize hierarchical Bayesian model p

(
{yk}k |W

)
and update {νkG}k,G, {W(G)}G, and σ

{ωk}k ← {
∑

G ν
k
G}k

for i = 1 to M do
{lki }k ← {−λkiωki }k

end for
{λk}k ←

{
arg max

λk

N
(
Dk
∣∣∣0,Λk−1 (

λk, lk
))}

k

Calculate {Λk}k and {Σk}k from {lk}k and {λk}k
if {Λk}k converges then

Break this loop
end if

until

Appendix D. Latent Structured Graphical LASSO Algorithm

We summarize the optimization flow of the proposed method in Algorithm 1. For numerical
calculations, a variational EM algorithm using the Palmer et al. method allows us to obtain closed-
form updates that optimize the marginal likelihoods (12) [16]. Based on this update, the computational
complexity required for one iteration isO(P 3), which corresponds to the inverse of the P ×P matrix
with the number of latent variables as P .
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