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Abstract
We study the implicit regularization of optimization methods for linear models interpolating the
training data in the under-parametrized and over-parametrized regimes. For over-parameterized
linear regression, where there are infinitely many interpolating solutions, different optimization
methods can converge to solutions with varying generalization performance. In this setting, we
show that projections onto linear spans can be used to move between solutions. Furthermore, via
a simple reparameterization, we can ensure that an arbitrary optimizer converges to the minimum
`2-norm solution with favourable generalization properties. For under-parameterized linear clas-
sification, optimizers can converge to different decision boundaries separating the data. We prove
that for any such classifier, there exists a family of quadratic norms ‖·‖P such that the classifier’s
direction is the same as that of the maximum P-margin solution. We argue that analyzing conver-
gence to the standard maximum `2-margin is arbitrary and show that minimizing the norm induced
by the data can result in better generalization. We validate our theoretical results via experiments
on synthetic and real datasets.

1. Introduction

Modern machine learning has seen the rise of large over-parameterized models such as deep neural
networks [16]. These models are highly expressive and are able to fit or interpolate all the training
data [7, 8, 41]. Since the number of parameters is much larger than the size of the training dataset,
there are infinitely many solutions that can fit the data. These solutions can have vastly different
generalization performance and the optimization method employed to minimize the training loss
also influences the test performance [3, 17, 24, 34, 40]. This is in contrast to classical regularized,
under-parameterized models where there is a unique solution and the optimization method is solely
responsible for converging to this solution at an appropriate rate.

A recent line of work [3, 17–19, 22, 30, 31, 39] studies the implicit regularization of optimiza-
tion methods in simplified settings. The implicit regularization of an optimizer biases it towards
specific types of minimizers that are preferred amongst the infinite set of solutions. Two such sim-
plified settings studied in this literature are over-parameterized linear regression with the squared
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loss [17] and linear classification on separable data using losses with an exponential tail [39]. In
each of these settings, recent works studies numerous optimization methods characterizing their
implicit bias towards the minimum `2 norm or maximum `2 margin solutions respectively. Even
in these simple scenarios, it is difficult to analyze the solutions of common optimization methods
such as Adagrad [14]. Moreover, recent works [3, 35] have shown that it is not possible to derive
closed-form expressions in more challenging settings like matrix factorization.

Perhaps more importantly, these works on implicit regularization do not give any practical
guidance when choosing an optimizer even for over-parameterized linear problems. On the other
hand, from an optimization perspective, generalization performance is rarely considered when de-
signing a new optimization method. Consequently, numerous methods (for example [9, 32]) that
are robust and have good training performance do not generalize well and are not used for training
over-parameterized models. Only few recent works [11, 24, 27] consider the generalization perfor-
mance when designing an optimization method, however, these methods are heuristic and do not
show a provable improvement in the generalization. We address the following questions:

When does an optimizer converge to solutions that generalize well for over-parameterized lin-
ear regression and classification? Can we design techniques that ensure that optimization methods
converge to interpolating solutions with good generalization performance.

1.1. Background and Contributions

We consider linear models interpolating the training data in the under-parametrized and over-
parametrized regimes. In particular, we study the implicit bias of optimizers in the linear regression
(Section 2) and classification (Sections 3) settings.

Over-parametrized linear regression: In [17], the authors study the implicit bias of gradient
descent and its accelerated variants and show that it converges to the minimum `2-norm solution.
More generally, they characterize the implicit regularization for the steepest descent and mirror
descent algorithms. In Section 2, we prove that every interpolating solution has a corresponding
quadratic norm that it minimizes. This result enables the use of projections onto linear spans to
move between interpolating solutions. This further implies that for any interpolating solution found
by an optimizer, a projection onto the data-span recovers the min-norm solution and can potentially
improve the optimizer’s generalization performance. Since such projections can be computation-
ally expensive, we show that a simple reparameterization can ensure that an arbitrary optimization
method converges to the minimum `2 norm solution. We investigate, both theoretically and empir-
ically, whether it is possible to find a norm that generalizes better than the `2 norm.

Linear classification: The implicit bias of gradient descent minimizing losses with an expo-
nential tail has been studied in [30, 31, 39]. In these works, it was shown that the direction of the
gradient descent (GD) solution converges to the max-margin solution at a 1/ log(T ) rate, where T is
the number of GD iterations. In [17], the authors also outline the implicit regularization properties
of steepest descent, whereas the implicit bias of Adagrad is studied in [34]. In Section 3, we first
show that for any linear classifier perfectly separating the data, there exists a family of correspond-
ing quadratic norms ‖·‖P such that the classifiers direction is the same as that of the maximum
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P-margin solution. We then show, both theoretically and empirically, that the max-margin solu-
tion in the norm induced by the data results in better generalization than the well-studied `2-norm.
This result implies that it is important to consider the properties of the data when reasoning about
the implicit bias and generalization performance of methods. For the exponential loss, we propose
heuristics that can bias optimization methods towards solutions with good generalization properties
and can potentially improve their test performance. In Section 4, we validate our theoretical results
on synthetic and real datasets.

2. Over-parametrized linear regression

We first consider over-parameterized linear regression with n points {xi, yi} consisting of d-
dimensional feature vectors xi s.t. d > n and the corresponding labels/measurements yi. We
make the standard assumption [6] that the true labels are corrupted with noise ε ∼ N (0, σ2Id),
implying that y = Xw∗ + ε where X ∈ Rn×d is the matrix of features, y ∈ Rn is the vector of
labels and w∗ ∈ Rd is the “true“ data-generating vector. We seek to minimize the squared loss,
minw f(w) := ‖Xw − y‖22. If the matrix XXT is full rank, there are infinitely many solutions
that can interpolate or exactly fit the training dataset. Consequently, optimization methods achiev-
ing zero training loss converge to different solutions that can have vastly different generalization
properties. We study the generalization performance of such interpolating solutions wopt, that is
Xwopt = y.

2.1. Convergence to the minimum norm solution

In the over-parameterized regime, given that XXT is invertible, it is known that gradient descent
(GD) initialized at the origin converges to the minimum `2 norm solution wmn, henceforth referred
to as the min-norm solution.

wmn = arg min
w

1

2
‖w‖22 s.t. Xw = y =⇒ wmn = XT(XXT)−1y (1)

The generalization properties of the min-norm solution have been thoroughly studied in the under-
parameterized [5] and more recently the over-parameterized interpolation regime [6, 20, 29]. The
min-norm solution is the unique point that interpolates the data and lies in the span of the fea-
ture vectors. This property has been used to analyze the implicit regularization of common op-
timization methods [17]. Note that this property is unaffected by using stochastic gradients of a
finite-sum, implying that mini-batch variants of optimizers have the same implicit regularization.
In Appendix A.7, we prove that iterates of the Newton method with Levenberg-Marquardt regu-
larization [26, 28] lie in the span of the training data, implying that it converges to the min-norm
solution. Similarly, we use this property to prove that full-matrix variants [1] (without the diagonal
approximation) of adaptive gradient methods like Adagrad [14], Adam [25] also converge to the
min-norm solution (Appendix A.8). These methods are more robust to the step-size than GD and
have better empirical convergence, implying that their full-matrix variants converge faster but gen-
eralize as well as GD. However, with the commonly used diagonal approximation, these methods
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result in iterates that do not lie in the data-span and are consequently not guaranteed to converge to
the min-norm solution [17].

Preconditioned gradient descent (PGD) is the simplest method whose iterates do not lie in the
span of the training data, but whose implicit regularization can be analyzed. The iterates corre-
sponding to PGD with a constant positive-definite preconditioner P and constant step-size η can
be written as: wk+1 = wk − ηP∇f(w). In Appendix A.5, we show that PGD converges to
the solution wPGD := limk→∞wk = w0 + PXT(X P XT)−1[y − Xw0]. Furthermore, when
w0 = 0, wPGD is the minimum P−1-norm solution, meaning that wPGD = arg min 1

2‖w‖
2
P−1 =

1
2wTP−1w such that Xw = y. We note that this result can also be seen as a consequence of
Theorem 1 of [17]. In Lemma 6 of Appendix A.6, we prove that the PGD solution is the unique
point that interpolates the data and lies in the transformed data-span, that is wPGD ∈ span(PXT).
These results imply that the properties of PGD are equivalent to that of GD, differing only in the
norm. In fact, we can show that a similar equivalence holds for general optimization methods. This
enables us to express the solution of an arbitrary optimization method in terms of a PGD solution
for a family of constant preconditioners. It implies that an interpolating solution found by an opti-
mization method is the unique minimum-norm solution in the Popt norm. We now show that such
an equivalence enables the use of projection operators to move between interpolating solutions.

Proposition 1 Consider two optimization methods, their respective interpolating solutions w1 and
w2 and equivalent preconditioners P1 and P2, constructed according to Lemma 4 in Appendix A.1.
Projecting w1 onto the span(P2 XT) using the operator π = P2X

T(XP2X
T)−1X recovers w2.

The above result implies that projecting any optimizer’s interpolating solution onto the data-span
recovers the min-norm solution and can potentially improve its generalization performance. Propo-
sition 1 can be generalized to an arbitrary iterate, in that the same projection operator π moves w1

to the span(P2 XT) without changing its training loss. The computational cost of such a projection
is equal to that for solving the normal equations and approximate projection methods are required
for making this is a practical approach.

Instead of an expensive projection onto the data-span, we can reparameterize the problem
to ensure that any optimization method will converge to the min-norm solution. Specifically,
since wmn is the unique interpolating solution in the data-span, let us seek an interpolating so-
lution of the form w = XTα where α ∈ Rn. The corresponding minimization problem is
minα

1
2 ‖XXTα− y‖2 = minα

1
2 ‖Kα− y‖2 where K = XXT is an n×n full-rank matrix. Note

that K corresponds to the kernel matrix under a linear kernel. This reparameterized objective is
strictly convex w.r.t. α and thus admits a unique solution α? = K−1y regardless of the optimization
method. In the original w-space, this solution is corresponds to XTα? = XT(XXT)−1y = wmn.
This implies that any optimization method solving the reparameterized problem is ensured to con-
verge to the min-norm solution with favourable generalization properties. In fact, the above rea-
soning is true for any generalized linear model with a loss function of the form f(Xw) including
the logistic/exponential and squared-hinge losses we consider in Section 3.

Since different norms have different generalization properties, we attempt to find a norm that
results in better generalization than the minimum `2 norm solution. In Appendix A.10, we gen-
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eralize the excess risk bounds in [6] to analyze solutions found by PGD. In Appendix A.10.1,
we optimize an upper bound on the risk w.r.t P. Even assuming full knowledge of the covariance
matrix of the data, we show that it is not possible to uniformly improve over the min-norm solution
in the noiseless case (σ = 0). We can obtain a better upper bound on the risk in the noisy case,
however, we empirically demonstrate that the looseness of this bound prevents obtaining better
generalizing solutions in practice.

3. Under-parameterized linear classification

In this section, we consider binary classification with a training dataset {xi, yi}ni=1 of d-dimensional
feature vectors xi and labels yi ∈ {−1, 1}, with d ≤ n. We seek to find a hyperplane w∗ that mini-
mizes the 0-1 loss, w∗ = arg minw

∑n
i=1 I{yi 〈w,xi〉 ≥ 0}where I is the indicator function equal

to 1 when true and 0 otherwise1. Unlike under-parameterized regression that has a unique mini-
mizer, there can be infinitely many linear classifiers or hyperplanes that separate the data. We study
the interpolation setting where the data is linearly separable by a non-zero margin, implying that
there exist linear classifiers with zero training error or zero 0-1 loss. Similar to over-parameterized
regression, optimization methods achieving zero training error are biased towards certain solutions
and can converge to hyperplanes that have different generalization properties.

For a general positive definite matrix P, if the data is separable by a margin (in the P norm)
equal to γ, the maximum P-margin solution wmm,P has the following equivalent forms2:

wmm,P := arg max
‖w‖P≤1/γ

min
i∈[n]
〈w,xi〉 = arg min

w
‖w‖P−1 s.t, for all i, 〈w,xi〉 ≥ γ (2)

When P = Id, the corresponding maximum margin solution wmm is the standard max `2-margin
solution, henceforth referred to as the max-margin solution. In this case, the quantity max‖w‖2≤1/γ
mini∈[n] 〈w,xi〉 is the `2 margin and data points corresponding to the equality 〈wmm,xi〉 = γ are
the support vectors for wmm. The max-margin solution is shown to have good generalization
performance for under-parameterized models [23] and more recently in the over-parameterized
setting [10]. We first show that the direction of any linear classifier separating the data is the same
as that of a maximum P-margin solution for an appropriately constructed P. This equivalence can
be used to get a handle on the generalization performance of w. In particular, we first show that
the generalization performance of the maximum P-margin solution depends on the induced norm
it minimizes. We then investigate whether it is possible to construct norms that generalize better
than the `2 max-margin solution. From relation 2, observe that the maximum P -margin solution
minimizes ‖·‖P−1 . Let us consider an equivalent hypothesis class that has a (small) bounded P−1

norm and is given by F(P) = {x→ ywTx|12wTP−1w ≤ E}. We measure the complexity of this
hypothesis class in terms of its Rademacher complexity or VC-dimension and obtain bounds on its
generalization performance [36].

1. We only consider homogeneous linear classifiers without a bias term
2. For notational convenience, from now on, we absorb the label yi into the feature xi.
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Lemma 2 The Rademacher complexity of the model family F = {ywTx|12wTP−1w ≤ E} is
upper bounded by

R̂(F) ≤ 2
√

2E

n

√
tr(PΣ̂) (3)

where Σ̂ is the scaled covariance matrix of the data i.e. Σ̂ = XTX. By constraining P to be
symmetric positive definite, and using a log-det regularization to avoid degenerate solutions, we
solve the following regularized problem:

min
P

2
√

2E

n

√
tr(PΣ̂)− λ log |P| (4)

with the minimizer P∗ = λΣ̂−1.
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If the two classes have different covariances, it can
be easily shown that P∗ = (Σ̂+ + Σ̂−)−1 where Σ̂+ and
Σ̂− is the scaled covariance matrix for the positive and
negative classes respectively. Furthermore under a mild
assumption, we show that P∗ also minimizes an upper-
bound on the VC-dimension. The above lemma shows
that maximum margin solutions in the Σ̂-norm can gen-
eralize better than the `2 max-margin solution. Finally,
we note that the margin in the Σ̂-norm was defined as the
relative margin in [38] where the authors modified the standard SVM formulation to maximize the
relative margin [37]. We present a simple example [38] (details in Appendix B.3) to empirically
validate the above result. In Figure 3, we show the effect of the proposed preconditioning for gra-
dient descent: incorporating the covariance of the data maximizes the relative margin resulting in a
solution which is better aligned with the Bayes optimal classifier. The above results show that mea-
suring convergence w.r.t to the `2 max-margin is arbitrary, and norms incorporating the structure of
the data can generalize better.

Since the 0-1 loss is non-convex and difficult to minimize, we consider optimizers minimiz-
ing the exponential loss. The exponential loss is a smooth, convex loss minimized at infinity for
separable data and given by: f(w) := 1

n

∑n
i=1 exp (−〈w,xi〉). Previous works [17, 30, 39] show

that (stochastic) gradient descent converges to the max-margin solution and the resulting empirical
margin converges to the true margin at anO(1/ log(T )) rate. This result can be extended to general
losses with an exponential tail, including the logistic loss [39]. Similar to the regression setting,
we first analyze the implicit regularization of PGD. In particular, we use the result in [39] and state
the following lemma (for completeness, we provide the proof in Appendix A.4),

Lemma 3 The empirical margin for PGD with preconditioner P and constant step-size η <
1/f(w0) satisfies:

minj〈wk+1,xj〉
‖wk+1‖P−1

≥ γ −
[
γ ‖w0‖P−1 + ηf(w0) + log(f(w0))

‖w0‖P−1 + log (ηγ2(k + 1))

]
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The empirical margin converges to the true margin γ (in the P−1-norm) at an O(1/ log(k)) rate.

Note that the empirical margin is measured in the P−1 norm and PGD with a constant step-
sizeconverges to the maximum P-margin solution. For a general optimizer, consider an iterate
wT obtained after T iterations. Furthermore, using the above result, this direction corresponds
to the direction of a PGD solution with a preconditioner P. This result implies that, as in linear
regression, an interpolating solution is equivalent (in direction) to a PGD solution.

However, unlike regression, it is not possible to provably recover the maximum `2-margin solu-
tion from a general interpolating solution found by an optimizer. Instead, we consider an empirical
strategy that switches from the original optimization method and runs “some” iterations of PGD to
bias the resulting solution towards the corresponding max-margin direction. For example, switch-
ing to GD will result in a bias to the max-`2-margin, and we can obtain better generalization by
using P = Σ−1 to bias the optimizer to the maximum relative-margin solution. Since Lemma 3
holds for an arbitrary initialization, we invoke it with w0 equal to the iterate obtained by the original
optimization method. Since convergence to the max-margin solution depends on the loss f(w0),
if the original optimization method is effective in minimizing the loss, the resulting f(w0) is small
and ‖w0‖ is large, making it possible to approach the corresponding max-margin solution in fewer
iterations. In Section 4, we empirically demonstrate that switching to GD for only a few iterations
can significantly improve the generalization performance of the original optimizer. We note that
such a strategy of switching to GD (from Adam) has been explored in [24] in the context of deep
networks and found to improve the generalization performance of Adam. Our reasoning using
Lemma 3 gives further intuition on why such a strategy is reasonable. Using projections onto the
data-span or reparameterization allows us to use these heuristics in the over-parameterized linear
classification setting as well.

4. Experimental Evaluation

We verify the theoretical results for both the regression and classification settings, and evaluate the
proposed techniques for improving the test performance of optimizers.

Regression: We consider over-parameterized regression with one-layer neural networks. We
generate data-points from a Gaussian distribution and use the resulting neural tangent kernel [21]
(NTK) features as input to our problem. The targets are generated to ensure that the problem is
realizable. For this problem, we study the generalization of SGD and Adagrad. From Figure 1,
we observe that (i) Adagrad is robust to the choice of step-size and converges quickly, (ii) hand-
tuned SGD converges slowly due to the problem’s ill-conditioning, (iii) Adagrad’s test performance
highly depends on the step-size, and (iv) the min-norm solution found by SGD consistently gener-
alizes well. We can project the Adagrad solution onto the data span as in Proposition 1 and recover
the min-norm solution. This suggests we can benefit from the robustness of Adagrad, while also
ensuring good generalization performance.

In Appendix C.1.1, we present additional results on the wine and mushroom datasets [13].
In Appendix C.1.2, we validate that full-matrix Adagrad and the Newton methods converge to
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Figure 1: Performance of SGD and Adagrad on a synthetic regression problem using the NTK
of one-layer networks with 50 and 100 hidden units. Tuned SGD converges slowly to
the min-norm solution. In contrast, the convergence of Adagrad is more robust to the
step-size, however its generalization depends on the step-size.
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Figure 2: Performance of GD and Adagrad on a synthetic overparameterized classification prob-
lem with random Gaussian features. Projecting onto the data-span improves the test
accuracy, while decreasing the solution’s norm and angle to the max-margin solution.

the min-norm solution and verify the construction of the equivalent preconditioner in Lemma 4 in
Appendix A.1. In Appendix C.1.3, we investigate whether it is possible to obtain solutions that
generalize better than the min-norm solution by minimizing upper bounds on the excess risk.

Classification: We evaluate effectiveness of switching to GD and projection in improving the
generalization for over-parameterized linear classification. In particular, we present the results for
Adagrad and GD minimizing the logistic loss on a synthetic dataset with random Gaussian features.
We ensure that both GD and Adagrad converge to solutions which interpolate the training data. We
consider four variants: (i) standard Adagrad (black), (ii) switch to GD after 75% of the iterations
(green) (iii) project onto the data-span after every iteration (blue) and (iv) project the final solution
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onto the data-span (orange). For the latter two variants, we also switch to GD with a fixed step-
size after 75% of the iterations. From Figure 2, we observe that (i) switching to GD results in
a small improvement in the test accuracy. (ii) projections after every iteration result in a smaller
norm and angle to the max-margin solution as well as higher test accuracy, (iii) projecting only
the final solution is sufficient to improve the test performance (from an accuracy of 64% to 66%)
(iv) compared to projection, switching to GD has a small effect on the test accuracy. Our results
indicate that being in the correct subspace can improve the generalization performance.

In Appendix B.4, we presents additional results for this setting. In Appendix B.1, we verify the
construction of the equivalent preconditioner in Lemma 14.

5. Conclusion
For both linear regression and classification, we saw that an interpolating solution found by an
optimizer minimizes an equivalent quadratic norm. This reasoning enabled us to use projections to
move between norms (and therefore solutions) for over-parameterized settings. For classification,
we showed that it important to consider the geometry induced by the data to measure generalization.
We also proposed techniques to improve the generalization of optimization methods. We consider
extending our techniques to non-linear models including deep networks as important future work.
Finally, we hope to use our insights to develop optimizers that are guaranteed to generalize well.
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Appendix A. Appendix

A.1. Optimizer-based Preconditioner

Lemma 4 For the solution wopt obtained by a generic optimizer on the squared loss, it is possible to construct a family
of constant preconditioners Popt such that PGD with a fixed preconditioner in Popt converges to wopt. One such family
can be given as:

Popt =

[
‖wopt‖2 Id −woptw

T
opt +

ννT

〈wopt, ν〉

]−1
Here ν = XTα where α is a random vector such that 〈wopt, ν〉 > 0, ad Id is the d× d identity matrix. Note that for any
ν, either ν or −ν satisfies this constraint.

Proof Let wopt be the solution to which a given optimizer converges to. Since wopt interpolates the data, Xwopt = y.
This solution also corresponds to the min-norm solution measured in the M norm, implying we want to find a positive
definite matrix M s.t.

wopt = arg min
z

1

2
zT Mz s.t. Xz = y

The Lagrangian for the optimization on the RHS can be written as follows. Here λ ∈ Rn×1

L(z, λ) =
1

2
zT Mz + λT (Xz− y)

∂L(z, λ)

∂z
= M + XTλ

Since wopt is the solution of this optimization problem,

Mwopt = −XTλ

implying Mwopt ∈ span{XT}. We choose M to be the following matrix,

M = ‖wopt‖2 Id −woptw
T
opt +

ννT

〈wopt, ν〉

Here ν = XTα where α is a random vector such that 〈wopt, ν〉 > 0. Note that for any ν, either ν or −ν satisfies this
constraint. We now verify that Mwopt = ν = XTα.

Mwopt = ‖wopt‖2 wopt − (woptw
T
opt)wopt +

ννTwopt

〈wopt, ν〉
= ‖wopt‖2 wopt − ‖wopt‖2 wopt + ν = ν

We now compute aTMa to verify that M is positive definite.

aTMa = ‖wopt‖2 ‖a‖2 − (aTwopt) (aTwopt)
T

+
(aTν) (aTν)T

〈wopt, ν〉
= ‖wopt‖2 ‖a‖2 − ‖a wopt‖2 +

‖aTν‖2

〈wopt, ν〉

> ‖wopt‖2 ‖a‖2 − ‖wopt‖2 ‖a‖2 +
‖aTν‖2

〈wopt, ν〉
=
‖aTν‖2

〈wopt, ν〉

Since 〈wopt, ν〉 > 0 by construction, aTMa > 0 for all a, implying M is positive definite.
The preconditioner resulting in the min-norm solution in the M norm is M−1 which is a family of preconditioners

that result in the same solution as wopt.
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A.2. Proof of Proposition 1

Proof Recall that the solution found by an optimizer with equivalent preconditioner P1 can be written as

wP1
∞ = P1X

T(XP1X
T)−1y

Projecting this solution using the projection matrix, πP = P2X
T(XP2X

T)−1X,

πP [wopt] = P2X
T(XP2X

T)−1XwP1
∞

= P2X
T(XP2X

T)−1XP1X
T(XP1X

T)−1y

= P2X
T(XP2X

T)−1y = wP2
∞

which is the solution obtained by PGD with a preconditioner P2 and interpolates the data.

A.3. Proof of Lemma 2

Proof Based on the definition of Rademacher complexity we have

R̂(F) = Eσ
[

sup
f∈F
| 2
n

n∑
i=1

σiyiw
Txi|

]
= Eσ

[
sup

w:1/2wTP−1w≤E
| 2
n

n∑
i=1

σiyiw
Txi|

]
(5)

≤ 2
√

2E

n
Eσ
[( n∑

i=1

σiyix
T
iP

n∑
j=1

σjyjxj
)1/2] (6)

≤ 2
√

2E

n

[(
Eσ

n∑
j,i=1

σiσjyiyjx
T
iPxj

)1/2]
=

2
√

2E

n

√
tr(PK) (7)

To find the optimal P, since the space of positive definite matrices is an open set and also tr(PK) is optimal over the
boundary of that space, we add a regularizer term −λ ln(det(P)) which prevents degenerate solutions. So the objective
function is

arg min
P

tr(PK)− λ ln(det(P)) (8)

Taking derivative w.r.t. P and set it to zero we have

P∗ = λK−1. (9)

We can assume that K is symmetric positive definite. Furthermore, if we assume K+ and K− are scaled covariance
matrix for data belonging to +1 and −1 classes, we get the following upper bound for the Rademacher complexity

R̂(F) ≤ 2
√

2E

n

√
tr(P(K+ + K−)). (10)

Using the above argument, then the optimal precondition is

P∗ = λ(K+ + K−)−1. (11)

Similarly we can find an upper bound for the VC-dimension of max-margin which has the same upper bound as we get
for the Rademacher complexity. For this part we assume that there exist a data set Dv such that max-margin model can
shatter it and besides for any positive definite P we have tr(PKv) ≤ tr(PK) where Kv is XT

vXv. To be more precise, let
assume v is the VC-dimension of max-margin problem, therefore there exist an a set of size v i.e. Dv = {(xj , yj)}j=1:v

such that for all j yjwTxj ≥ 1. If we sum up the both side of this inequality for all j data point we have:

v ≤
v∑
j=1

yjw
Txj

≤ ‖w‖P−1

[( v∑
j=1

yjx
T
iP

v∑
k=1

ykxk
)1/2]

≤
√

2E
[( v∑

j=1

yjx
T
iP

v∑
k=1

ykxk
)1/2]

14



HOW TO MAKE YOUR OPTIMIZER GENERALIZE BETTER

where the second inequality is due to Cauchy-Schwarz. Since max-margin can shatter this set, we can assume that y′js
are independent random variables, and take expectation from both sides of the above bound and then apply the Jensen
inequality to get the following

v ≤
√

2E
[
E
( v∑
j=1

yjx
T
iP

v∑
k=1

ykxk
)]1/2

(12)

≤
√

2E
[ v∑
j=1

xT
iPxi

]1/2
(13)

≤
√

2E
√
tr(PKv) ≤

√
2E
√
tr(PK) (14)

where the second inequality due to the fact that E(yj) = 0 and yj and yk are independent. The last inequality is due to
our assumption. Here we show that when Dv ⊂ D which means there is a subset of training data with size v such that
max-margin can shatter it, then the assumption tr(PKv) ≤ tr(PK). Let S ∈ Rn×n be a diagonal matrix with Si,i = 1 if
xi ∈ Dv and 0 everywhere else. Therefore SX represents data points in Dv and we have Kv = XTSX. Let M = XPXT

and we have tr(M) = tr(PK). We observe that tr(PKv) = tr(MS). Since P is positive definite, all the diagonal
elements of M are positive. Therefore multiplying M by S sets some of the diagonal elements to 0, therefore we have
tr(PKv) = tr(MS) ≤ tr(M) = tr(PK).

A.4. Proof of Lemma 3

We map preconditioned gradient descent to the notation of [39] and use Theorem 7 that considers steepest descent to prove
the statement of the lemma. We first consider a constant step-size s.t. ηk = η < 1/f(w0).
Proof PGD has the following update:

wk+1 = wk − ηP∇f(wk)

The update considered in Appendix B.2. of [39] can be written as follows:

wk+1 = wk − ηγk∆wk

where γk and ∆wk are defined as:

γk = ‖∇f(wk)‖∗ ; 〈∆wk,∇f(wk)〉 = ‖∇f(wk)‖∗
‖∆wk‖ = 1

Here, ‖·‖∗ is the dual norm.

Mapping PGD to this update, we get the following equivalence:

γk = ‖∇f(wk)‖P ; ∆wk =
P∇f(wk)

‖∇f(wk)‖P
It is easy to verify that ‖·‖ = ‖·‖P−1 and ‖·‖∗ = ‖·‖P, and that γk and ∆wk satisfy the above relations.

Given this mapping, we follow the proof of Theorem 7. Using the descent lemma and the property of the exponential loss,

f(wk+1) ≤ f(wk)

(
1− ηγk

f(wk)
+
η2γ2k

2

)
Recursing, multiplying both sides by − log and using Jensen’s inequality, we get a bound on the unnormalized margin

min
j
〈wk+1,xj〉 ≥

k∑
i=0

ηγ2i
f(wi)

− 1

2
η2

k∑
i=0

γ2i − log(f(w0))
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We now upper bound the ‖wk+1‖. Note for PGD, this norm is the induced norm wrt to the P−1 matrix.

‖wk+1‖ =

∥∥∥∥∥w0 − η
t∑
i=0

γi∆wi

∥∥∥∥∥ ≤ ‖w0‖+ η

∥∥∥∥∥
t∑
i=0

γi∆wi

∥∥∥∥∥
≤ ‖w0‖+ η

t∑
i=0

‖γi∆wi‖ ≤ ‖w0‖+ η

t∑
i=0

γi

Dividing the above inequalities, we get a bound on normalized margin,

minj〈wk+1,xj〉
‖wk+1‖

≥
∑k

i=0
ηγ2i
f(wi)

− 1
2η

2
∑k

i=0 γ
2
i − log(f(w0))

‖w0‖+ η
∑t

i=0 γi

Using the result in Lemma 2 of [39], γi ≥ γf(wi),

minj〈wk+1,xj〉
‖wk+1‖

≥
γ
∑k

i=0 ηγi −
1
2η

2
∑k

i=0 γ
2
i − log(f(w0))

‖w0‖+ η
∑t

i=0 γi

Using the descent lemma,

f(wk+1) ≤ f(wk)−
η

2
γ2k =⇒

k∑
i=0

η

2
γ2k ≤ f(w0) (By telescoping from i = 0 to k)

Using this bound in the above inequality,

minj〈wk+1,xj〉
‖wk+1‖

≥
γ
∑k

i=0 ηγi − ηf(w0)− log(f(w0))

‖w0‖+ η
∑t

i=0 γi

Rearranging,

≥ γ −

[
γ ‖w0‖+ ηf(w0) + log(f(w0))

‖w0‖+ η
∑t

i=0 γi

]

Finally, we use Claim 1 in Theorem 7 of [39] to bound η
∑t

i=0 γi,

η

t∑
i=0

γi ≥ log
(
ηγ2(k + 1)

)
Using this bound in the above inequality,

minj〈wk+1,xj〉
‖wk+1‖

≥ γ −
[
γ ‖w0‖+ ηf(w0) + log(f(w0))

‖w0‖+ log (ηγ2(k + 1))

]
If w0 = 0, f(w0) = 1, η = 1/f(w0) = 1

=⇒ minj〈wk+1,xj〉
‖wk+1‖

≥ γ − 1

log (γ2(k + 1))

Making the dependence on P explicit,

=⇒ minj〈wk+1,xj〉
‖wk+1‖P−1

≥ γ − 1

log (γ2(k + 1))
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As k →∞,

minj〈wk+1,xj〉
‖wk+1‖P−1

→ γ

We now show that using backtracking line-search procedure to set the step-size does not change the implicit regularization
and results in a similar bound. The line-search procedures picks the largest step-size that satisfies the Armijo condition:

f(wk+1) ≤ f(wk)− cηk ‖∇f(wk)‖2∗

Here, c is a hyper-parameter. We assume that the resulting step-size ηk ∈ [ηmin, ηmax]. Using the PGD update:

wk+1 = wk − ηkP∇f(wk)

Following the same analysis,

minj〈wk+1,xj〉
‖wk+1‖

≥
γ
∑k

i=0 ηiγi −
1
2

∑k
i=0 η

2
i γ

2
i − log(f(w0))

‖w0‖+
∑t

i=0 ηiγi

≥
γ
∑k

i=0 ηiγi −
ηmax

2

∑k
i=0 ηiγ

2
i − log(f(w0))

‖w0‖+
∑t

i=0 ηiγi

Using the line-search condition,

f(wk+1) ≤ f(wk)− cηkγ2k =⇒
k∑
i=0

ηiγ
2
i ≤

f(w0)

c

Using this bound in the above inequality,

≥
γ
∑k

i=0 ηiγi −
ηmaxf(w0)

2c − log(f(w0))

‖w0‖+
∑t

i=0 ηiγi

Rearranging,

≥ γ −

[
γ ‖w0‖+ ηmaxf(w0)

2c + log(f(w0))

‖w0‖+
∑t

i=0 ηiγi

]
≥ γ −

[
γ ‖w0‖+ ηmaxf(w0)

2c + log(f(w0))

‖w0‖+ ηmin
∑t

i=0 γi

]

The line-search implies

f(wk+1) ≤ f(wk)− cηkγ2k ≤ f(wk)− cηkγf(wk) ≤ f(wk)− cηminγf(wk)

Using Claim 1 in Theorem 7 of [39],

cηmin

k∑
i=0

γi ≥ log
(
cηmin γ

2(k + 1)
)

Using this bound with the above inequality,

minj〈wk+1,xj〉
‖wk+1‖

≥ γ −

[
γ ‖w0‖+ ηmaxf(w0)

2c + log(f(w0))

‖w0‖+ log(cηmin γ2(k+1))
c

]

For line-search, ηmin = 2(1−c)
L ,

≥ γ −

[
γ ‖w0‖+ ηmaxf(w0)

2c + log(f(w0))

‖w0‖+ log(2c(1−c) γ2(k+1)/L)
c

]
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If w0 = 0, f(w0) = 1,

minj〈wk+1,xj〉
‖wk+1‖P−1

≥ γ −
[

ηmax

2 log (2c(1− c) γ2(k + 1)/L)

]
And as k →∞,

minj〈wk+1,xj〉
‖wk+1‖P−1

→ γ

A.5. Convergence of preconditioned gradient descent

Lemma 5 When optimizing the squared loss, the iterates of PGD with preconditioner P and constant step-size η ≤
1

λmax(XPXT)
evolve as:

wPGD = lim
k→∞

wk = w0 + PXT(X P XT)−1[y −Xw0]

Furthermore, wPGD is the solution to a constrained minimization problem,

wPGD = arg min
1

2
‖w −w0‖2P−1 s.t. Xw = y

Proof The PGD update for linear-regression can be written as:

wk+1 = wk − ηP∇f(wk) = wk − ηPXT(Xwk − y)

Starting at w0 and defining y0 = Xw0.

w1 = w0 − ηPXT(Xw0 − y) = w0 − ηPXT[y0 − y]

Further unfolding the iterates,

w2 = w1 − ηPXT(Xw1 − y) = w0 − ηPXT[y0 − y] + ηPXTy − ηPXT(Xw1)

Adding and subtracting ηPXT[y0 − y]

= w0 − 2ηPXT[y0 − y] + ηPXT[y0 − y] + ηPXTy − ηPXT(Xw1)

= w0 − 2ηPXT[y0 − y] + ηPXTy0 − ηPXT (X(w0 − ηPXT[y0 − y]))

= w0 − 2ηPXT[y0 − y] + ηPXTy0 − ηPXTy0 + η2PXTXPXT[y0 − y]

= w0 − 2ηPXT[y0 − y] + η2PXTXPXT[y0 − y]

= w0 −PXT
[
2η − η2(XPXT)

]
[y0 − y]

Defining K = XPXT

w2 = w0 −PXT
[
2η − η2K

]
[y0 − y]

Similarly writing down w3,

w3 = w2 − ηPXT(Xw2 − y) = w2 + ηPXTy − ηPXTXw2

= w0 −PXT
[
2η − η2K

]
[y0 − y] + ηPXTy − ηPXTXw2
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By adding, subtracting ηPXTy0,

= w0 −PXT
[
3η − η2K

]
[y0 − y]− ηPXTy0 − ηPXTXw2

= w0 −PXT
[
3η − η2K

]
[y0 − y] + ηPXTXPXT

[
2η − η2K

]
[y0 − y]

= w0 −PXT
[
3η − η2K

]
[y0 − y] + ηPXTK

[
2η − η2K

]
[y0 − y]

= w0 −PXT
[
3η − η2K + 2η2K− η3K2

]
[y0 − y]

w3 = w0 −PXT
[
3η + η2K− η3K2

]
[y0 − y]

Writing down the general form,

w1 = w0 −PXT[K0] [y0 − y]

w2 = w0 −PXT[2ηK0 − η2K1] [y0 − y]

w3 = w0 −PXT
[
3ηK0 + η2K1 − η3K2

]
[y0 − y]

=⇒ wk = w0 −PXT

[
k∑
i=1

(−1)i−1
(
k

i

)
ηiKi−1

]
[y0 − y]

Using the fact that
[∑k

i=1(−1)i−1
(
k
i

)
ηiKi−1

]
= −K−1

[
(In − ηK)k − In

]
,

wk = w0 + PXTK−1
[
(In − ηK)k − In

]
[y0 − y]

If η < 1
λmax(K) and as k →∞,

lim
k→∞

wk = w0 −PXTK−1 [y0 − y]

=⇒ w∞ = w0 + PXT(XPXT)−1 [y −Xw0]

A.6. Properties of PGD solution

Similar to GD, zero initialized PGD converges to a unique solution lying in the span of the transformed data. Specifically,
we obtain the following lemma:

Lemma 6 The solution found by PGD initialized the origin is the unique point satisfying the constraints: (i) lies in
the span of the feature vectors, w∞ = arg minz∈span(PXT) ||w∞ − z||2P−1 and (ii) interpolates the data, implying that
Xw∞ = y.

Proof

w∞ = arg min
z=PXTα

||w∞ − z||2P−1

Let w∞ = PXTα∞.

=⇒ α∞ = arg min
α

||w∞ −PXTα||2P−1 = arg min
α

[
wT
∞P−1w∞ − 2wT

∞XTα+ αTXPTXTα
]

=⇒ Xw∞ = α∞

Since w inf interpolates the data, Xw∞ = y,

=⇒ α∞ = (XPXT)−1y
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Since, w∞ = PXTα∞,

=⇒ w∞ = PXT(XPXT)−1y

The above lemma implies that the PGD solution interpolates the data and is a projection onto PXT but with the distance
measured in the P−1 norm. When P = Id, the solution is a projection onto the span of the data points measured in the
l2 norm, recovering the known result for GD. The above lemma show that the solutions of both GD and PGD are unique
interpolating solutions in their respective subspaces.

Lemma 7 The solution to the min P−1 norm least square i.e. wopt = arg minw ‖w − w0‖P−1 is equal to the solution of
PGD when the model interpolate the data i.e. Xw = y.

Proof To solve this we reformulate our objective in the Lagrangian form where λ ∈ Rn×1:

L = 1/2‖w −w0‖2P−1 − λT(y −Xw)

∂L
∂w

= 0 =⇒ P−1(w −w0) + XTλ = 0 =⇒ λT = −(w −w0)
TXT(XPXT)−1

Let A = XT(XPXT)−1

=⇒ L = 1/2‖w −w0‖2P−1 + (w −w0)
TA(y −Xw)

∂L
∂w

= 0 =⇒ P−1(w −w0) + Ay − (2AX)w + XTATw0 = 0

Let w∞ be the solution of the above inequality.

=⇒ (w∞ −w0) + PAy − (2PAX)w∞ + PAXw0 = 0

Xw∞ = y because of the constraint. Let y0 = Xw0 =⇒ w∞ −w0 + PAy − 2PAy + PAy0 = 0

=⇒ w∞ = w0 + PA(y − y0) = w0 + PXT(XPXT)−1[y −Xw0]

=⇒ w∞ = [Id −PXT(XPXT)−1X]w0 + PXT(XPXT)−1y

A.7. Convergence of Newton method

For the Newton method, for which the iterates can be written as: wk+1 = wk − η[∇2f(wk) + λId]
−1∇f(wk). Here,

∇2f(wk) is the Hessian equal to XTX for linear regression and λ is the LM regularization parameter.

Lemma 8 The Newton method remains in the span of the data-points and hence converges to the min-norm solution.

Proof Let assume f(w) = F (Xw). Therefore we have ∇f(w) = XT∇F (Xw) and ∇2f(w) = XT∇2F (Xw)X. If
we assume wk in the span, we just need to show that νk = ∇2f(wk) + λId]

−1∇f(wk) lays in the span.

νk = [∇2f(wk) + λId]
−1∇f(wk) =⇒ νk =

1

λ

(
∇f(wk)−∇2f(wk)νk

)
=⇒ νk =

XT

λ

(
∇F (Xw)−∇2F (Xw)Xνk

)
=⇒ νk = XTαk

for some vector αk. This shows that νk and therefore wk+1 lay in the span.
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A.8. Convergence of full-matrix Adagrad

For full matrix Adagrad [1], the iterates can be written as: wk+1 = wk − ηkGk∇f(wk) where Gk = S
−1/2
k and

Sk = Sk−1 + (∇f(wk−1)∇f(wk−1)
T ). The more commonly used diagonal version of Adagrad uses Gk = diag(Sk).

We obtain the following lemma, analyzing the convergence of these variants.

Lemma 9 The iterates of full matrix Adagrad lie in the span of the data and converges to the min-norm solution. However,
convergence to the min-norm solution is not ensured for the diagonal version of Adagrad.

Proof The proof is similar to the proof of 8.

A.9. Generalization bounds

Lemma 10 The excess risk for the solution wPGD of PGD with a preconditioner P and initialized at w0 can be bounded
as:

R(wPGD) := Ex,ε[x
T(wPGD −w∗)]2 ≤ (w0 −w∗)TBT

PΣBP(w0 −w∗) + σ2tr(CP) (15)

where Σ = E[xxT] is the covariance matrix s.t. x ∼ N(0,Σ) and BP = I − P(XT(XPXT)−1)X and CP =
(XPXT)−1XPT Σ PXT(XPXT)−1.

Proof Recall that w∞ = w0 + PA(y − y0) = w0 + PXT(XPXT)−1[y −Xw0]. Define matrix A = XT(XPXT)−1,
implying w∞ = w0 + PA[y −Xw0] = w0 + PA[Xw∗ + ε−Xw0]

R(w∞) = Ex[(XT(w∞ −w∗))2]

= Ex[(XT(w0 + PA[Xw∗ + ε−Xw0]−w∗))
2
]

= Ex[((XT((I−PAX) (w0 −w∗) + XT PAε)
2
]

≤ 2Ex[(XT((I−PAX) (w0 −w∗))
2
] + 2Ex[(XT PAε)

2
]

Using the fact that Σ = E[xxT], B = I−PAX and C = ATP T Σ PA.

= (w0 −w∗)TBTΣB(w0 −w∗) + 2εTCε

Take expectation w.r.t. the noise:

Eε[R(w∞)] ≤ (w0 −w∗)TBTΣB(w0 −w∗) + Eε[εTCε] = (w0 −w∗)TBTΣB(w0 −w∗) + σ2tr(C)

since the noise has mean zero and variance σ2.

A.10. Generalization bounds

Lemma 11 The excess risk for the solution wPGD of PGD with a preconditioner P and initialized at w0 can be bounded
as:

R(wPGD) := Ex,ε[x
T(wPGD −w∗)]2 ≤ (w0 −w∗)TBT

PΣBP(w0 −w∗) + σ2tr(CP) (16)

where Σ = E[xxT] is the covariance matrix s.t. x ∼ N(0,Σ) and BP = I − P(XT(XPXT)−1)X and CP =
(XPXT)−1XPT Σ PXT(XPXT)−1.

Proof Recall that w∞ = w0 + PA(y − y0) = w0 + PXT(XPXT)−1[y −Xw0]. Define matrix A = XT(XPXT)−1,
implying w∞ = w0 + PA[y −Xw0] = w0 + PA[Xw∗ + ε−Xw0]

R(w∞) = Ex[(XT(w∞ −w∗))2]

= Ex[(XT(w0 + PA[Xw∗ + ε−Xw0]−w∗))
2
]

= Ex[((XT((I−PAX) (w0 −w∗) + XT PAε)
2
]

≤ 2Ex[(XT((I−PAX) (w0 −w∗))
2
] + 2Ex[(XT PAε)

2
]
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Using the fact that Σ = E[xxT], B = I−PAX and C = ATP T Σ PA.

= (w0 −w∗)TBTΣB(w0 −w∗) + 2εTCε

Take expectation w.r.t. the noise:

Eε[R(w∞)] ≤ (w0 −w∗)TBTΣB(w0 −w∗) + Eε[εTCε] = (w0 −w∗)TBTΣB(w0 −w∗) + σ2tr(C)

since the noise has mean zero and variance σ2.

A.10.1. FINDING AN OPTIMAL PRECONDITIONER

It is clear that if we do not have additional information in the form of a validation set, remaining in the span of the points
is the optimal strategy for an optimizer and the min-norm solution results in the best generalization for a general w∗ and
Σ.

Consequently, we consider a semi-supervised setting and investigate whether we can exploit unlabelled data and
obtain better generalization. We consider an idealized case where we have infinite unlabelled data that enables us to get
an accurate estimate of the true covariance matrix Σ. We prove the following theorem,

Lemma 12 Assume we have sufficient unlabeled data to estimate Σ accurately. In the regression with noisy data we can
leverage the unlabeled data to design an optimal preconditioner so as to reduce generalization risk. In the noiseless case,
the unlabeled data doesn’t help.

This lemma shows that in the noiseless setting, having a preconditioner that keeps the update inside the data span can only
help improving the convergence speed of the optimization regardless of the size of unlabeled data or the exact value of
covariance matrix. However in the noisy case, we can find a preconditioner that has the minimum generalization error
among all preconditioners including the identity matrix which gives us GD. Our experimental results for this section
confirm our theoretical result.
Proof We can decompose Σ as follows:

Σ = XTS1X + XTS2X⊥ + XT
⊥ST

2X + XT
⊥S3X⊥, (17)

and similarly we can decompose preconditioner:

P = XTP1X + XTP2X⊥ + XT
⊥PT

2X + XT
⊥P3X⊥, (18)

where Σ,P ∈ Rd×d,S1,P1 ∈ Rn×n,S2,P2 ∈ Rn×d−n, and S3,P3 ∈ Rd−n×d−n. Recall the excess risk for linear
regression

R(wopt
∞ ) = w∗T(I−PXT(XPXT)−1X)TΣ(I−PXT(XPXT)−1X)w∗.
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To apply the above decompositions, note that we have

PXT = XTP1XXT + XT
⊥PT

2XXT (19)

(XPXT)−1 = (XXT)−1P−11 (XXT)−1 (20)

PXT(XPXT)−1 = XT(XXT)−1 + XT
⊥PT

2P
−1
1 (XXT)−1 (21)

B = I−PXT(XPXT)−1X = I−XT(XXT)−1X−XT
⊥PT

2P
−1
1 (XXT)−1X (22)

Q = PT
2P
−1
1 (23)

F = XT
⊥PT

2P
−1
1 (XXT)−1X (24)

ΣB = Σ−XTS1X−XT
⊥ST

2X−XTS2X⊥F−XT
⊥S3X

T
⊥F (25)

= XTS2X⊥ + XT
⊥S3X⊥ −XTS2F−XT

⊥S3X⊥F (26)

BTΣB = (I−XT(XXT)−1X− FT)ΣB (27)

= XTS2X⊥ + XT
⊥S3X⊥ −XTS2F−XT

⊥S3X⊥F (28)

−XTS2X⊥ + XTS2F (29)

− FTXTS2X⊥ − FTXT
⊥S3X⊥ + FTXTS2X⊥F + FTXT

⊥S3X⊥F (30)

= XT
⊥S3X⊥ −XT

⊥S3X⊥F− FTXT
⊥S3X⊥ + FTXT

⊥S3X⊥F (31)

tr(FTXT
⊥S3X⊥) = 0 (32)

tr(BTΣB) = tr(XT
⊥S3X⊥) + tr(FTXT

⊥S3X⊥F) = cnst+ tr(FTXT
⊥S3X⊥F) (33)

In this case we see that the best trace is achieved when we set P2 = 0 which is independent of the information of Σ. Now
assume noisy case whose excess risk has extra term which is:

tr(C) = σ2tr((XPXT)−1XPΣPXT(XPXT)−1). (34)

Now we expand this extra term based on the aforementioned decompositions

ΣPXT(XPXT)−1 = (XTS1X + XTS2X⊥ + XT
⊥ST

2X + XT
⊥S3X⊥)(XT(XXT)−1 + XT

⊥PT
2P
−1
1 (XXT)−1)

(35)

= XTS1 + XTS2X⊥XT
⊥Q(XXT)−1 + XT

⊥ST
2 + XT

⊥S3X⊥XT
⊥Q(XXT)−1 (36)

(XPXT)−1XPΣPXT(XPXT)−1 = S1 + S2X⊥XT
⊥Q(XXT)−1 (37)

+ (XXT)−1QTX⊥XT
⊥ST

2 + (XXT)−1QTX⊥XT
⊥S3X⊥XT

⊥Q(XXT)−1 (38)

So the the excess risk is upperbounded by

tr(BTΣB) + σ2tr(C) = tr(XT
⊥S3X⊥) + tr(FTXT

⊥S3X⊥F) (39)

+ σ2(S1 + S2X⊥XT
⊥Q(XXT)−1 + (XXT)−1QTX⊥XT

⊥ST
2 + (XXT)−1QTX⊥XT

⊥S3X⊥XT
⊥Q(XXT)−1)
(40)

Now if we take derivative w.r.t. Q and set it to zero we get

Q∗ = −(K⊥S3K⊥)−1(σ2K⊥ST
2K
−1)(K−1 + K−2)−1 (41)

where K = XXT and K⊥ = X⊥XT
⊥. By setting P1 = I, we have P2 = Q∗T. Therefore an optimal P is

P = XTX + XTQ∗TX⊥ + X⊥
TQ∗P (42)

Note that here we assume we have enough unlabeled date which among them we can pick n − d of them which are
orthogonal to the training data i.e.

XTX⊥ = XT
⊥X = 0 (43)
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A.11. Finding an Optimal Preconditioner

It is clear that if we do not have additional information in the form of a validation set, remaining in the span of the points
is the optimal strategy for an optimizer and the min-norm solution results in the best generalization for a general w∗ and
Σ.

Consequently, we consider a semi-supervised setting and investigate whether we can exploit unlabelled data and
obtain better generalization. We consider an idealized case where we have infinite unlabelled data that enables us to get
an accurate estimate of the true covariance matrix Σ. We prove the following theorem,

Lemma 13 Assume we have sufficient unlabeled data to estimate Σ accurately. In the regression with noisy data we can
leverage the unlabeled data to design an optimal preconditioner so as to reduce generalization risk. In the noiseless case,
the unlabeled data doesn’t help.

This lemma shows that in the noiseless setting, having a preconditioner that keeps the update inside the data span can only
help improving the convergence speed of the optimization regardless of the size of unlabeled data or the exact value of
covariance matrix. However in the noisy case, we can find a preconditioner that has the minimum generalization error
among all preconditioners including the identity matrix which gives us GD. Our experimental results for this section
confirm our theoretical result.
Proof We can decompose Σ as follows:

Σ = XTS1X + XTS2X⊥ + XT
⊥ST

2X + XT
⊥S3X⊥, (44)

and similarly we can decompose preconditioner:

P = XTP1X + XTP2X⊥ + XT
⊥PT

2X + XT
⊥P3X⊥, (45)

where Σ,P ∈ Rd×d,S1,P1 ∈ Rn×n,S2,P2 ∈ Rn×d−n, and S3,P3 ∈ Rd−n×d−n. Recall the excess risk for linear
regression

R(wopt
∞ ) = w∗T(I−PXT(XPXT)−1X)TΣ(I−PXT(XPXT)−1X)w∗.

To apply the above decompositions, note that we have

PXT = XTP1XXT + XT
⊥PT

2XXT (46)

(XPXT)−1 = (XXT)−1P−11 (XXT)−1 (47)

PXT(XPXT)−1 = XT(XXT)−1 + XT
⊥PT

2P
−1
1 (XXT)−1 (48)

B = I−PXT(XPXT)−1X = I−XT(XXT)−1X−XT
⊥PT

2P
−1
1 (XXT)−1X (49)

Q = PT
2P
−1
1 (50)

F = XT
⊥PT

2P
−1
1 (XXT)−1X (51)

ΣB = Σ−XTS1X−XT
⊥ST

2X−XTS2X⊥F−XT
⊥S3X

T
⊥F (52)

= XTS2X⊥ + XT
⊥S3X⊥ −XTS2F−XT

⊥S3X⊥F (53)

BTΣB = (I−XT(XXT)−1X− FT)ΣB (54)

= XTS2X⊥ + XT
⊥S3X⊥ −XTS2F−XT

⊥S3X⊥F (55)

−XTS2X⊥ + XTS2F (56)

− FTXTS2X⊥ − FTXT
⊥S3X⊥ + FTXTS2X⊥F + FTXT

⊥S3X⊥F (57)

= XT
⊥S3X⊥ −XT

⊥S3X⊥F− FTXT
⊥S3X⊥ + FTXT

⊥S3X⊥F (58)

tr(FTXT
⊥S3X⊥) = 0 (59)

tr(BTΣB) = tr(XT
⊥S3X⊥) + tr(FTXT

⊥S3X⊥F) = cnst+ tr(FTXT
⊥S3X⊥F) (60)

In this case we see that the best trace is achieved when we set P2 = 0 which is independent of the information of Σ. Now
assume noisy case whose excess risk has extra term which is:

tr(C) = σ2tr((XPXT)−1XPΣPXT(XPXT)−1). (61)
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Now we expand this extra term based on the aforementioned decompositions

ΣPXT(XPXT)−1 = (XTS1X + XTS2X⊥ + XT
⊥ST

2X + XT
⊥S3X⊥)(XT(XXT)−1 + XT

⊥PT
2P
−1
1 (XXT)−1)

(62)

= XTS1 + XTS2X⊥XT
⊥Q(XXT)−1 + XT

⊥ST
2 + XT

⊥S3X⊥XT
⊥Q(XXT)−1 (63)

(XPXT)−1XPΣPXT(XPXT)−1 = S1 + S2X⊥XT
⊥Q(XXT)−1 (64)

+ (XXT)−1QTX⊥XT
⊥ST

2 + (XXT)−1QTX⊥XT
⊥S3X⊥XT

⊥Q(XXT)−1 (65)

So the the excess risk is upperbounded by

tr(BTΣB) + σ2tr(C) = tr(XT
⊥S3X⊥) + tr(FTXT

⊥S3X⊥F) (66)

+ σ2(S1 + S2X⊥XT
⊥Q(XXT)−1 + (XXT)−1QTX⊥XT

⊥ST
2 + (XXT)−1QTX⊥XT

⊥S3X⊥XT
⊥Q(XXT)−1)
(67)

Now if we take derivative w.r.t. Q and set it to zero we get

Q∗ = −(K⊥S3K⊥)−1(σ2K⊥ST
2K
−1)(K−1 + K−2)−1 (68)

where K = XXT and K⊥ = X⊥XT
⊥. By setting P1 = I, we have P2 = Q∗T. Therefore an optimal P is

P = XTX + XTQ∗TX⊥ + X⊥
TQ∗P (69)

Note that here we assume we have enough unlabeled date which among them we can pick n − d of them which are
orthogonal to the training data i.e.

XTX⊥ = XT
⊥X = 0 (70)

A.12. Optimization based Preconditioner for Linear Classification

Lemma 14 For an interpolating linear classifier w, it is possible to construct a family of quadratic norms ‖·‖P such that
the direction of the classifier is equivalent to the direction corresponding to the max P-margin solution where

P =
[
‖w‖2 Id −wwT + ννT

]−1
s.t. 〈w, ν〉 = 1.

Here, ν = VTα where V ∈ R|S|×d is the feature-matrix corresponding to the set S of support vectors for w, α is a
random vector satisfying the above constraints.

Proof Given wopt, the iterate obtained after running an arbitrary optimizer for T iterations, we want to find matrix M
such that

wopt

‖wopt‖
= arg max
‖z‖M≤1

min
i
〈z,xi〉

We constrain M such that ‖wopt‖M = 1. If M satisfies this constraint, then

wopt = arg max
‖z‖M≤1

min
i
〈z,xi〉

For the given wopt, there exist a unique set of support vectors S s.t for s ∈ S, mini〈wopt, s〉 = mini〈wopt,xi〉. Simplify-
ing, matrix M should satisfy the following equality for s ∈ S,

wopt = arg max
‖z‖M≤1

〈z, s〉 =⇒ wopt = arg max
‖z‖M≤1

∑
s∈S
〈z, s〉
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The Lagrangian for the RHS can be written as:

L(z, λ) =
∑
s∈S
〈z, s〉+ λ

(
‖z‖2M − 1

)
∂L(z, λ)

∂z
= 0 =⇒ Mwopt = −

∑
s∈S s

λ

Implying that vector Mwopt lies in the span of the support vectors. Let V ∈ R|S|×d be the matrix of support vectors. And
let α be an |S|-dimensional vector of coefficients.

=⇒ Mwopt = VTα

We now use the norm constraint ‖wopt‖M = 1 to constrain the α. Specifically, we want, ‖wopt‖2M = wT
optV

Tα = 1. This
implies that α should satisfy the following equality that ensures ‖wopt‖M = 1,

〈Vwopt, α〉 = 1

Since M is the inverse of a preconditioner matrix, it needs to be positive definite. Using the same construction as in
Lemma 4 with the additional constraint,

M = ‖wopt‖2 Id −woptw
T
opt +

(VTα)(VTα)T

〈wopt, (VTα)〉
(71)

where VTα > 0 ; 〈Vwopt, α〉 = 1. (72)

Similar to Lemma 4, we can verify that M is positive definite if VTα > 0 and satisfies the equality Mwopt = VTα.

A.13. Counter-examples for squared-hinge loss

Example 1 Consider two points x1 = (−1, 0) and x2 = (a, b =
√

1− a2) where 0 < a < 1 with y1 = −1 and
y2 = 1 as labels respectively. It can be shown that w∗ = (1, b

1+a) is the min-norm solution and we have y1 〈w∗,x1〉 =
y2 〈w∗,x2〉 = 1. In the following we assume three different cases where gradient descent starting from w0 over squared
hinge loss L(w) = 1

4

∑2
i=1 (max{0, 1− yi〈w,xi〉})2 with any fixed step size η > 0 won’t converge to w∗.

1. let w0 = w∗ + (α, β) where α, β ≥ 0 and α + β > 0. Since y1 〈w0,x1〉 ≥ 1 and y2 〈w0,x2〉 ≥ 1, therefore the
squared hinge loss is zero and so is its gradient. Therefore GD would not progress and w0 is an answer which is
not min-norm solution.

2. Now assume w0 classifies x2 with margin bigger than one and x1 with margin smaller than one i.e. y2 〈w0,x2〉 ≥ 1
and y1 〈w0,x1〉 < 1. In this situation the gradient of loss function at w0

∇L(w0) = −0.5y1x1(1− y1xT
1w0) = −0.5α0y1x1.

Note that∇L(w0) = (−0.5α0, 0) and α0 > 0. Now if we run GD for one step we have

w1 = w0 + (0.5ηα0, 0).

Observe that y2 〈w1,x2〉 = y2 〈w0,x2〉 + 0.5ηα0a >= 1 since 0.5ηα0a ≥ 0. Therefore the loss value at w2

for x2 is also zero. Therefore for all wt we have y2 〈wt,x2〉 ≥ 1 and loss functions gradient at any wt just add
some positive value to first component of wt. Therefore if we assume GD converges to w∞ = (w1

∞,w
2
∞), we have

w2
∞ = w2

0 6= w∗2.

3. Here we consider the reverse of the above scenario i.e. y2 〈w0,x2〉 < 1 and y1 〈w0,x1〉 = w1
0 ≥ 1.

∇L(w0) = −0.5x2(1− y2xT
2w0) = −0.5α0x2

w1 = w0 + 0.5ηα0x2.

We can check that y1 〈w1,x1〉 = y1 〈w0,x1〉+y1 〈x2,x1〉 ≥ 1+0.5ηα0a ≥ 1 since a, α0 > 0. Therefore similar to
above scenario, for all t we have y1 〈wt,x1〉 ≥ 1. We can observe that ∇L(wt) = γx2 for some γ > 0. Therefore
w∞ = w0 + βx2 = (w1

0 + βa,w2
0 + βb) for some β > 0 that means w1

∞ = w1
0 + βa 6= 1 = w∗.
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Example 2 Consider the same dataset as above, and consider GD initialized with w0 = 0 vector. The GD update at step
t is

wt+1 = wt − η∇L(wt).

Based on case 2 and case 3 of Example 1, if for any t we have y1 〈wt,x1〉 ≥ 1 or y2 〈wt,x2〉 ≥ 1 then we know that GD
won’t converge to w∗. Now assume that forall t < ∞ we have y1 〈wt,x1〉 < 1 or y2 〈wt,x2〉 < 1. To make notation
simpler let assume x1 = y1x1 and x2 = y2x2. In this case the update rule for GD is

wt+1 = wt +
η

2
(x1 + x2)−

η

2
(x1x

T
1 + x2x

T
2)wt = (I− η

2
XTX)wt +

η

2
(x1 + x2)

= Atw0 +
η

2
(x1 + x2)

t∑
i=0

Ai =
η

2
(x1 + x2)

t∑
i=0

Ai.

It can be seen that the eigenvalues of XTX are λ1 = 1 + a and λ2 = 1 − a. To get convergence at t → ∞, we need∑∞
i=0 Ai to be Neumann series. To get that, we need to η ≤ α

λ1
where α < 1. The largest eigenvalue of A is 1 − αλ2λ1 .

Hence we have

w∞ =
η

2
(x1 + x2)

∞∑
i=0

Ai =
η

2
(x1 + x2)α

λ1
λ2

=
α2

1− a
(x1 + x2) =

α2

2(1− a)
(1 + a, b).

To get convergence to w∗ i.e. w∞ = w∗, we need that α2(1+a)
2(1−a) = 1 and α2b

2(1−a) = b
1+a . Therefore we have to set

α =
√

2(1−a)
1+a . However if we pick a ≤ 1

3 then α ≥ 1 which is invalid value for α.

Appendix B. Experiments for linear classification

This section presents further experimental results for under and over-parameterized linear classification problems. In
Appendix B.1, we verify the construction of the equivalent preconditioner in Lemma 14. In Appendix B.2, we verify
that when minimizing the the squared-hinge loss for datasets with a known margin, projections onto the data-span and
the `2 ball ensure convergence to the max-margin solution. Finally, in Appendix B.3 we provide experimental details for
preconditioned gradient descent converging to the maximum relative margin solution in Figure 3, and in Appendix B.4,
we presents additional results for over-parameterized linear classification with an exponential-tailed loss.

B.1. Verification of Lemma 14

In this section we empirically validate the result of Lemma 14: every interpolating solution wopt with zero training error
has a corresponding preconditioner P for which PGD with P converges to wopt. We run the Adam, Adagrad, and Coin
Betting optimizers initialized at the origin, and then construct the corresponding preconditioners. We use the exponential
loss on a synthetic dataset of 500 training points using 50 features. Figure 3 shows the optimization performance of both
the original optimizers and their associated PGD methods (dashed lines). The PGD methods converge to models with
full training accuracy and the same direction as the original optimizers (right-most plot). Notice that some of the original
optimizers (and their preconditioned equivalent) converge to solutions which do not align with the max `2 margin solution.

B.2. `2 ball projection for the squared hinge loss

In Section 4, we explored the effect of projecting onto an appropriate space in order to improve the generalization per-
formance of a linear classifier under exponential-tailed losses. In this section we explore an analogous technique for the
case of the squared hinge loss: projecting the iterates of an optimizer onto the `2 ball of radius 1/γ, where the margin γ is
assumed to be known, implies convergence to the `2 max-margin solution.

We construct synthetic classification datasets in which the samples from each class follow Gaussian distribution with
different parameters for each class. We ensure that the training set is linearly separable and compute the maximum `2
margin attainable on it in order to perform the projection. We use a training set of 500 points and explore under- and
over-parameterized settings with 100 and 1000-dimensional features, respectively.
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Figure 3: Experimental validation of Lemma 14. For each optimizer, the corresponding dashed line shows the conver-
gence of PGD with a preconditioner constructed from the interpolating solution found by that optimizer as in
Lemma 14. The three PGD methods converge in direction to the same solutions as the original optimizers, as
predicted.

In Figure 4 we present several learning rate configurations for each optimizer, as well as the effect that the projection
onto the `2 ball (and data span for the over-parameterized case) have in relation to the convergence to the `2 max-margin
solution.

We observe that even though the projection might slow down the convergence in terms of the training loss for large
step-sizes, it improves the speed for the accuracy on the training set. Moreover, for every optimizer and step-size configura-
tion, the projection onto the ball improves the convergence towards the max-margin solution compared to the un-projected
optimizer. In the right-most plots, all the lines corresponding to projected optimizers overlap at a norm of 1/γ.
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Figure 4: Projected and unprojected variants of several optimizers onto the `2 ball of (assumed known) radius 1/γ.
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Figure 5: Projected and unprojected variants of Adagrad optimizers onto the data-span and `2 ball of (assumed known)
radius 1/γ.

Finally, in the over-parameterized setting, in Figure 5, projection onto the span of the data and subsequent ball projec-
tion provides further improvements in terms of angle to the max-margin solution and the margin measured on the training
points.

B.3. Maximum relative margin

We replicate the synthetic setting of of [38] to study the convergence of preconditioned gradient descent to the maximum
relative margin solution. We make minor modifications to the parameters of the originally proposed distribution to allow
for separability under a homogeneous linear model. We consider a 2-dimensional classification dataset in which the
distributions of each of the classes are Gaussian with matching covariance but different means.

x | y = 1 ∼ N (µ+,Σ) x | y = −1 ∼ N (µ−,Σ) µ+ = −µ− = −2

5
[[19, 13]]> Σ =

1

4

[
17 16.9

16.9 17

]
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Figure 6: Comparing solutions with maximum `2 and relative margin performance on a synthetic mixture of Gaussians
dataset. Incorporating the covariance of the data in the form of a preconditioning of the optimization, maximizes
the relative margin and results in a solution which is better aligned with the Bayes optimal classifier. Note how,
even though the maximum margin classifier is reasonable for the training set, it is “agnostic” to directions in
which the data tends to spread.

Figure 6 displays again the training and test datasets as well as the classifiers presented in the main paper. The training
set contains 100 points (orange and black), while the test set is formed of 1900 instances (blue and red). Training statistics
for preconditioned gradient descent under the exponential loss are presented in Figure 7. The solution found by gradient
descent stagnates after a few iterations due to the nature of the loss. However, the misalignment of the gradient descent
solution causes it to mis-classify one of the test points. This, coupled with the norm of the iterates of gradient descent,
induces a large test loss. Note that the mis-classified test point which represents an outlier for the GD and max `2-margin
solutions appears precisely in the directions “corrected” by the preconditioning via the covariance matrix.
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Figure 7: Performance of gradient descent with preconditioner Σ−1 on a synthetic experiment with Gaussian class-
conditionals.

B.4. Over-parameterized linear classification

The features and labels for this experiment are generated as the synthetic regression dataset presented in Appendix C.2.1
using 1-dimensional targets. The targets are then binarized depending on their sign. We explore different levels of over-
parametrization by sampling 300 training points and 600 test points with 500 and 1000 random Gaussian features.

Figure 8 presents the impact of projection onto the data span, as well as switching to gradient descent with a step-
size η = 10 (found to perform well via a grid-search). In the legend, the key-word “Always Project” indicates that the
weights are projected onto the data span at every iteration, while “Project at Switch” indicates that only one projection
onto the data span is performed and it takes place at the moment at which we switch from Adagrad to gradient descent. We
experimented switching at different points in training (50%, 75% and 90%) and obtained qualitatively similar performance
as those results presented here. The results are aggregated over 10 data samples and all instances are initialized at the
origin.

As expected, we see that the projection results in a smaller `2 norm and angle with respect to the `2 maximum margin
solution. More importantly, these results demonstrate that the generalization performance can be impacted by the “choice”
of subspace in which the iterates of the optimizer lie.
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Figure 8: Performance of GD and Adagrad on a synthetic overparameterized classification problem with random Gaussian
features. Projecting onto the data-span improves the test accuracy, while decreasing the solution’s norm and
angle to the max-margin solution.

Appendix C. Experiments for over-parameterized linear regression

C.1. Additional Results

This section presents further experimental results for over-parameterized linear regression problems. Appendix C.1.1
extends our investigation of regression with neural tangent kernels to several real-world datasets from the UCI reposi-
tory [13]. For completeness, we also repeat the experiment from Figure 1 with batch (deterministic) gradients. Then, in
Appendix C.1.2, we experimentally verify the theoretical results discussed in Section 2, including Lemmas 6, 9, 8, and 4.
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Figure 9: Performance of SGD and Adagrad for regression on the mushroom and wine datasets using squared-loss and
the NTK of one-layer networks with 50 and 100 hidden units. We use the largest step-size for which SGD
converges and consider a range of step-sizes for Adagrad. For each step-size, we plot as a dotted line the test
loss (training loss is unchanged) for a variant of Adagrad where the model parameters are projected onto the
span of the training data after every iteration. Tuned SGD stalls on the training loss but generalizes well, while
Adagrad’s generalization depends strongly on step-size. Projecting onto the data span corrects this behavior.

Finally, Appendix C.1.3 investigates improving the generalization of preconditioned gradient-descent by optimizing over
the space of preconditioners. In particular, we consider optimizing the excess-risk bound in Lemma 11 as well as several
simplified upper-bounds based on this quantity.

C.1.1. REGRESSION WITH NEURAL TANGENT KERNELS

We investigate the implicit regularization of Adagrad and SGD for kernel regression on the mushroom and wine datasets.
As in our synthetic experiments, we fit the model via the squared loss and use features from the neural tangent kernel of
single-layer, feed-forward networks with 50 and 100 hidden units, respectively. Unlike Figure 1, we also consider variants
of Adagrad where the model is projected on the data span after each iteration. We show only test loss for these projected
optimizers, since training performance is unaffected by projecting onto the data span3.

Results are shown in Figure 9. The generalization performance for Adagrad shows a striking dependence on step-
size — large step-sizes obtain test loss approximately two orders of magnitude larger than the smallest considered —
while training loss is largely unaffected. Similarly to our synthetic experiments, SGD stalls on the training loss, but
still generalizes well. Of particular interest are the projected versions of Adagrad, which completely correct for the poor
generalization performance of the ”vanilla” algorithm and obtain a test loss comparable to SGD.

As an ablation, we repeat the synthetic regression NTK experiment from the main paper (Figure 1) with batch gra-
dients. We also include projected variants of Adagrad following the protocol above. Figure 10 shows that the trends
from the stochastic setting also hold for deterministic optimization; Adagrad converges quickly in comparison to tuned
gradient descent, which stalls on the ill-conditioned problem. Yet, Adagrad’s test performance depends strongly on the
step-size chosen and never out-performs the min-norm solution. The projected variants of Adagard correct for this poor
generalization and also converge faster than gradient descent.

3. Projection operators with a large condition number do introduce a precision floor on the training loss.
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Figure 10: Ablation for synthetic regression problem using NTK features. Unlike in Figure 1, we consider batch opti-
mization. Moreover, for each step-size, we plot as a dotted line the test loss (training loss is unchanged) for a
variant of Adagrad where the model parameters are projected onto the span of the training data after every it-
eration. We see that deterministic optimization does not change Adagrad’s varied generalization performance.
Projecting onto the data span ensures comparable generalization to GD.

C.1.2. VERIFICATION OF THEORETICAL RESULTS

Now we verify our theoretical results for over-parameterized regression with several experiments on synthetic problems.
Lemma 6: Figure 11 examines the convergence of PGD with randomly generated preconditioners in the mini-batch

and batch settings. For each generated preconditioner P, we compute the solution to the normal equations

w∗p = PXT(XPXT)−1y,

and plot convergence of the iterates generated by PGD (with P) to the solutionw∗p. The convergence of gradient descent to
the min-norm solution is shown as a baseline. We clearly see that PGD converges to the P−1-norm least squares solution
as established by Lemma 6.

Lemmas 8 and 9: Figure 12 shows convergence of Newton’s method and full-matrix Adagrad for a synthetic regres-
sion problem. Unlike all other experiments with synthetic regression data, we generate a well-conditioned dataset to avoid
complications with evaluating the Hessian. We see that Newton’s method and full-matrix Adagrad remain in the span of
the data and converge to the min-norm solution as predicted.

Lemma 4: Now we experimentally confirm that every interpolating solution wopt has a corresponding preconditioner
P for which PGD with P converges to wopt. We run the Adam [25], Adagrad [14], and Coin Betting [32] optimizers until
convergence and then construct the corresponding preconditioners. Figure 13 shows the optimization and generalization
performance of both the original optimizers and their associated PGD methods (dashed lines). The PGD methods converge
to interpolating models with the same `2 norm and true risk as the original optimizers and show similar final training loss.

Proposition 1: Figure 14 explores the effects of projecting onto the span of the training data during optimization.
We use the Adagrad, Adam, and Coin Betting optimizers and compare projecting the model parameters onto span(XT)
at every iteration with the ”default” algorithms. We make several observations: (i) the default algorithms show varied
generalization performance and are all out-performed by GD, (ii) the projected variants converge to the min-norm solution
and obtain test loss comparable to GD, and (iii) the improved generalization of the projected methods is consistent across
the stochastic and deterministic cases.

C.1.3. IMPROVED GENERALIZATION VIA BETTER PRECONDITIONERS

In this section, we investigate choosing a preconditioner P to minimize the bound on the excess risk given in Lemma 11.
We consider minimizing the exact bound as well as two upper-bounds on the excess-risk bound that do not require full

33



HOW TO MAKE YOUR OPTIMIZER GENERALIZE BETTER

0 20 40 60
0.2

0.3

0.4

0.5

0.6

0.7

St
oc

ha
st

ic
Model L2-Norm

0 60 120 180

100

10 2

10 4

10 6

||w w *
p ||2

0 60 120 180

101

10 2

10 5

10 8

10 11

Training Loss

0 20 40 60
60

70

80

90

100 True Risk

0 60 120 180
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

De
te

rm
in

ist
ic

0 150 300 450
Epochs

100

10 2

10 4

10 6

0 150 300 450
Epochs

101

10 2

10 5

10 8

10 11

0 60 120
Epochs

60

70

80

90

Gradient Descent Random Preconditioner Random Preconditioner Random Preconditioner

Figure 11: Experimental validation of Lemma 6. Each PGD method uses a randomly generated diagonal preconditioner
P. The metric ‖w − wP ‖ is the `2 distance of the current weight vector w to wp – the interpolating solution
with minimum ‖·‖P−1 norm. Each PGD method converges to the min-norm solution in its preconditioner
P−1, as predicted.
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Figure 12: Experimental validation of Lemmas 8 and 9 with batch and mini-batch gradients. Newton’s method and full-
matrix Adagrad converge to the min-norm solution, while diagonal Adagrad does not.
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Figure 13: Experimental validation of Lemma 4. For each optimizer, the corresponding dashed line shows the conver-
gence of PGD with a preconditioner constructed from the interpolating solution found by that optimizer as in
Lemma 4. The three PGD methods converge to the same solutions as the original optimizers as predicted.

knowledge of the true model w∗. Starting from Lemma 11, we have

R(wPGD) := Ex,ε[x
T(wPGD −w∗)]2 ≤ (w0 −w∗)TBT

PΣBP(w0 −w∗) + σ2tr(CP) (Exact)

≤ ‖w0 −w∗‖ ‖BT
PΣBP‖2 + σ2tr(CP) (Operator)

≤ ‖w0 −w∗‖ ‖BT
PΣBP‖F + σ2tr(CP). (Frobenius)

When w0 = 0, these upper-bounds only require knowledge of the norm of the true model, rather than the true model
itself. They are particularly attractive in the noiseless case (σ2 = 0), where no knowledge of w∗ is required and we need
only optimize the two-operator norm or Frobenius norm of the matrix BT

PΣBP.
We optimize the exact excess risk bound (”Exact”) and upper-bound using the Frobenius norm (”Frobenius”) with

respect to a diagonal preconditioner diag(p) as well as a full-matrix preconditioner P. The upper-bound using the 2-
operator norm (”Operator”) is used to learn a diagonal preconditioner only, since evaluating the maximum singular value
is computationally expensive. We also consider using PGD with Σ−1 as a preconditioner (”Sigma”), which corresponds
to natural gradient descent [2]. Lemma 2 shows that the empirical precision Σ̂−1 minimizes an upper bound on the
Rademacher complexity for the family of linear classifiers with bounded P−1 norm, which suggests that PGD with Σ−1

may generalize well. For completeness, we also compare with tuned stochastic gradient descent and Adagrad.
Figure 15 shows the results of optimizing over P in both the noiseless setting (σ2 = 0) and the case where σ2 =

1. We observe that minimizing the exact bound on the excess risk is highly effective — especially when using a full-
matrix preconditioner. In this latter setting, PGD finds an interpolating solution with near optimal risk. In contrast, the
preconditioners obtained by minimizing the upper-bounds given by the Frobenius and 2-operator norms yield interpolating
solutions that generalize only as well as the min-norm solution. This suggests that these bounds are too loose to be useful
for learning better preconditioners. Such a conclusion is corroborated by Table 1, which shows that the Operator and
Frobenius preconditioners do not improve the excess-risk bound over the identity matrix. Lastly, it is highly interesting
to note that while natural gradient descent converges very quickly, it obtains the worst generalization performance out
of all methods considered. We speculate that this is because of the discrepancy in rank between the empirical and true
covariance matrices: rank(Σ̂) ≤ n� rank(Σ) = d.
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Figure 14: Effects of projecting onto span(XT) after every iteration when using the Adagrad, Adam, and Coin Betting
optimizers. Solid lines with markers denote standard optimizers, while dotted lines shows the same algorithms
with projections onto the span of the data at each iteration. We note that projecting onto the data span in-
troduces a precision floor for the training loss, but otherwise does not affect optimization dynamics of the
original optimizers. Projected methods converge to the min-norm solution and display similar generalization
to gradient descent, as predicted by Proposition 1.

Noise Level Identity Exact Exact (FM) Frobenius Frobenius (FM) Operator Sigma
0 64.45± 3.39 14.13± 1.07 0.02± 0.02 64.47± 3.37 64.7± 3.49 71.34± 2.64 81.31± 0.85
1 64.82± 3.39 15.05± 1.66 0.57± 0.02 64.85± 3.39 65.28± 3.4 71.66± 4.77 81.45± 0.85

Table 1: Mean and standard deviations for evaluations of the excess risk bound in Lemma 11 at preconditioners obtained
by minimizing the excess risk bound (”Exact”), upper-bounds on this bound using the 2-operator and Frobenius
norms (”Operator” and ”Frobenius”) and the inverse covariance of the data-generating distribution (”Sigma”).
FM denotes that we optimize over a full-matrix preconditioner (default is diagonal matrix). Directly minimizing
the bound from Lemma 11 is highly effective and leads to near-optimal risk for the solution found by PGD, while
the operator and Frobenius learning rules do not improve upon the identity matrix.
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Figure 15: Generalization performance of stochastic PGD where the preconditioner is selected by optimizing bounds on
the excess risk. The preconditioner for ”Exact” minimizes the excess risk bound given in Lemma 11, while
”Operator” and ”Frobenius” minimize upper-bounds Operator and Frobenius, respectively. ”Sigma” uses the
true precision matrix of the data, Σ−1, as the preconditioner. The full-matrix and diagonal preconditioners
learned by minimizing the exact excess-risk bound greatly improve generalization performance over the min-
norm solution, while ”Frobenius” and ”Operator” fail to outperform SGD and only minorly improve upon
Adagrad.
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C.2. Experimental Details

In this section we give additional details for the regression experiments presented in the main paper and the additional
results shown in Appendix C.1.

C.2.1. DATASETS

Synthetic Regression Datasets: We generate synthetic regression problems by first sampling a normalized ground-truth
weight vector w∗ = v/ ‖v‖ , where v ∼ N (0, 1). We then sample features from a diagonal, mean-zero Gaussian
distribution and computing targets as the inner product with the ground-truth vector:

xi ∼ N (0,Σ), yi = x>i w∗ + ε,

where ε ∼ N (0, σ2) is the target noise. To control the hardness of the optimization problem, we generate ill-conditioned,
positive-definite covariances by perturbing the identity matrix with squared Gaussian noise. In particular, we compute

Σ = I + Diag(δ2), δ ∼ N (0, ζ2I).

The setting ζ2 = 10 is used in all experiments but Figure 12, where ζ2 = 1 is chosen. We use a training set of 100
observations in all synthetic regression experiments. For a model w, we report the true risk

Ex,y

[
x>w − y

]
= (w −w∗)>Σ(w −w∗) + σ2,

instead of using a test set when using the original data features. When using features from a neural tangent kernel, we
instead sample a test of 400 examples and use this to evaluate the model performance. We repeat all experiments ten times
with the same ground-truth weights w∗ and data covariance Σ to control for randomness in the generation of the training
and test sets. Figures show the median and inter-quartile range. All stochastic experiments on synthetic regression use
mini-batches of 5 examples.

UCI Datasets: We use the wine and mushroom datasets from the UCI dataset repository [13]. We use the training
and validation splits4 created by Fernández-Delgado et al. [15] and used by Arora et al. [4]. In all regression experiments,
we randomly subset fifty examples from the training set to fit our models and evaluate on the full validation split. All
experiments are repeated ten times to control for the effects of sub-setting the training set. Figures show the median and
inter-quartile range. Stochastic experiments use mini-batches of two examples.

Computing Neural Tangent Kernels: We standardize the data before computing the neural tangent kernel. Neural
networks are initialized with standard normal weights and use the so-called NTK parameterization [21, 33] as well as
sigmoid activations. We use the BackPACK library [12] to compute the Jacobian of the network output.

C.2.2. REGRESSION WITH NEURAL TANGENT KERNELS

Here we provide specific details for the experiments shown in Figures 1, 9, and 10. For Figures 1 and 10, we generate
a training set of 100 examples with dimension d = 20 as described above. We use minibatches of 5 examples in the
stochastic case. Figure 9 considers the mushroom and wine datasets, where we use training sets of size 50 and mini-
batches of 2 examples. We experiment with neural tangent kernels for single-layer feed-forward neural networks of width
50 and 100. For all three datasets, we plot the step-size for SGD which maximized the convergence rate on the training
loss while still converging on all ten repeats. The grid-search uses the following grid:

η ∈ {20, 10, 5, 2.5, 0.1, 0.5, 0.25, 0.1}.

The final step-size chosen for all three datasets was η = 2.5. We use the same step-size grid for Adagrad and plot all
step-sizes which do not diverge or under-fit.

4. Publicly available at http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/.

38

http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/


HOW TO MAKE YOUR OPTIMIZER GENERALIZE BETTER

C.2.3. VERIFICATION OF LEMMA 6

Here we provide specific details for the experiment shown in Figure 11. We generate a synthetic regression dataset
as described above and sample three random, diagonal positive-definite preconditioners as P = diag(v2), where v ∼
N (0, I). We select step-sizes individually for each restart by grid-search over the set

η ∈ {0.1, 0.01, 0.005, 0.001, 5× 10−4, 1× 10−4, 5× 10−5, 1× 10−5, 5× 10−6, 1× 10−6}. (73)

Each step-size is picked to minimize the average of the training loss halfway through and at the at the end of training,
subject to the constraint that the optimizer does not diverge initially (and then recovers) or at the end of optimization.

C.2.4. VERIFICATION OF LEMMAS 8 AND 9

Here we provide specific details for Figure 12, which verifies that Newton’s method and full-matrix Adagrad converge
to the min-norm solution for over-parameterized linear regression problems. Unlike the other synthetic regression exper-
iments, here we generate a well-conditioned problem (ζ2 = 1; see above) to avoid complications when computing the
Newton step. As in other experiments, we choose step-sizes independently for each repeat (i.e. randomly sampled training
set) by grid-search of the following set

η ∈ {1, 0.1, 0.01, 0.005, 0.001, 5× 10−4, 1× 10−4, 5× 10−5, 1× 10−5, 5× 10−6, 1× 10−6}.

We use the same rule to select step-sizes as described in Appendix C.2.3.

C.2.5. VERIFICATION OF LEMMA 4

Here we provide specific details for Figure 13, which verifies that each interpolating solution has a corresponding pre-
conditioner P such that PGD with this preconditioner converges to the same solution. We generate a synthetic regression
dataset as described above and consider the interpolating solutions found by three optimizers: Adagrad, Adam, and Coin
Betting. We repeat the step-size selection procedure given in Appendix C.2.3 to select step-sizes for these optimizers
and then run them until they have converged to interpolating solutions wopt. We then compute the corresponding pre-
conditioners as described in Lemma 4. However, rather than sampling a random vector in the data span, we use the
setting

ν =

∥∥wopt
∥∥

‖X>y‖
X>y,

which can be interpreted as a normalized, one-step approximation to the min-norm solution. In practice, this leads to
well-conditioned preconditioners, unlike naive random sampling. We repeat the step-size grid-search to select step-sizes
for the PGD optimizers using these preconditioners.

C.2.6. VERIFICATION OF PROPOSITION 1

Figure 14 considers improving the generalization of popular optimizers like Adam, Adagrad, and Coin Betting, which
do not converge to the min-norm solution, by projecting their iterations onto span(X>) after each iteration. Once again,
we generate a synthetic regression dataset and use a grid-search to select step-sizes for each algorithm independently on
each sampled training set. We use the step-size grid in Equation 73. The same step-size is used for the projected and
unprojected variants of all optimizers. Projections onto the data span do not change the optimization dynamics for linear
models, since any model components lost in the projection are orthogonal to the gradient.

C.2.7. IMPROVED GENERALIZATION VIA BETTER PRECONDITIONERS

We optimize the excess-risk bound and both upper-bounds (Operator and Frobenius) on the excess-risk using gradient
descent with a fixed step-size. We select the step-size independently for each randomly generated train/test split by grid
search. The grid considered is

η ∈ {5× 10−1, 10−1, 10−2, 5× 10−3, 10−3, 10−4},

and final step-sizes are chosen to minimize the value of the optimized risk bound. We run the optimization procedure
for 7500 iterations or until the gradient norm is smaller than 1 × 10−7. Note that we optimize the risk bound using the
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combined train/test data, as this does not use knowledge of the test labels. This can be viewed as a form of unsupervised
learning, where information from the unlabaled test examples, data covariance Σ, and target variance σ2 are leveraged to
obtain a better preconditioner. We select step-sizes for PGD with the optimized preconditioners using a search over the
grid

η ∈ {10−1, 10−2, 5× 10−3, 10−3, 5× 10−4, 10−4, 5× 10−5, 10−5, 5× 10−6, 10−6, 5× 10−7, 10−7}.

We choose final step-sizes as described above in Appendix C.2.3. In practice, we found that the preconditioners obtained
by optimizing the exact bound on the excess risk were highly ill-conditioned or indefinite and so required very small step-
sizes. Results are provided only for the stochastic setting, as we found the deterministic setting to be virtually identical.
We use mini-batches of five examples for all optimizers.
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