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Abstract
This paper addresses the problem of optimizing partition functions in a stochastic learning setting.
We propose a stochastic variant of the bound majorization algorithm from [29] that relies on upper-
bounding the partition function with a quadratic surrogate. The update of the proposed method,
that we refer to as Stochastic Partition Function Bound (SPFB), resembles scaled stochastic gradi-
ent descent where the scaling factor relies on a second order term that is however different from
the Hessian. Similarly to quasi-Newton schemes, this term is constructed using the stochastic ap-
proximation of the value of the function and its gradient. We prove sub-linear convergence rate of
the proposed method and show the construction of its low-rank variant (LSPFB). Experiments on
logistic regression demonstrate that the proposed schemes significantly outperform SGD. We also
discuss how to use quadratic partition function bound for efficient training of deep learning models
and in non-convex optimization.

1. Introduction
The problem of estimating the probability density function over a set of random variables underlies
majority of learning frameworks and heavily depends on the partition function. Partition function
is a normalizer of a density function and ensures that it integrates to 1. This function needs to be
minimized when learning proper data distribution. Optimizing the partition function however is a
hard and often intractable problem [20]. It has been addressed in a number of ways in the literature.
Below we review strategies that directly confront the partition function (we skip pseudo-likelihood
strategies [24] and score matching [25] and ratio matching [26] techniques, which avoid direct
partition function computations).

There exists a variety of Markov chain Monte Carlo methods for approximately maximizing the
likelihood of models with partition functions such as i) contrastive divergence [13, 22] and persistent
contrastive divergence [42], which perform Gibbs sampling and are used inside a gradient descent
procedure to compute model parameter update, and ii) fast persistent contrastive divergence [43],
which relies on re-parameterizing the model and introducing the parameters that are trained with
much larger learning rate such that the Markov chain is forced to mix rapidly. The above mentioned
techniques are Gibbs sampling strategies that focus on estimating the gradient of the log-partition
function. Another technique called noise-contrastive estimation [21] treats partition function like
an additional model parameter whose estimate can be learned via nonlinear logistic regression dis-
criminating between the observed data and some artificially generated noise. Methods that directly
estimate the partiton function rely on importance sampling. More conretely they estimate the ratio
of the partition functions of two models, where one of the partition function is known. The exten-
sions of this technique, annealed importance sampling [27, 37] and bridge sampling [6], cope with
the setting where two considered distributions are far from each other.
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Finally, bound majorization constitutes yet another strategy for performing density estimation.
Bound majorization methods iteratively construct and optimize variational bound on the original
optimization problem. Among these techniques we have iterative scaling schemes [8, 17], EM al-
gorithm [2, 18], non-negative matrix factorization method [34], convex-concave procedure [47],
minimization by incremental surrogate optimization [35], and technique based on constructing
quadratic partition function bound [29] (early predecessors of these techniques include [9, 33]).
The latter technique uses tighter bound compared to the aforementioned methods, and exhibits
faster convergence compared to generic first- [36, 40, 44] and second-order [1, 7, 48] techniques
in the batch optimization setting for both convex and non-convex learning problems. In this paper
we revisit the quadratic bound majorization technique and propose its stochastic variant that we
analyze both theoretically and empirically. We prove its convergence rate and show that it is per-
forming favorably compared to SGD [10, 38]. Finally, we propose future research directions that
can utilize quadratic partition function bound in non-convex optimization, including deep learn-
ing setting. With a pressing need to develop landscape-driven deep learning optimization strate-
gies [3–5, 14, 14, 15, 19, 23, 28, 30, 31, 39, 41, 45], we foresee the resurgence of interest in bound
majorization techniques and its applicability to non-convex learning problems.

2. Method
Consider the log-linear model given by a density function of the form

p(y|x,θ) = exp(θT fx(y))/Zx(θ), (2.1)

where (x, y) is the observation-label pair (y ∈ {1, 2, ..., n}), fx : {1, 2, ..., n} → Rd represents a
feature map, θ ∈ Rd is a model parameter vector, and Zx(θ) =

∑n
y=1 exp(θ

T fx(y)) is the partition
function. Maximum likelihood framework estimates θ from a training data set {(xi, yi)}Ti=1 by
maximizing the objective function of the form

J(θ) =
T∑
i=1

log p(yi|xi,θ)−
λ

2
‖θ‖22 =

T∑
i=1

[
θT fxi(y)− logZxi(θ)

]
− λ

2
‖θ‖22 , (2.2)

where the second term is a regularization (λ is a regularization coefficient). This framework and
its various extensions underlie logistic regression, conditional random fields, maximum entropy
estimation, latent likelihood, deep belief networks, and other density estimation approaches. Equa-
tion 2.2 requires minimizing the partition function Zx(θ). This can be done by optimizing the
variational quadratic bound on the partition function instead. The bound is shown in Theorem 1.

Algorithm 1: Partition function bound

Input: θ̃ ∈ Rd, observation x,
fx(y)∀y ∈ {1, ..., n}.

Output: Bound parameters: Σ, µ, z
1 Init z → 0+, µ = 0, Σ = zI
2 for y = 1, ..., n do
3 αj = exp(θ̃

T
fx(y)); l = fx(y)− µ

4 β =
tanh( 1

2
log(α/z))

2 log(α/z) ;κ = α
z+α

5 Σ+ = βllT

6 µ+ = κl
7 z+ = α

8 end

Algorithm 2: Maximum Likelihood via
Stochastic Partition Function Bound (SPFB)
Input: initial parameters θ0, training data set

{(xj , yj)}Tj=1, features fxj , learning
rates ηt, regularization coefficient λ

Output: Model parameters θ
1 Set θ = θ0

2 while not converged do
3 randomly select a training point (xt, yt)
4 Get Σt, µt from fxt , θ via Algorithm 1
5 θ←θ−ηt (Σt+λI)−1 (µt−fxt(yt)+λθ)

6 end
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Theorem 1. [29] Let Zx(θ) =
∑n

y=1 exp
(
θT fx(y)

)
. Algorithm 1 finds z,µ,Σ such that

Zx(θ) ≤ z exp
(
1

2
(θ − θ̃)TΣ(θ − θ̃) + (θ − θ̃)Tµ

)
(2.3)

for any θ, θ̃, fx(y) ∈ Rd for any y ∈ {1, ..., n}.

2.1. Stochastic Partition Function Bound (SPFB)

The partition function bound of Algorithm 1 can be used to optimize the objective in Equation 2.2.
The maximum likelihood parameter update given by the bound takes the form:

θt+1 = θt − η

 T∑
j=1

Σj + λI

−1 T∑
j=1

[
µj − fxj (yj)

]
+ λθt

 , (2.4)

where Σjs and µjs are computed from Algorithm 1. In contrast to the above full-batch update,
Stochastic Partition Function Bound (SPFB) method that we propose in Algorithm 2 updates param-
eters after seeing each training data point, rather than the entire data set, according to the formula:

θt+1 = θt − ηt (Σt + λI)−1
(
µt − fxt(yt) + λθt

)
, (2.5)

where ηt = η0/t is the learning rate. Denote f(θ;xt) = log(Zt(θ)) − θT fxt(yt) +
λ
2‖θ‖

2 to be
an unbiased estimation of objective function L(θ), where L(θ) = −J(θ). The above formula (2.5)
can be rewritten as

θt+1 = θt − ηt (Σt + λI)−1∇f(θt;xt). (2.6)

The next theorem shows the convergence rate of SPFB.

Theorem 2. {θt} is the sequence of parameters generated by Algorithm 2. There exists 0 < µ1 <
µ2, 0 < λ1 < λ2 such that for all iterations t,

µ1I ≺ (Σt + λI)−1 ≺ µ2I and λ1I ≺ ∇2L(θ) ≺ λ2I, (2.7)
and there exists a constant σ, such that for all θ ∈ Rd, Ext [‖f(θ;xt)‖]2 ≤ σ2. Define the learning
rate in iteration t as ηt = η0/t, where η0 > 1/(2µ1λ1). Then for all t > 1,

E[L(θt)− L(θ∗)] ≤ Q(η0)/t, (2.8)

where Q(η0) = max
{

λ2µ22η
2
0σ

2

2(2µ1λ1η0−1) , L(θ
1)− L(θ∗)

}
.

Theorem 2 guarantees sub-linear convergence rate for SPFB when the step size is diminishing.
However, the time complexity of SPFB isO(nd2+d3)=Õ(d3), due to the computation and inversion
of matrix Σt, which is less appealing than the O(nd) complexity of SGD. This is next addressed.

2.2. Low-rank bound

In this section, we provide a low-rank construction of the bound that applies to both batch and
stochastic setting. We decompose matrix Σ into Σ = VTSV+D, where V ∈ Rk×d (orthnormal
matrix), S ∈ Rk×k, and D ∈ Rd×d (diagonal matrix) and apply Woodbury formula to compute the
inverse: Σ−1 = D−1 − D−1VT (S−1 + VD−1VT )−1VD−1 (clearly, the inverse only requires
O(k3) time and does not affect the total time complexity when rank k� d). Note that Algorithm
1 performs rank-one update to matrix Σ of the form: Σ = Σ + rrT , where r=

√
βl. This update

can be “projected” onto matrices V,S, and D. The concrete updates of matrices V,S, and D are
shown in Algorithm 3. The next theorem, Theorem 3, guarantees that the low-rank bound is indeed
an upper-bound on the partition function 1.

1. We simultaneously repair the low-rank bound construction of [29], which breaks this property.
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Theorem 3. Let Zx(θ) =
∑n

y=1 exp
(
θT fx(y)

)
. In each iteration of the x-loop in Algorithm 3

finds z,µ,V,S,D such that

Zx(θ) ≤ z exp
(
1

2
(θ − θ̃)T (VTSV + D)(θ − θ̃) + (θ − θ̃)Tµ

)
(2.9)

for any θ, θ̃, fx(y) ∈ Rd for any y ∈ {1, ..., n}.

Low-rank variant of Algorithm 2 is presented in Algorithm 4. Note that all proofs supporting
this section are deferred to the Supplement.

Algorithm 3: Low-rank Partition Function Bound

Input: θ̃ ∈ Rd, observation x, fx(y)∀y ∈ {1, ..., n}, rank k ∈ N
Output: Low-rank bound parameters: V, S, D, µ, z

1 z → 0+, S = 0, V = orthonormal ∈ Rk×d, D = zI, µ = 0
2 for each sample xj in batch do // x-loop
3 Init zj ← 0+, υ = 0
4 for each label y ∈ {1, 2, ..., n} do

5 α = exp(θ̃
T
fxj (y)); r =

√
tanh( 1

2
log(α/z))

2 log(α/z) (fxj (y)− υ);

6 p = Vr; a = VTp; g = r− a, S+= ppT

7 QTAQ = svd(S); S← A; V← QV; D+= ‖g‖‖a‖I ∈ Rd×d

8 s = [S(1, 1), ...,S(k, k), ‖g‖2]T , k̃ = argmini=1,...,k+1 s(i)

9 if k̃ ≤ k then
10 D = D + S(k̃, k̃)1T |V(k̃, ·)|diag(|V(k̃, ·)|)
11 S(k̃, k̃) = ‖g‖2; g = g

‖g‖ ; V(k̃, ·) = g

12 else
13 D+= 1T |g|diag(|g|)
14 υ+= α

zj+α
(fxj (y)− υ); zj+= α

15 end
16 µ+= υ, z+= zj
17 end

Algorithm 4: MLE via Low-rank Stochastic Partition Function Bound (LSPFB)

Input: initial parameters θ0, training data set {(xj , yj)}Tj=1, features fxj , learning rates ηt,
regularization coefficient λ

Output: Model parameters θ
1 Set θ = θ0

2 while not converged do
3 randomly select a training point (xt, yt)
4 Get Vt, St, Dt, µt from xt, fxt , θ via Algorithm 3 (input batch is a single data point xt)
5 Dt = Dt + λI; µt = µt − fxt(yt) + λθ

6 θ←θ−ηt
(
D−1t −D−1t VT

t

(
S−1t + VtD

−1
t VT

t

)−1
VtD

−1
t

)
µt

7 end
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3. Experiments
Experiments were performed on adult1 (T = 48842, n = 2, d = 14), KMNIST2 (T = 60000,
n = 10, d = 784), and Fashion-MNIST2 (T = 60000, n = 10, d = 784) data sets. All algorithms
were run with mini-batch size equal tom = 1000. For low-rank methods, we explored the following
settings of the rank k: k = 1, 5, 10, 100. Hyperparameters for all methods were chosen to achieve
the best test performance. We compare SPFB and LSPFB with SGD for `2-regularized logistic
regression on the adult, KMNIST, and Fashion-MNIST data sets. Both SPFB and LSPFB show
clear advantage over SGD in terms of convergence speed.

Figure 1: A Comparison of SPFB, LSPFB, and SGD on l2-regularized logistic regression problem.

4. Discussion
Here we briefly discuss the future extensions of this work. First, we will analyze whether the batch
bound method of Algorithm 1 admits super-linear convergence rate and thus match the convergence
rate of quasi-Newton techniques (the existing convergence analysis in the original paper shows
linear rate only). On the empirical side, we will investigate applying the bound techniques discussed
in this paper to optimize each layer of the network during backpropagation. Per-layer bounds,
when combined together, may potentially lead to a universal quadratic bound on the original highly
complex deep learning loss function. This approach would open up new possibilities for training
deep learning models as it reduces the deep learning non-convex optimization problem to a convex
one. We will also investigate applying the developed technique to backpropagation-free [16] setting
and large-batch [46] training of deep learning models. Finally, we will explore the applicability of
the bound techniques in the context of biasing the gradient to explore wide valleys in the non-convex
optimization landscape [14]. In this case enforcing the width of the bound to be sufficiently large
should provide a simple mechanism for finding solutions that lie in the flat regions of the landscape.

1. http://archive.ics.uci.edu/ml/datasets/Adult
2. https://pytorch.org/docs/stable/torchvision/datasets.html
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[9] Dankmar Böhning and Bruce G Lindsay. Monotonicity of quadratic-approximation algo-
rithms. Annals of the Institute of Statistical Mathematics, 40(4):641–663, 1988.
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Supplementary material

Appendix A. Proof for Theorem 2: sub-linear convergence rate

The proof in this section inspires by [11, 12, 32]. We analysis the convergence rate of Stochastic
version of Bound Majorization Method. It is easy to know that the objective function

L(θ) =
1

T

T∑
t=1

[
log(Zxt(θ))− θT fxt(yt)

]
+
λ

2
‖θ‖2

is strongly convex and and twice continuously differentiable, whereZxt(θ) =
∑n

i=1 exp(θ
T fxt(i)).

Therfore, we can make the following assumption

Assumption 1. Assume that

(1) The objective function L is twice continuous differentiable.

(2) There exists 0 < λ1 < λ2 such that for all θ ∈ Rd,

λ1I ≺ ∇2L(θ) ≺ λ2I, (A.1)

For stochastic partition function bound (SPFB) method, define ηt to be the learning rate, Σt to be
the Hessian approximation and f(θ;xt) = log(Zt(θ)) − θT fxt(yt) +

λ
2‖θ‖

2 to be the unbiased
estimation of objective function L(θ) in each iteration, then the update for parameter θ is

θt+1 = θt − ηt(Σt + λI)−1∇f(θt;xt). (A.2)

In order to analysis the convergence for SPFB, we add a condition that the variance of estimation
f(θ) is bounded then construct the following assumption:

Assumption 2. Assume that

(1) The objective function L is twice continuous differentiable.

(2) There exists 0 < λ1 < λ2 such that for all θ ∈ Rd,

λ1I ≺ ∇2L(θ) ≺ λ2I, (A.3)

(3) There exists a constant σ, such that for all θ ∈ Rd,

Ex[‖f(θ;x)‖]2 ≤ σ2 (A.4)

Lemma 1. For matrices {Σt} compute in Algorithm 1, there exists 0 < µ1 < µ2 such that for all
Σt

µ1I ≺ (Σt + λI)−1 ≺ µ2I. (A.5)

10



SGB: STOCHASTIC GRADIENT BOUND METHOD

Proof For easy notation, we omit the subscripts and demote Σt as Σ. From Algorithm 1, the
formulation for Σ is

Σ = z0I +
n∑
i=1

βilil
T
i , (A.6)

where z0 → 0+ is the initialization of z in algorithm 1. Define zi =
∑i

k=1 αk, we can compute the
upper bound of βi

βi =
tanh (12 log(αi/zi))

2 log(αi/zi)
=

1

4
·
tanh (12 log(αi/zi))

1
2 log(αi/zi)

≤ 1

4
, (A.7)

we can also conclude that there exits k such that 1
n <

αk
zk
< 1, which imply

βk ≥
tanh(12 log(

1
n))

2 log( 1n)
.

Since li+1 = (−α1
zi

x, · · · , αi
zi

x,x, 0, · · · , 0), where x is the current observation, we have

(1 +
1

n
)‖x‖2 ≤ ‖li+1‖2 =

α2
1 + α2

2 + · · ·α2
i

(α1 + α2 + · · ·αi)2
‖x‖2 + ‖x‖2 ≤ 2‖x‖2 (A.8)

Therefore,

‖Σ‖2 ≥ βk‖lk‖2 ≥
(
1 +

1

n

)
tanh(12 log(

1
n))

2 log( 1n)
‖x‖2. (A.9)

Based on previous proof, the upperbound for matrix Σ is

‖Σ‖2 ≤ z20 +
n∑
i=1

βi‖lilTi ‖2 ≤ z20 +
1

4

n∑
i=1

‖li‖4 (A.10)

≤ z20 +
1

4
‖x‖4

n∑
i=1

2 ≤ z20 +
√
n

2
‖x‖4.

When z0 → 0+, ‖Σ‖ ≤
√

n
2 ‖x‖

2.

Denote {xt} as the set of all observations. Define µ2 = 1/
((

1 + 1
n

) tanh( 1
2
log( 1

n
))

2 log( 1
n
)

maxt ‖xt‖2 + λ
)

,

µ1 = 1/
(√

n
2 maxt ‖xt‖2 + λ

)
,

1/µ2 ≤ ‖Σt + λI‖ ≤ 1/µ1 =⇒ µ2 ≥ ‖(Σt + λI)−1‖ ≥ µ1.

Theorem 2. {θt} is the sequence of parameters generated by Algorithm 2. There exists 0 < µ1 <
µ2, 0 < λ1 < λ2 such that for all iterations t,

µ1I ≺ (Σt + λI)−1 ≺ µ2I and λ1I ≺ ∇2L(θ) ≺ λ2I, (A.11)

and there exists a constant σ, such that for all θ ∈ Rd,

Ext [‖f(θ;xt)‖]2 ≤ σ2. (A.12)

11
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Define the learning rate in iteration t as

ηt = η0/t where η0 > 1/(2µ1λ1).

Then for all t > 1,
E[L(θt)− L(θ∗)] ≤ Q(η0)/t, (A.13)

where Q(η0) = max
{

λ2µ22η
2
0σ

2

2(2µ1λ1η0−1) , L(θ
1)− L(θ∗)

}
.

Proof

L(θt+1) = L(θt − ηt(Σt + λI)−1∇f(θt;xt))

≤ L(θt) +∇L(θt)T
(
−ηt(Σt + λI)−1∇f(θt;xt)

)
+
λ2
2

∥∥ηt(Σt + λI)−1∇f(θt;xt)
∥∥2

≤ L(θt)− ηt∇L(θt)T (Σt + λI)−1∇f(θt;xt) +
λ2
2
η2t µ

2
2

∥∥∇f(θt;xt)∥∥2 . (A.14)

Taking the expectation, we have

E[L(θt+1)] ≤ E[L(θt)]− ηtµ1
∥∥∇L(θt)∥∥2 + λ2

2
η2t µ

2
2σ

2. (A.15)

Now, we want to correlate
∥∥∇L(θt)∥∥2 with L(θt) − L(θ∗). For all v ∈ Rd, by condition (2) in

Assumption 2,

L(v) ≥ L(θt) +∇L(θt)T (v − θt) +
λ1
2
‖v − θt‖2

≥ L(θt)−∇L(θt)T
(

1

λ1
∇L(θt)

)
+
λ1
2
‖ 1
λ1
∇L(θt)‖2

= L(θt)− 1

2λ1
‖∇L(θt)‖2, (A.16)

the second inequality comes from computing the minimum of quadratic function q(v) = L(θk) +
∇L(θk)T (v − θk) + λ1

2 ‖v − θk‖2. Setting v = θ∗ yields

2λ1[L(θ
t)− L(θ∗)] ≤ ‖∇L(θt)‖2, (A.17)

which together with formula (A.15) yields

E[L(θt+1)− L(θ∗)] ≤ E[L(θt)− L(θ∗)]− 2ηtµ1λ1E[L(θt)− L(θ∗)] + λ2
2
η2t µ

2
2σ

2

= (1− 2ηtµ1λ1)E[L(θt)− L(θ∗)] + λ2
2
η2t µ

2
2σ

2. (A.18)

12
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Define φt = E[L(θt) − L(θ∗)], Q(η0) = max
{

λ2µ22η
2
0σ

2

2(2µ1λ1η0−1) , L(θ
1)− L(θ∗)

}
, when t = 1,

φ1 = L(θ1)− L(θ∗) = Q(η0)/1 holds. We finish the proof by induction. Assume φt ≤ Q(η0)
t ,

φt+1 ≤ (1− 2ηtµ1λ1)φt +
λ2
2
η2t µ

2
2σ

2

= (1− 2η0µ1λ1
t

)
Q(η0)

t
+
λ2η

2
0µ

2
2σ

2

2t2

=
t− 2η0µ1λ1

t2
Q(η0) +

λ2η
2
0µ

2
2σ

2

2t2

=
t− 1

t2
Q(η0)−

2η0µ1λ1 − 1

t2
Q(η0) +

λ2η
2
0µ

2
2σ

2

2t2

≤ t− 1

t2
Q(η0)−

2η0µ1λ1 − 1

t2
λ2µ

2
2η

2
0σ

2

2(2µ1λ1η0 − 1)
+
λ2η

2
0µ

2
2σ

2

2t2

≤ Q(η0)

t+ 1
(A.19)

Appendix B. Proof for Thm 3: Low-rank Bound

The lower-bound in [29] is not correct since a ⊥ g is not sufficient for xT (agT + gaT )x = 0, ∀x.
We loose and fix the bound in this section. We use some proof steps in [29].

Lemma 2. ∀x ∈ Rd, ∀l ∈ R+d(l ≥ 0), we have

d∑
i=1

x2(i)l(i) ≥

 d∑
i=1

x(i)
l(i)√∑d
j=1 l(j)


Proof By Jensen’s inequality, if f : R→ R convex, {ai}di=1 satisfies

∑d
i=1 ai = 1, then

d∑
i=1

aif(x(i)) ≥ f

(
d∑
i=1

aix(i)

)

Set ai =
l(i)∑d
i=1 l(i)

,f(x) = x2,

d∑
i=1

x(i)2
l(i)∑d
i=1 l(i)

≥

(
d∑
i=1

x(i)
l(i)∑d
i=1 l(i)

)2

d∑
i=1

x2(i)l(i) ≥

 d∑
i=1

x(i)
l(i)√∑d
j=1 l(j)


Lemma 3. If a,g ∈ Rn non-zero, then rank(agT ) = 1.

Proof
rank(agT ) = min{rank(a), rank(g)} = 1

13



SGB: STOCHASTIC GRADIENT BOUND METHOD

Lemma 4. Let a,g ∈ Rn non-zero, matrix A = agT + gaT ∈ Rn×n. If a ⊥ g and A 6= 0, then A
has exactly 2 opposite eigenvalues ±‖a‖2‖g‖2.

Proof Because rank(agT ) = rank(gaT ) = 1 (By Lemma 3),

rank(A) = rank(agT + gaT ) ≤ rank(agT ) + rank(gaT ) = 2.

(a) rank(A) = 1, there is only one non-zero eigenvalue λ.

λ = trace(A) =
n∑
i=1

Aii =
n∑
i=1

aigi + aigi = 2aTg = 0.

Therefore, all eigenvalues of matrix A are 0 and A = 0, which contradicts the condition
A 6= 0.

(b) rank(A) = 2, assume λ1, λ2 are 2 non-zero eigenvalues of A.

λ1 + λ2 = trace(A) = 0 (B.1)

Without loss of generality, assume λ1 > 0, then the characteristic polynomial of matrix A is

λn−2(λ− λ1)(λ− λ2) = λn−2(λ2 − λ21),

and matrix A satisfies

An−2(A2 − λ21I) = 0 (B.2)

Because

A3 = A2A = (agTagT + agTgaT + gaTagT + gaTgaT )(agT + gaT )

= (‖a‖22ggT + ‖g‖22aaT )(agT + gaT )

= ‖a‖22‖g‖22(agT + gaT )

= ‖a‖22‖g‖22A,

We can conclude that

A(A2 − ‖a‖22‖g‖22I) = 0 =⇒ An−2(A2 − ‖a‖22‖g‖22I) = 0. (B.3)

From formula (B.1), (B.2) and (B.3) we can conclude that the eigenvalues λ1 = ‖a‖2‖g‖2
and λ2 = −‖a‖2‖g‖2.

Theorem 3. Let Zx(θ) =
∑n

y=1 exp
(
θT fx(y)

)
. In each iteration of the x-loop in Algorithm 3

finds z,µ,V,S,D such that

Zx(θ) ≤ z exp
(
1

2
(θ − θ̃)T (VTSV + D)(θ − θ̃) + (θ − θ̃)Tµ

)
(B.4)
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Proof Define Zix(θ) =
∑i

y=1 exp(θ
T fx(y)), then the partition function is represented as Zx(θ) =

Znx(θ), where n is the number of labels. From proof of Thm 1 (details included in [29]), we already
find a sequence of matrix {Σi}ni=1, vector {µ}ni=1 and constant {zi}ni=1 such that:

Zix(θ) ≤ zi exp
(
1

2
(θ − θ̃)TΣi(θ − θ̃) + (θ − θ̃)Tµi

)
, (B.5)

where the terminate terms Σ = Σn, µ = µn, z = zn are the output of algorithm 1. If we could find
sequences of {Vi}ni=1 ⊂ Rk×d (orthnormal), {Si}ni=1 ⊂ Rk×k and {Di}ni=1 ⊂ Rd×d (diagonal)
upper-bounds matrices {Σi}ni=1 ⊂ Rd×d as

xTΣix ≤ xT (VT
i SiVi + Di)x ∀x ∈ Rd, (B.6)

the upper-bound B.5 of partition function over only i labels can be renewed as

Zix(θ) ≤ zi exp
(
1

2
(θ − θ̃)T

(
VT
i SiVi + Di

)
(θ − θ̃) + (θ − θ̃)Tµi

)
. (B.7)

When i = n, denote V,S,D,µ, z = Vn,Sn,Dn,µn, zn, the formula B.7 is equivalent to B.23
and we finish the proof. We successfully decompose Σi into lower-rank while keep the upper-bound
at the same time. In the following part, we are going to show how to construct the matrix sequences
{Vi}ni=1, {Si}ni=1 and {Di}ni=1 satisfy the condition B.6. The proof is based on mathematical
induction.

• From proof of Thm 1 in [29], z0 → 0+, Σ0 = z0I. Define V0 = 0, S0 = 0 and D0 = z0I, it
is obvious that xTΣ0x = xT (VT

0 S0V0 + D0)x holds for all x ∈ Rd.

• Assume Vi−1, Si−1 and Di−1 satisfy condition (B.6), we are going to find Vi, Si and Di sat-
isfy this condition as well. From line 5 in algorithm 1, Σi = Σi−1+rrT , where r =

√
βl. De-

fine the subspace constructed by row vectors of Vi−1 asA = span{Vi−1(1, ·), ...,Vi−1(k, ·)}.
Map the vector r onto subspace A and denote the residual orthogonal to subspace A as g

r =

d∑
j=1

rVi−1(j, ·)VT
i−1(j, ·) + g

= VT
i−1Vi−1r + g, (B.8)

substitute (B.8) into Σi = Σi−1 + rrT , we have

Σi = Σi−1 + (VT
i−1Vi−1r + g)(VT

i−1Vi−1r + g)T

= VT
i−1(Si−1 + Vi−1rr

T
i VT

i−1)Vi−1 + Di−1 + ggT + VT
i−1Vi−1rg

T + grTi VT
i−1Vi−1.

(B.9)

Define a = VT
i−1Vi−1r, Equation (B.9) can be simplified as

Σi = VT
i−1(Si−1 + Vi−1rr

TVT
i−1)Vi−1 + Di−1 + ggT + agT + gaT , (B.10)
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the corresponding quadratic form is

xTΣix = xT
[
VT
i−1(Si−1 + Vi−1rr

TVT
i−1)Vi−1 + Di−1 + ggT

]
+ xT (agT + gaT )x.

(B.11)

By Lemma 4, the maximum eigenvalue of matrix agT + gaT is ‖a‖2‖g‖2. Define P =
‖a‖2‖g‖2I , we have

xT (agT + gaT )x ≤ max{λ|λ is eigenvalue of A}xTx = ‖a‖2‖g‖2‖x‖22 = xTPx. (B.12)

Define

D′i−1 = Di−1 + P ∈ Rd×d (diagonal),

Σ̃i := VT
i−1(Si−1 + Vi−1rir

T
i VT

i−1)Vi−1 + D′i−1 + ggT , (B.13)

by (B.11) and (B.12), it is easy to know,

xTΣix ≤ xT Σ̃ix (B.14)

We have already prove xT Σ̃ix is larger than xTΣix, then all we need is the upper-bound of
xT Σ̃ix. Perform SVD decomposition on Si−1 + Vi−1rr

TVT
i−1 and denote the result as

QT
i−1S

′
i−1Qi−1 = svd(Si−1 + Vi−1rr

TVT
i−1),

define V′i−1 = Qi−1Vi−1, then (B.13) can be simplified as

Σ̃i = VT
i−1Q

T
i−1S

′
i−1Qi−1Vi−1 + D′i−1 + ggT

= V′i−1
TS′i−1V

′
i−1 + D′i−1 + ggT

=
[
V′i−1

T g
‖g‖2

] [S′i−1 0T

0 ‖g‖22

][
V′i−1
gT

‖g‖2

]
︸ ︷︷ ︸

=:B

+D′i−1. (B.15)

It is easy to know that rank(B) = k + 1 and B is a (k + 1)-svd decomposition. In order
to keep the construction of Σi, we have no choice but to remove the smallest eigenvalue and
corresponding eigenvector from matrix B.

case 1) ‖g‖22 ≤ argminj=1...k S′i−1(j, j), remove eigenvalue ‖g‖22 and corresponding eigenvec-
tor g
‖g‖2 .

Σ′i = V′i−1
TS′i−1V

′
i−1D

′
i−1 = Σ̃i − ggt = Σ̃i − cvvT , (B.16)

where c = ‖g‖22,v = g
‖g‖2 . In this case Vi = V′i−1, Si = S′i−1.
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case 2) ‖g‖22 > argminj=1...k S′i−1(j, j), remove mth (absolute value smallest) eigenvalue in
S′i−1 and corresponding eigenvalue V′i−1(m, ·).

Σ′i = V′i−1
TS′i−1V

′
i−1 + D′i−1 + ggt − S′i−1(m,m)Vi−1(m, ·)Vi−1(m, ·)T

= Σ̃i − cvvT , (B.17)

where c = S′i−1(m,m),v = Vi−1(m, ·). In this case,

Vi =



V′i−1(1, ·)
...

V′i−1(m− 1, ·)
g
‖g‖22
...

V′i−1(k, ·)


,

Si = diag(S′i−1(1, 1), · · · ,S′i−1(m− 1,m− 1), ‖g‖22, · · · ,S′i−1(k, k)).

In both cases

Σ′i = VT
i SiVi + D′i−1 (B.18)

Σ̃i = Σ′i + cvvT , (B.19)

where Vi ∈ Rk×d orthnormal, Si ∈ Rk×k and D′i−1 ∈ Rd×d are diagonal, v ∈ Rd and
vTv = 1. Therefore, for all x ∈ Rd we have

xT Σ̃ix = xTΣ′ix + cxTvvTx = xTΣ′ix + c(xTv)2, (B.20)

Σ′i is not sufficient for the condition xTΣ′ix ≥ xT Σ̃ix(∀x), we would like to relax it by
constructing Σ′′i = Σ′i + F (F ∈ Rd×d is diagonal) such that xTΣ′′i x ≥ xT Σ̃ix(∀x), which
is equivalent to

xTΣ′′i x ≥ xT Σ̃ix

xT (Σ′i + F)x ≥ xT (Σ′i + cvvT )x

d∑
i=1

x2(i)F(i) ≥ c

(
d∑
i=1

x(i)v(i)

)2

. (B.21)
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Set F(i) = c|v(i)|
∑d

j=1 |v(j)|, by Lemma 2 we have

d∑
i=1

x2(i)F(i) =
d∑
i=1

|x(i)|2F(i)

≥

 d∑
i=1

|x(i)| F(i)√∑d
j=1 F(i)


=

(
d∑
i=1

|x(i)|
c|v(i)|

∑d
j=1 |v(j)|√

c
∑d

j=1 c|v(i)|

)2

≥ c

(
d∑
i=1

x(i)v(i)

)2

(B.22)

Combine (B.21) and (B.22), Σ′′i = Σ′i+F is what we want. Let Di=D′i−1+F, together with
Vi and Si defined in former case 1) and case 2), we have

xTΣix ≤ xT Σ̃ix ≤ xTΣ′′i x = xT
(
VT
i SiVi + Di

)
x

We already construct sequences of matrix {Vi}ni=1, {Si}ni=1 and {Di}ni=1 satisfies the condition
(B.6). Define V,S,D = Vn,Sn,Dn, keep µ and z the same as what they are in Thm 1, the
formula (B.7) implies

Zx(θ) ≤ z exp
(
1

2
(θ − θ̃)T (VTSV + D)(θ − θ̃) + (θ − θ̃)Tµ

)
(B.23)
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