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Abstract
We consider the least-squares regression problem withn points in dimensiond. We analyze a novel
approach, based on randomizing the Hessian matrix, to approximately solve this problem. The new
algorithm is a variant of the averaged stochastic gradient descent method (SGD) with constant
step-size. However, its updating rule relies on the entire response vector, and its convergence
properties do not depend on the residuals. Without strong convexity assumptions, it is proven that
the algorithm achieves a convergence rate for function values ofO(1/k) afterk iterations, where the
constant behind theO notation does not depend explicitly on the smallest eigenvalue of the Hessian
matrix. The algorithm has a preprocessing cost proportional to the input size, and the running time
of each iteration is proportional to the dimension. In the strongly-convex case, a restart version of
the algorithm yields a convergence rate ofO(k−l) in O(ld(n + k)) time for arbitraryl ≥ 2, where
the constant behind theO notation depends onl and on the smallest eigenvalue of the Hessian
matrix. Our theoretical results are illustrated with numerical experiments.

1. Introduction

The recent availability of massive volumes of data fosters the need to design computationally ef-
ficient algorithms for optimization in high dimensions. In large-scale machine learning, stochastic
gradient descent algorithms are among the most effective optimization methods [2]. For general
smooth convex functions, averaged SGD achieves the rate of convergence ofO(1/

√
k) afterk iter-

ations [14]. For strongly-convex functions, i.e. when the smallest eigenvalue of the Hessian matrix
is bounded away from0, the convergence rate afterk iterations isO(1/k) [14]. Variance-reduced
SGD algorithms that optimize the sum ofn convex functions are described in [11, 20, 22], and re-
lated accelerated methods are analysed in [13, 15, 21, 23]. These methods enjoy linear convergence
(a convergence rate that decreases exponentially with the number of iterations) in the strongly-
convex case. For general smooth convex functions, the stochastic average gradient method (SAG)
of Schmidt et al. [20] yields a convergence rate ofO(

√
n/k) afterk iterations.

This paper focuses on the least-squares regression, which often arises in scientific computing
and data analysis, and is widely used for inference and prediction. Many of the modern machine
learning techniques such as the logistic and ridge regressions, the lasso method and neural networks
can be considered as extensions of the least-squares regression technique. Given a non-zeron × d
matrixX and ann-dimensional column vectorY , the least-squares problem consists of minimizing
the functiong(θ) = (2n)−1||Xθ−Y ||2, whereθ ranges over alld-dimensional column vectors. An
exact solution to this problem can be found inO(nd2) time [9]. Rokhlin and Tygert [19] describe
a randomized algorithm based on a preconditioning matrix that computes inO(d3 + nd ln(d/ε))
time a vectorθ that minimizesg(θ) to relative precisionε. In the strongly-convex case, variants
of SGD described in [8, 11, 20, 22] yield linear convergence rates for least-squares regressions.
In typical high-dimensional machine learning problems, however, explanatory variables are highly
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correlated, and so the smallest eigenvalue of the Hessian matrix is very close or equal to0. For non-
strongly-convex linear regressions, Bach and Moulines [1] show a convergence rate ofO(1/k) after
k iterations for an averaged SGD algorithm with constant step-size in an on-line setting. Extensions
and a detailed asymptotic analysis of the performance of this algorithm are given in [4]. Pilanci
and Wainwright [17] provide algorithms for constrained least-squares through a random projec-
tion on a lower dimensional space. Dieuleveut et al. [6] study an averaged accelerated regularized
SGD algorithm for least-squares regressions. Mini-batching and tail-averaging SGD algorithms for
least-squares regressions are analyzed in [10]. Pillaud-Vivien et al. [18] show that, for hard linear
regression problems, multiple passes of SGD lead to statistically optimal predictions while a single
pass does not.

This paper studies a novel algorithm based on randomizing the Hessian matrix with averag-
ing (RHA) that minimizesg(θ) at an arbitrary precision. Our approach is a variant of SGD, and
each iteration of the algorithm takesO(d) time. The algorithm hasO(nd) pre-processing cost and
achieves a convergence rate ofO(1/k) afterk iterations in the non-strongly-convex case. It enjoys
the following properties:

1. Our method takesO(nd + L̄||θ∗ − θ0||2d3/2/ε) time to minimizeg(θ) with expected errorε,
whereL̄ := tr(XT X)/n is the average squared norm of a line ofX, θ0 is the starting point,
andθ∗ is anyd-dimensional column vector that minimizesg. Thus, the time required by our
algorithm to minimizeg(θ) with a given expected error does not depend explicitly on the
smallest eigenvalue of the Hessian matrix or on the residuals. Note that, for general matrices,
the time to read the input is of ordernd. Forε > 0, the averaged SGD achieves precisionε in
O(nd + (σ2d2 + R2||θ∗ − θ0||2d)/ε) time [1], including the time to read the input, whereσ
andR are real numbers satisfying certain conditions given in [1]. The smallest valid choice
for σ2 ranges between a weighted average of the squared residuals and the maximum squared
residual. Similarly, the smallest valid choice forR2 ranges between̄L and the maximum
squared norm of a line ofX. Depending on the problem instance, the upper bound on the
time required by our algorithm to achieve precisionε can be higher or lower than that of the
averaged SGD, even if all lines ofX have the same norm.

2. Whenθ∗ is drawn uniformly at random fromS(θ0, ρ), whereS(θ0, ρ) = {θ ∈ Rd×1 :
||θ − θ0|| = ρ} for ρ > 0, the time required by our algorithm to minimizeg(θ) with expected
errorε is O(nd+L̄ρ2d/ε). Given a target precisionε, this average–case bound on the running
time of our algorithm is never higher (up to absolute constants) than the aforementioned
worst–case bound on the running time of the averaged SGD. We are not aware of an average–
case analysis of the averaged SGD in the above sense. It is well known that the average–case
running time of certain algorithms, such as the quicksort sorting algorithm [3], is lower than
their worst–case running time. Pedregosa and Scieur [16] analyse the average–case behavior
of gradient–based optimization algorithms for random quadratic problems.

3. When the Hessian matrix is invertible, for anyl ≥ 2, a restart version of our algorithm
achieves a rate of convergence ofO(k−l) after k iterations. The restart algorithm can be
simulated without any knowledge on the smallest eigenvalue of the Hessian matrix. The
constant behind theO-notation depends onl and on the smallest eigenvalue of the Hessian
matrix.

2



LEAST-SQUARES VIA RANDOMIZED HESSIANS

Our algorithm uses a non-uniform sampling scheme with sampling probabilities determined by the
squared norm of each row vector. A similar sampling scheme has been applied by Frieze et al. [7]
in the context of low-rank approximations of a matrix, by Strohmer and Vershynin [24] to approx-
imately solve linear systems via an iterative algorithm, and by Défossez and Bach [4] to design an
averaged SGD for least-squares regressions. However, while the updating rule of the conventional
SGD, of Strohmer and Vershynin [24] and of D́efossez and Bach [4] uses a single random coordinate
of Y , our updating rule uses a vector that depends on the entire vectorY . Strohmer and Vershynin
[24] establish a linear convergence rate for their method in the strongly-convex case. Défossez and
Bach [4] analyse the asymptotic properties (as the number of iterations goes to infinity) of their
algorithm, but do not study its performance after a finite number of iterations. Kahalé [12] uses a
recursion similar to our updating rule to approximately simulate high-dimensional Gaussian vectors
with a given covariance matrix.

Section2 describes our method and its properties. Section3 gives numerical experiments.
Omitted proofs will appear in the final version of the paper. The running time refers to the number
of arithmetic operations.

2. The algorithm description and properties

For1 ≤ i ≤ n, let ei be then-dimensional column vector whosei-th component is1 and remaining
components are0, and let

pi =
||XT ei||2

tr(XT X)
. (1)

Note that the numerator in (1) is the sum of the squared entries of thei-th line of X, while the
denominator is the sum of squared entries ofX. Thus thepi’s sum up to1. Let (i(k) : k ≥ 0) be
independent integral random variables on{1, . . . , n} such that, for1 ≤ j ≤ n,

Pr(i(k) = j) = pj .

Given an initiald-dimensional column vectorθ0 and a real numberα ∈ (0, 1], define the sequence
of d-dimensional column vectors(θk : k ≥ 0) via the recursion

θk+1 = θk − α((uT
k (θk − θ0))uk − c) (2)

for k ≥ 0, whereuk = ||XT ei(k)||
−1(XT ei(k)) andc = tr(XT X)−1XT (y − Xθ0). Fork ≥ 1, let

θ̄k =
θ0 + ∙ ∙ ∙ + θk−1

k
.

Theorem1 shows thatE(g(θ̄k)) converges to the minimum of the functiong at a rate ofO(1/k).

Theorem 1 For k ≥ 1, we have

E(g(θ̄k)) − g(θ∗) ≤
5α−1 + 4αd

2
L̄
||θ∗ − θ0||2

k
.

If α = 1/
√

d, Theorem1 implies that

E(g(θ̄k)) − g(θ∗) ≤
9
√

d

2
L̄
||θ∗ − θ0||2

k
. (3)
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As XT ei is the i-th column ofXT , for 1 ≤ i ≤ n, the total time to calculatec and thepi’s is
O(nd). After an initial preprocessing cost ofO(n), the random variablei(k) can be simulated in
constant time using the alias method [5, Section III.4]. Thus the cost of each iteration isO(d).
Settingα = 1/

√
d, the total time for our algorithm to minimizeg(θ) with expected errorε is

O(nd + L̄||θ∗ − θ0||2d3/2/ε).
Whenα = 1 andθ∗ is drawn uniformly at random fromS(θ0, ρ), Theorem2 below gives a

bound on the average convergence rate forE(g(θ̄k)) that improves upon (3) by a factor of order√
d.

Theorem 2 Assume thatθ∗ is drawn uniformly at random fromS(θ0, ρ). Setα = 1. Then, for
k ≥ 1, we have

E(g(θ̄k)) − g(θ∗) ≤ 5L̄
ρ2

k
.

In particular, ifα = 1 andθ∗ is drawn uniformly at random fromS(0, ρ), the total time for our
algorithm to minimizeg(θ) with expected errorε is O(nd + L̄ρ2d/ε).

2.1. The restart algorithm

Theorems1 and2 are valid even whenXT X is not invertible. Assume now thatXT X is invertible
and denote byμ the smallest eigenvalue ofn−1XT X. By the well-known equality

g(θ) − g(θ∗) ≥
μ

2
||θ − θ∗||2,

Theorem1 implies that

E(g(θ̄k)) − g(θ∗) ≤ (5α−1 + 4αd)
L̄

μk
(g(θ0) − g(θ∗)).

Givenk ≥ 1, let Tk be the random operator that maps anyd-dimensional column vectorθ0 to θ̄k.
For l ≥ 1, denote byT l

k the random operator on the set ofd-dimensional column vectors obtained
by composingl times the operatorTk. It can be shown by induction onl that, for anyd-dimensional
column vectorθ,

E(g(T l
k(θ))) − g(θ∗) ≤ ((5α−1 + 4αd)

L̄

μk
)l(g(θ) − g(θ∗)).

T l
k(θ) can be calculated fromθ in O(ld(n + k)) time. This implies thatE(g(T l

k(θ0)))− g(θ∗) is of
orderk−l ask goes to infinity, for any fixedl ≥ 2. Observe thatT l

k(θ) can be simulated without the
explicit knowledge ofμ.

3. Numerical experiments

Our numerical experiments are conducted on the sonar1, madelon1 and sido02 binary data sets,
whose characteristics are summarized in Table1. The variables were centered, a constant variable
was added to each data set, and all variables were normalized. We have implemented the following
methods using the null vector as starting point:

1. http://archive.ics.uci.edu
2. http://www.causality.inf.ethz.ch
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Table 1: Data sets used in the simulations

Data set Variables Data Points
sonar 60 208
madelon 500 2000
sido0 4932 12678
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Figure 1: Convergence on the sonar, madelon and sido0 datasets

• the averaged SGD algorithm based on [1].

• the averaged SGD algorithm with non-uniform probabilities based on [4].

• the SAG algorithm with non-uniform probabilities, where the lines are sampled according to
thepi’s, and the output is the vector among the final iterate and the average of iterates that
minimizesg.

• the RHA method with levell that calculatesT l
k(0), for l ∈ {1, 2, 4}. We setα = 1 in our

experiments because smaller values ofα did not increase the performance of our method for
moderate values ofk.

The results are reported in Figure1. The running time is measured by the number of gradient
computations, that isk for the averaged SGD and SAG methods andl(n+k) for the RHA algorithm,
wherek is the number of iterations.
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