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Abstract
The problem of robust optimal transport (OT) aims at recovering the best transport plan with respect
to the worst possible cost function. In this work, we study novel robust OT formulations where
the cost function is parameterized by a positive semi-definite Mahalanobis metric. In particular,
we study several different regularizations on the Mahalanobis metric – element-wise p-norm, KL-
divergence, and doubly-stochastic constraint – and show that the resulting optimization formulations
can be considerably simplified by exploiting the problem structure. For large-scale applications, we
additionally propose a suitable low-dimensional decomposition of the Mahalanobis metric for the
studied robust OT problems. Overall, we view the robust OT (min-max) optimization problems as
non-linear OT (minimization) problems, which we solve using the Frank-Wolfe algorithm. Empirical
results on real-world datasets show the efficacy of our approach.

1. Introduction

Optimal transport (OT) has become a popular tool in diverse machine learning applications such as
domain adaptation [5, 13], multi-task learning [12], natural language processing [1], and multi-label
classification [10], to name a few. The classical discrete OT problem, also popularly known as the
earth mover’s distance [17], may be formulated as follows:

Wc(µ1, µ2) = min
γ∈Π(µ1,µ2)

〈γ,C〉 , (1)

where C ∈ Rm×n+ is the ground cost matrix between the source distribution’s samples X =
{xi}mi=1 ∈ Rd×m and the target distribution’s samples Y = {yi}ni=1 ∈ Rd×n, the (i, j)-th entry of
C is c(xi,yj), c(x,y) is the given ground cost function, µ1 and µ2 are the given discrete marginal
distributions of the source and target distributions, respectively, and Π(µ1, µ2) is the set of feasible
joint transportation plan: Π(µ1, µ2) = {γ ∈ Rm×n : γ ≥ 0; γ1 = µ1; γ>1 = µ2}. The special case
of c(x,y) = ‖x− y‖2 (squared Euclidean distance) is popularly denoted by W2

2 (the 2-Wasserstein
distance) and can be reformulated as follows [14]: W2

2(µ1, µ2) = minγ∈Π(µ1,µ2) 〈Vγ , I〉, where
Vγ =

∑
ij(xi − yj)(xi − yj)

>γij and I is the identity matrix.
Recently, [14] propose a robust variant of the W2

2 distance, termed as the Subspace Robust
Wasserstein (SRW) distance, as follows: SRW2

k(µ1, µ2) = maxM∈Mminγ∈Π(µ1,µ2) 〈Vγ ,M〉,
where the domain M is defined as M = {M : 0 � M � I; trace(M) = k}. It should be
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noted that 〈Vγ ,M〉 =
∑

i,j γijcM(xi,yj), where cM(x,y) = (x − y)>M(x − y) is a Maha-
lanobis metric parameterized cost function. [7] also study the above form of Mahalanobis met-
ric parameterized cost functions in the robust OT setting, but with the domain M defined as
M = {M : M � 0; ‖M‖∗p = 1}, where ‖·‖∗p denotes the Schatten p-norm regularizer, i.e.,

‖M‖∗p := (
∑

i σi(M)p)
1
p . Here, σi(M) denotes the i-th largest eigenvalue of M. Both [7, 14]

pose their Mahalanobis metric parameterized robust optimal transport problems as an optimization
problem over the metric M. This involves satisfying the positive semi-definite constraint, which
typically requires costly eigendecomposition operation of d× d matrices in each step costing O(d3).

In this work, we study novel robust OT formulations where the cost function is parameterized
by the Mahalanobis metric M � 0. For a class of regularizers on M, we show that the problem
may be solved by dropping the positive semi-definiteness constraint on the metric M as the resulting
optimal solution M∗ satisfies M∗ � 0. This considerably simplifies our optimization methodology
and brings down our the per-iteration computational cost of learning the d× d metric M to O(d2).
The proposed class of regularizers on the Mahalanobis metric M include entry-wise p-norm for
p ∈ (1, 2], the KL-divergence, and the doubly stochastic constraint. It should be noted that O(d2)
computations may also be impractical for high dimensional data. We, therefore, additionally propose
a suitable low-dimensional decomposition of the Mahalanobis metric for the studied robust OT
problems, resulting in the per-iteration computational cost of O(r2), where r � d. We view the
robust OT min-max optimization problems as non-linear OT (minimization) problems and propose
an efficient Frank-Wolfe algorithm for solving them. Empirical results on the Yahoo Flickr Creative
Commons tag-prediction dataset illustrates the effectiveness of our approach.

A longer version of the manuscript is available at https://arxiv.org/pdf/2010.11852.
pdf. Our code is available at https://github.com/satyadevntv/ROT4C.

2. Novel formulations for robust optimal transport

In this section, we propose three novel formulations of the Mahalanobis metric parameterized robust
optimal transport problem, which may be rewritten as

WROT(µ1, µ2) := min
γ∈Π(µ1,µ2)

f(γ), (2)

where the function f : Rm×n → R : γ 7→ f(γ) is defined as

f(γ) := max
M∈M

〈Vγ ,M〉 . (3)

Here,M = {M : M � 0 and Ω(M) ≤ 1} and Ω(·) is a convex regularizer on the set of positive
semi-definite matrices. It should be noted that (2) is a convex optimization problem. First-order
methods for solving (2) requires computing the (sub-)gradient∇f(γ), which can be obtained in terms
of an optimal solution M∗(γ) of (3) by using the Danskin’s theorem [3]. Since problem (3) involves
the positive semi-definite constraint, computing M∗(γ) usually involves costly eigendecomposition
(or equivalent operations) of d× d matrices.

We show that for the proposed family of regularizers Ω(·), one can drop the positive semi-definite
constraint in problem (3) as the optimal solution M∗ of the resulting problem automatically satisfies
M∗ � 0. This considerably simplifies our optimization formulations.
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2.1. Element-wise p-norm regularization on M

We considerM = {M : M � 0 and ‖M‖p ≤ 1} in (3), where ‖M‖p = (
∑

ij |Mij |p)
1
p denotes

the element-wise p-norm on the matrix M. As Vγ is the second-order moment matrix of the
displacements (associated with a transport plan), the proposed regularization on the metric M learns
appropriate weights to the individual components of Vγ . In contrast, the W2

2 distance results from
M = I, i.e., it enforces the first-order displacements to be uncorrelated and have unit variance. This
may be a strong assumption in real-word applications.

The family of element-wise p-norm regularizers includes the popular Frobenius norm for p = 2.
For p ∈ [1, 2), the entry-wise p-norm regularization induces a sparse structure on the metric M. A
sparse Mahalanobis metric is useful for working with high dimensional features as it helps to avoid
spurious correlations [15, 16]. The following result provides an efficient reformulation of the robust
OT problem (2) for a subset of the element-wise p-norm regularizers on M.

Theorem 2.1 Let k ∈ N, p = 2k
2k−1 , andM = {M : M � 0 and ‖M‖p ≤ 1}. Consider the

following optimization problem:

WE(µ1, µ2) := min
γ∈Π(µ1,µ2)

‖Vγ‖2k , (4)

where Vγ =
∑

ij(xi − yj)(xi − yj)
>γij . Then, Problem (4) is equivalent to Problem (2) and

the objectives of (2) and (4) are equal for any feasible γ. For a given γ ∈ Π(µ1, µ2), the optimal
solution of (3) is M∗(γ) = ‖Vγ‖1−2k

2k (Vγ)◦(2k−1), where A◦(k) denotes the k-th Hadamard power
of a matrix A, i.e., A◦(k)(s, t) = A(s, t)k.

Computing optimization ingredients efficiently: An optimal solution γ∗ of Problem (4) is also
an optimal solution of the following problem: W2k

E = minγ∈Π(µ1,µ2) ‖Vγ‖2k2k. From an optimization
perspective, the gradient computation for W2k

E is simpler than that of Problem (4).

2.2. Doubly-stochastic regularization on M

Positive semi-definite matrices having each row (and consequently each column) lie on the simplex
are also known as positive semi-definite stochastic matrices in the literature. Applications such as
graph clustering and community detection applications involve learning such matrices [2, 8, 9, 20, 21].

We consider the robust OT problem (2) in which the metric M is a positive semi-definite
stochastic matrix, i.e.,

f(γ) = max
M∈M

〈Vγ ,M〉 , (5)

whereM = {M : M � 0;M > 0;M1 = 1}. It should be noted that optimization over the set of
positive semi-definite stochastic matrices is non-trivial and computationally challenging. We show,
however, that Problem (5) can be solved efficiently by adding a negative entropy regularization term.
To this end, we propose to solve for the following f̃(γ) instead:

f̃(γ) = arg max
M∈M

〈Vγ ,M〉 − λ
∑
ij

Mij lnMij , (6)

where λ > 0 is a small regularization parameter. Our next result discusses the solution of (6).

Theorem 2.2 For a given γ ∈ Π(µ1, µ2), the optimal solution of (6) has the form: M∗(γ) =
D
(
e◦(Vγ/λ)

)
D, where D is a diagonal matrix with positive entries.

The matrix D in Theorem 2.2 may be efficiently computed using the Sinkhorn algorithm [6].
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3. Low-dimensional decomposition of M

In Section 2, we discuss several regularization on the Mahalanobis metric M that lead to efficient
computation of M∗(γ), i.e., solving (3). However, given Vγ , computing M∗(γ) with such regular-
ization still requires O(d2) computations, which though linear in the size of M, may be prohibitive
for high-dimensional data. To alleviate such concerns, we propose to decompose the Mahalanobis
metric M as follows:

M = B⊗ Id1 , (7)

where ⊗ denotes the Kronecker product, Id1 denotes the identity matrix of size d1, and B � 0
is a r × r positive semi-definite matrix such that d = d1r, where d1 � r. The proposed decom-
position induces the following interesting reformulation of the objective in (3): 〈Vγ ,B⊗ Id1〉 =
〈
∑

ij γij(xi − yj)(xi − yj)
>,B⊗ Id1〉 = 〈Uγ ,B〉, where Uγ =

∑
ij γij(Xi −Yj)

>(Xi −Yj),
and Xi and Yj are d1 × r matrices obtained by reshaping the vectors xi and yj , respectively.

We observe that the proposed decomposition of the Mahalanobis metric divides the d features
into r groups, each with d1 input features. Therefore, the positive semi-definite matrix B may be
viewed as a Mahalanobis metric over the feature groups. In addition, it can be shown that any
regularization on the metric M, among the ones discussed in Section 2, transforms into an equivalent
regularization on the “group metric” B. Thus, with the proposed decomposition M = B ⊗ Id1 ,
the function f(γ) in the robust optimal transport problem (2) may be equivalently re-written as:
f(γ) = maxB∈M 〈Uγ ,B〉, whereM = {B : B � 0; Ω(B) ≤ 1} and Ω(·) is a regularization on
B, as discussed in Section 2.

4. Proposed algorithm

The formulations proposed in Section 2 are expressed as minimization of a non-linear convex function
f : Π→ R : γ 7→ f(γ) over Π(µ1, µ2). Here, the objective function f encapsulates the Mahalanobis
metric M and is more generically written as f(γ) := maxM∈M〈Vγ ,M〉.

A popular way to solve a convex constrained optimization problem (2) is with the Frank-Wolfe
algorithm, which is also known as the conditional gradient algorithm. It requires solving a constrained
linear minimization sub-problem (LMO) at every iteration. For many convex constraints, the LMOs
are often easy to solve, thereby making the FW algorithm an appealing choice in practice [11].

The proposed algorithm for (2) is shown in Algorithm 1. The LMO step boils down solving the
optimal transport problem (1), where the cost matrix C is replaced by ∇f(γ). When regularized
with an entropy regularization term, the LMO admits a computationally efficient solution using the
Sinkhorn iterations [6].

Compuation of ∇f(γ). We begin by noting that that Vγ = ZDiag(vec(γ))Z>, where Z is
a d × mn matrix with (i, j)-th column as (xi − yj), Diag(·) acts on a vector and outputs the
corresponding diagonal matrix, and vec(·) vectorizes a matrix in the column-major order. Using the
Danskin’s theorem [3],the expression of the gradient∇f(γ) is∇f(γ) = vec−1(diag(Z>M∗(γ)Z)).
Here, diag(·) extracts the diagonal (vector) of a square matrix and vec−1 reshapes a vector into a
matrix and M∗(γ) is the solution to the problem maxM∈M〈Vγ ,M〉 for a given γ. For the scenario
discussed in Section 3, a similar expression of∇f(γ) is obtained when f(γ) = maxB∈M〈Uγ ,B〉 .
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Algorithm 1 Proposed FW algorithm for (2)
Input: Source distribution’s samples X = {xi}mi=1 ∈ Rd×m and the target distribution’s samples
Y = {yi}ni=1 ∈ Rd×n. Initialize γ0 ∈ Π(µ1, µ2).
for t = 0 . . . T do
LMO step: compute γ̂t := arg min

β∈Π(µ1,µ2)
〈β,∇f(γt)〉 .

Update γt+1 = (1− s)γt + sγ̂t for s = 2
t+2 .

end for
Output: γ∗ and M∗ = M∗(γ∗).

5. Flickr tag-prediction: Learning with robust Wasserstein loss

Frogner et al. [10] propose using the Wasserstein distance as a loss function (between the ground
truth and the predictions for a given instance) in the multi-label classification setting, where both the
(normalized) ground truth (µt) and the prediction via softmax function (µp) lie on a L−1 dimensional
simplex. Here, L is the number of labels. The Wasserstein loss measures the distance between µt
and µp while respecting the ground cost function c, which captures the relationship between different
labels. We demonstrate the effectiveness of the proposed robust Wasserstein distances (2) as a loss
function in this setting.

Computing the gradient of the robust Wasserstein loss function: Learning with the proposed
robust Wasserstein loss requires computation the gradient of the robust Wasserstein distance (2)
with respect to the predictions µp, i.e., ∇µpWROT(µp, µt). We compute it as follows: for a given
µt and µp, we solve for (2) using the proposed FW algorithm (Section 4) and obtain the optimal
γ∗ and the corresponding M∗ = M∗(γ∗). With the known optimal Mahalanobis metric M∗, the
robust OT problem (2) reduces to the classical OT problem. Hence, in this case, the expression of
∇µpWROT(µp, µt) is same as the gradient expression of the Wasserstein loss proposed in [10].

Experimental setup: We follow the multi-label experimental protocol of [10] on the Ya-
hoo/Flickr Creative Commons 100M dataset [18]. The goal is to predict the tags of the given
images, i.e., words describing the given images. The number of labels is 1000 and the train/test sets
consist of 10 000 images each. The features for images (available at http://cbcl.mit.edu/
wasserstein) are extracted using MatConvNet [19]. The features of the tags, over which the
Mahalanobis metric is learned for the robust Wasserstein loss, is obtained from the 300-dimensional
fastText embeddings [4].

Results: Table 1 reports the standard AUC obtained with the proposed robust Wasserstein loss
functions. We note that the proposed robust Wasserstein distances outperform the 2-Wasserstein
distance based loss function.
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