
OPT2019: 11th Annual Workshop on Optimization for Machine Learning

Sampled Quasi-Newton Methods for Deep Learning

Albert S. Berahas ALBERTBERAHAS@GMAIL.COM

Majid Jahani MAJ316@LEHIGH.EDU

Martin Takáč TAKAC.MT@GMAIL.COM

Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015

Abstract
We present two sampled quasi-Newton methods: sampled LBFGS and sampled LSR1. Contrary
to the classical variants that sequentially build Hessian approximations, our proposed methods
sample points randomly around the current iterate to produce these approximations. As a result, the
approximations constructed make use of more reliable (recent and local) information, and do not
depend on past information that could be significantly stale. We provide convergence guarantees
for our proposed methods, and illustrate their performance in practice.

1. Introduction

In supervised machine learning, one seeks to minimize the empirical risk,

min
w∈Rd

F (w) :=
1

n

n∑
i=1

f(w;xi, yi) =
1

n

n∑
i=1

fi(w) (1.1)

where f : Rd → R is the composition of a prediction function (parametrized by w) and a loss
function, and (xi, yi), for i = 1, . . . , n, denote the training examples (samples).

In the last decades, much effort has been devoted to the development of stochastic first-order
methods [6, 19, 20, 27, 30, 40, 45, 47] that have a low per-iteration cost, enjoy optimal complexity,
are easy to implement, and that have proven to be effective for many machine learning applications.
However, these methods have several issues: (1) they are highly sensitive to the choice of hyper-
parameters (e.g., steplength and batch size) and tuning can be cumbersome; (2) they suffer from
ill-conditioning; and, (3) they often offer limited opportunities for parallelism; see [3, 7, 31, 46, 51].
In order to alleviate these issues, stochastic Newton [5, 12, 25, 37, 46, 52] and stochastic quasi-
Newton [2, 13, 16, 24, 28, 39, 48] methods have been proposed. These methods attempt to combine
the speed of Newton’s method and the scalability of first-order methods by incorporating curvature
information in a judicious manner, and have proven to work well for several machine learning tasks
[3, 28, 46, 51].

This paper focuses on (full) batch methods that incorporate local second-order (curvature) in-
formation of the objective function. Specifically, we propose two variants of classical quasi-Newton
methods1 that sample a small number of random points at every iteration to build Hessian approxi-
mations.

We are motivated by the results presented in Figure 1 that illustrate the performance (for 10
different starting points) of several first- and second-order methods on a toy neural network clas-
sification task, given budget; see Section 4 for details. As is clear from the results, first-order

1. For a literature review of deterministic and stochastic quasi-Newton methods see Appendix A

c© A.S. Berahas, M. Jahani & M. Takáč.

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

0 100 200 300 400 500
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
Adam
BFGS
LBFGS
SR1
LSR1
Newton-TR(CG)
Newton-TR(Exact)

0 100 200 300 400 500
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
Adam
BFGS
LBFGS
SR1
LSR1
Newton-TR(CG)
Newton-TR(Exact)

Figure 1: Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1,
Newton-TR(CG, Exact) on a toy problem.

methods converge very slowly, and
sometimes even fail to achieve
100% accuracy. Similarly, classi-
cal quasi-Newton methods are also
slow or stagnate. On the other
hand, methods that use the true
Hessian are able to converge in
very few iterations from all starting
points. This seems to suggest that
for some neural network training tasks second-order information is important, and that the curva-
ture information captured by classical quasi-Newton methods may not be adequate or useful.

The key idea of our proposed methods is to leverage the fact that quasi-Newton methods can
incorporate second-order information using only gradient information at a reasonable cost, but at
the same time to enhance the (inverse) Hessian approximations by using more reliable (recent and
local) information. The fundamental component of our methods, and what differentiates them from
the classical variants, is the manner in which the curvature pairs are constructed. To this end, we
propose to forget past curvature information and sample new curvature pairs at every iteration.

2. Sampled Quasi-Newton Methods

In this section, we describe our two proposed sampled quasi-Newton methods; S-LBFGS and S-
LSR1. The main idea of these methods, and what differentiates them from the classical variants, is
the way in which curvature pairs are constructed. At every iteration, a small number (m) of points
are sampled around the current iterate and used to construct a new set of curvature pairs. In other
words, contrary to the sequential nature of classical quasi-Newton methods, our proposed methods
forget all past curvature pairs and construct new curvature pairs from scratch via sampling.

0 5 10 15 20 25 30 35 40
Iterations

10−2

10−1

No
rm

 G
ra
d

A

C

B

SR1

0 5 10 15 20 25 30 35

10−18

10−15

10−12

10−9

10−6

10−3

100
Point A

Full Hessian(+)
Full Hessian(-)
LSR1
SR1
S-LSR1

0 5 10 15 20 25 30 35

10−19

10−16

10−13

10−10

10−7

10−4

10−1

Point B

Full Hessian(+)
Full Hessian(-)
LSR1
SR1
S-LSR1

0 5 10 15 20 25 30 35

10−18

10−15

10−12

10−9

10−6

10−3

100

Point C

Full Hessian(+)
Full Hessian(-)
LSR1
SR1
S-LSR1

Figure 2: Comparison of the eigenvalues of (L)SR1 and S-LSR1 (@ A, B, C) for a toy classification problem.

Our motivation stems from the following observation: by constructing Hessian approximations
via sampling, one is able to better capture curvature information of the objective function. In Figure
2, we show the spectrum of the true Hessian, and compare it to the spectra of different SR1 Hessian
approximations at several points. As is clear from the results, the eigenvalues of the S-LSR1 Hessian
approximations better match the eigenvalues of the true Hessian compared to the eigenvalues of the
SR1 and LSR1 Hessian approximations. This is not surprising since S-LSR1 uses newly sampled
local information, and unlike the classical variants does not rely on past information that could be
significantly stale. Similar results were obtained for other problems; see Appendix C.2 for details.

This, of course, does not come for free. The classical variants construct curvature pairs as the
optimization progresses at no additional cost, whereas the sampled quasi-Newton methods require

2

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

the construction of m new curvature pairs at every iteration. We discuss implementation issues and
the computational cost of the sampled quasi-Newton methods in Sections 2.1 and D.2.

2.1. Sampling Curvature Pairs Algorithm 1 Compute new (S, Y) curvature pairs
Input: w (iterate), m (memory), r (sampling radius), S =
[], Y = [] (curvature pair containers).

1: for i = 1, 2, ...,m do
2: Sample a random direction σi
3: Construct w̄ = w + rσi
4: Set s = w − w̄ and y = ∇2F (w)s
5: Set S = [S s] and Y = [Y y]
6: end for
Output: S, Y

As mentioned above, the key component
of our proposed algorithms is the way
in which curvature pairs are constructed.
A pseudo-code of our proposed sampling
strategy is given in Algorithm 1. Let
S, Y ∈ Rd×m denote the matrices of all
curvature pairs constructed. At every it-
eration, given the current iterate and gra-
dient, m curvature pairs are constructed.
The subroutine first samples points around the current iterate along random directions σi and sets
the iterate displacement curvature pair (s), and then creates the gradient difference curvature pair
(y) via Hessian vector products. Forming the y curvature pairs in this way has two main benefits:
(1) it only requires a single Hessian matrix product which can be computed very efficiently on a
GPU, as the y curvature pairs can be constructed simultaneously, i.e., Y = ∇2F (w)S, and thus
only requires accessing the data once, and (2) is scale invariant.

2.2. Sampled LBFGS (S-LBFGS) Algorithm 2 Sampled LBFGS (S-LBFGS)
Input: w0 (initial iterate), m (memory), r (sampling ra-
dius).

1: for k = 0, 1, 2, ... do
2: Compute new (Sk, Yk) pairs via Algorithm 1
3: Compute the search direction pk = −Hk∇F (wk)
4: Choose the steplength αk > 0
5: Set wk+1 = wk + αkpk
6: end for

At the kth iteration, the S-LBFGS method
(Algorithm 2) computes a new iterate via

wk+1 = wk − αkHk∇F (wk), (2.1)

where αk is the step length, ∇F (wk) is
the gradient of (1.1) and Hk is the inverse
BFGS Hessian approximation [42] that is
updated at every iteration using the set of curvature pairs sampled by Algorithm 1.

Algorithm 2 is almost identical to the classical (L)BFGS algorithm [42]; however, it has two key
differentiating features: (1) the way in which curvature pairs are created; and, (2) the location in the
algorithm where the curvature pairs are constructed. The latter, possibly the important feature of the
method, allows the method to take quasi-Newton-type (well-scaled) steps from the first iteration,
which is not the case for classical BFGS methods that usually take a gradient-type step in the first
iteration and in which imposing the correct scale is always an issue.

2.3. Sampled LSR1 (S-LSR1)

At the kth iteration, the S-LSR1 method computes a new iterate via wk+1 = wk + pk, where pk is
the minimizer of the following subproblem

min‖p‖≤∆k
mk(p) = F (wk) +∇F (wk)

T p+ 1
2p
TBkp, (2.2)

∆k is the trust region radius and Bk is the SR1 Hessian approximation [42] that is updated at every
iteration by using the set of curvature pairs sampled by Algorithm 1.

3

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

Algorithm 3 Sampled LSR1 (S-LSR1)
Input: w0 (initial iterate), ∆0 (initial trust region radius),m
(memory), r (sampling radius).

1: for k = 0, 1, 2, ... do
2: Compute new (Sk, Yk) pairs via Algorithm 1
3: Compute pk by solving the subproblem (2.2)
4: Compute ρk = F (wk)−F (wk+pk)

mk(0)−mk(pk)

5: if ρk ≥ η1, then wk+1 = wk + pk
6: else wk+1 = wk

7: ∆k+1 = adjustTR(∆k, ρk) [see Appendix C.3]
8: end for

The S-LSR1 method has the same key
features as S-LBFGS that differentiates it
from the classical SR1 methods. The sub-
routine adjustTR (Step 12, Algorithm
3) adjusts the trust-region based on the
progress made by the method. For brevity
we omit the details of this subroutine, and
refer the reader to Appendix C.3 for the
details.

3. Convergence Analysis

In this section, we present convergence analyses for the sampled quasi-Newton methods for non-
convex functions. For brevity, we omit the proofs from the paper; see Appendix B for the proofs.
See [4] for convergence results for strongly convex functions.

Sampled LBFGS For nonconvex functions, it is known that the (L)BFGS method can fail [17,
38]. To establish convergence in the nonconvex setting several techniques have been proposed
[32, 33, 44]. Here we employ a cautious strategy that is well suited to our particular algorithm; we
update the inverse Hessian approximation using only the set of curvature pairs that satisfy

sT y ≥ ε‖s‖2, (3.1)

where ε > 0 is a predetermined constant. Using said mechanism we prove that the eigenvalues
of the inverse Hessian approximations generated by the S-LBFGS method are bounded above and
away from zero. For this analysis, we make the following standard assumptions:

Assumption 3.1 The function F is twice continuously differentiable, and is bounded below by a
scalar F̂ . Moreover, the gradients of F are L-Lipschitz continuous for all w ∈ Rd.

Lemma 3.2 Suppose that Assumption 3.1 holds. Let {Hk} be the inverse Hessian approximations
generated by Algorithm 2, with the modification that the inverse approximation update is performed
using only curvature pairs that satisfy (3.1), for some ε > 0, and Hk = I if no curvature pairs
satisfy (3.1). Then, there exist constants 0 < µ1 ≤ µ2 such that, µ1I � Hk � µ2I .

We show that S-LBFGS with cautious updating converges to a stationary point (Theorem 3.3).

Theorem 3.3 Suppose that Assumption 3.1 holds. Let {wk} be the iterates generated by Algo-
rithm 2, with the modification that the inverse Hessian approximation update is performed using
only curvature pairs that satisfy (3.1), for some ε > 0, where 0 < αk = α ≤ µ1

µ22L
, and w0 is the

starting point. Then, for any τ > 1, 1
τ

∑τ−1
k=0 ‖∇F (wk)‖2 ≤ 2[F (w0)−F̂]

αµ1τ
τ→∞−−−→ 0.

Sampled LSR1 In order to establish convergence results one needs to ensure that the SR1 Hessian
update equation is well defined. To this end, we employ a cautious updating mechanism; we update
the Hessian approximation using only the set of curvature pairs that satisfy

|sT (y −Bs)| ≥ ε‖s‖‖y −Bs‖, (3.2)

where ε > 0 is a predetermined constant. For the analysis in this section, we make the following
assumption that implies that at every iteration the subproblem is solved sufficiently accurately.

4

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

Assumption 3.4 For all k,mk(0)−mk(pk) ≥ ξ‖∇F (wk)‖min
[
‖∇F (wk)‖

βk
,∆k

]
, where ξ ∈ (0, 1)

and βk = 1 + ‖Bk‖.

Lemma 3.5 Suppose that Assumption 3.1 holds. Let {Bk} be the Hessian approximations gener-
ated by Algorithm 3, with the modification that the approximation update is performed using only
curvature pairs that satisfy (3.2), for some ε > 0, and Bk = I if no curvature pairs satisfy (3.2).
Then, there exists a constant ν2 > 0 such that ‖Bk‖ ≤ ν2.

We show that the S-LSR1 with cautious updating converges to a stationary point (Theorem 3.6).

Theorem 3.6 Suppose that Assumption 3.1 holds. Let {wk} be the iterates generated by Algorithm
3, with the modification that the Hessian approximation update is performed using only curvature
pairs that satisfy (3.2), for some ε > 0. Then, limk→∞‖∇F (wk)‖ = 0.

4. Numerical Experiments

In this section, we present numerical experiments on a toy classification problem. For implementa-
tion details and experiments on popular benchmarking neural network training tasks, see Appendix
C.4 and C.6, respectively. Moreover, for details about the computational cost see Appendix D.

0.0 0.2 0.4 0.6 0.8 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Class 1
Class 2

Figure 3: Toy Problem

A Toy Classification Problem Consider the simple classification
problem, illustrated in Figure 3, consisting of two classes each with 50
data points. We trained three fully connected neural networks–small,
medium and large–with sigmoid activation functions and 4 hidden
layers; see Appendix C.5, Table 1 for details. For this problem, we ran
each method 100 times starting from different initial points and show
the results for different budget levels in Figure 4. As is clear from the
figures, the proposed methods outperform their classical variants as well as the first-order methods.
See Appendix C.5 and [4] for more results.

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

Figure 4: Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classifi-
cation problems. Networks: small (left); medium (right); large (right).

5. Final Remarks and Future Work

This paper describes two novel quasi-Newton methods; S-LBFGS and S-LSR1. Contrary to classi-
cal quasi-Newton methods, these methods forget past curvature information and sample new curva-
ture information at every iteration. Numerical results show that the methods are efficient in practice,
and the convergence guarantees of the methods match those of the classical variants.

5

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

Acknowledgements

This work was partially supported by the U.S. National Science Foundation, under award numbers
NSF:CCF:1618717, NSF:CMMI:1663256 and NSF:CCF:1740796, DARPA Lagrange award HR-
001117S0039, and XSEDE Startup grant IRI180020.

References

[1] Albert S Berahas and Martin Takáč. A robust multi-batch l-bfgs method for machine learning.
Optimization Methods and Software, pages 1–29, 2019.

[2] Albert S Berahas, Jorge Nocedal, and Martin Takác. A multi-batch l-bfgs method for machine
learning. In Advances in Neural Information Processing Systems, pages 1055–1063, 2016.

[3] Albert S Berahas, Raghu Bollapragada, and Jorge Nocedal. An investigation of newton-sketch
and subsampled newton methods. arXiv preprint arXiv:1705.06211, 2017.

[4] Albert S Berahas, Majid Jahani, and Martin Takáč. Quasi-newton methods for deep learning:
Forget the past, just sample. arXiv preprint arXiv:1901.09997, 2019.

[5] Raghu Bollapragada, Richard H Byrd, and Jorge Nocedal. Exact and inexact subsampled
newton methods for optimization. IMA Journal of Numerical Analysis, 2016.

[6] Léon Bottou and Yann L Cun. Large scale online learning. In Advances in neural information
processing systems, pages 217–224, 2004.

[7] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale ma-
chine learning. Siam Review, 60(2):223–311, 2018.

[8] Charles G Broyden. Quasi-newton methods and their application to function minimisation.
Mathematics of Computation, 21(99):368–381, 1967.

[9] Johannes Brust, Jennifer B Erway, and Roummel F Marcia. On solving l-sr1 trust-region
subproblems. Computational Optimization and Applications, 66(2):245–266, 2017.

[10] Richard H. Byrd, Jorge Nocedal, and Robert B. Schnabel. Representations of quasi-newton
matrices and their use in limited memory methods. Math. Program., 63:129–156, 1994.

[11] Richard H Byrd, Humaid Fayez Khalfan, and Robert B Schnabel. Analysis of a symmetric
rank-one trust region method. SIAM Journal on Optimization, 6(4):1025–1039, 1996.

[12] Richard H Byrd, Gillian M Chin, Will Neveitt, and Jorge Nocedal. On the use of stochastic
hessian information in optimization methods for machine learning. SIAM Journal on Opti-
mization, 21(3):977–995, 2011.

[13] Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-
newton method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–
1031, 2016.

6

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

[14] Andrew R Conn, Nicholas IM Gould, and Ph L Toint. Convergence of quasi-newton matrices
generated by the symmetric rank one update. Mathematical programming, 50(1-3):177–195,
1991.

[15] Andrew R Conn, Nicholas IM Gould, and Ph L Toint. Trust region methods, volume 1. Siam,
2000.

[16] Frank Curtis. A self-correcting variable-metric algorithm for stochastic optimization. In In-
ternational Conference on Machine Learning, pages 632–641, 2016.

[17] Yu-Hong Dai. Convergence properties of the bfgs algoritm. SIAM Journal on Optimization,
13(3):693–701, 2002.

[18] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidynathan, Srinivas
Sridharan, Dhiraj Kalamkar, Bharat Kaul, and Pradeep Dubey. Distributed deep learning using
synchronous stochastic gradient descent. arXiv preprint arXiv:1602.06709, 2016.

[19] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in neural
information processing systems, pages 1646–1654, 2014.

[20] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159,
2011.

[21] Roger Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):
317–322, 1970.

[22] Wenbo Gao and Donald Goldfarb. Block bfgs methods. SIAM Journal on Optimization, 28
(2):1205–1231, 2018.

[23] Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathe-
matics of computation, 24(109):23–26, 1970.

[24] Robert Gower, Donald Goldfarb, and Peter Richtárik. Stochastic block bfgs: Squeezing more
curvature out of data. In International Conference on Machine Learning, pages 1869–1878,
2016.

[25] Majid Jahani, Xi He, Chenxin Ma, Aryan Mokhtari, Dheevatsa Mudigere, Alejandro Ribeiro,
and Martin Takáč. Efficient distributed hessian free algorithm for large-scale empirical risk
minimization via accumulating sample strategy. arXiv preprint arXiv:1810.11507, 2018.

[26] Majid Jahani, Mohammadreza Nazari, Sergey Rusakov, Albert S Berahas, and Martin Takáč.
Scaling up quasi-newton algorithms: Communication efficient distributed sr1. arXiv preprint
arXiv:1905.13096, 2019.

[27] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In Advances in neural information processing systems, pages 315–323, 2013.

7

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

[28] Nitish Shirish Keskar and Albert S Berahas. adaqn: An adaptive quasi-newton algorithm for
training rnns. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 1–16. Springer, 2016.

[29] H Fayez Khalfan, Richard H Byrd, and Robert B Schnabel. A theoretical and experimental
study of the symmetric rank-one update. SIAM Journal on Optimization, 3(1):1–24, 1993.

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[31] Sudhir B Kylasa, Farbod Roosta-Khorasani, Michael W Mahoney, and Ananth Grama. Gpu
accelerated sub-sampled newtons method. arXiv preprint arXiv:1802.09113, 2018.

[32] Dong-Hui Li and Masao Fukushima. On the global convergence of the bfgs method for non-
convex unconstrained optimization problems. SIAM Journal on Optimization, 11(4):1054–
1064, 2001.

[33] Dong-Hui Li and Masao Fukushima. A modified bfgs method and its global convergence
in nonconvex minimization. Journal of Computational and Applied Mathematics, 129(1-2):
15–35, 2001.

[34] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimiza-
tion. Mathematical programming, 45(1-3):503–528, 1989.

[35] Jie Liu, Yu Rong, Martin Takac, and Junzhou Huang. On the acceleration of l-bfgs with
second-order information and stochastic batches. arXiv preprint:1807.05328, 2018.

[36] Xuehua Lu. A study of the limited memory SR1 method in practice. University of Colorado at
Boulder, 1996.

[37] James Martens. Deep learning via hessian-free optimization. In ICML, volume 27, pages
735–742, 2010.

[38] Walter F Mascarenhas. The bfgs method with exact line searches fails for non-convex objective
functions. Mathematical Programming, 99(1):49–61, 2004.

[39] Aryan Mokhtari and Alejandro Ribeiro. Global convergence of online limited memory bfgs.
The Journal of Machine Learning Research, 16(1):3151–3181, 2015.

[40] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for
machine learning problems using stochastic recursive gradient. In International Conference
on Machine Learning, pages 2613–2621, 2017.

[41] Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of compu-
tation, 35(151):773–782, 1980.

[42] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer, second edition, 2006.

[43] Michael JD Powell. Some global convergence properties of a variable metric algorithm for
minimization without exact line searches. Nonlinear programming, 9(1):53–72, 1976.

8

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

[44] Michael JD Powell. Algorithms for nonlinear constraints that use lagrangian functions. Math-
ematical programming, 14(1):224–248, 1978.

[45] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

[46] Farbod Roosta-Khorasani and Michael W. Mahoney. Sub-sampled newton methods. Mathe-
matical Programming, 2018.

[47] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[48] Nicol N Schraudolph, Jin Yu, and Simon Günter. A stochastic quasi-newton method for online
convex optimization. In Artificial Intelligence and Statistics, pages 436–443, 2007.

[49] David F Shanno. Conditioning of quasi-newton methods for function minimization. Mathe-
matics of computation, 24(111):647–656, 1970.

[50] Martin Takác, Avleen Singh Bijral, Peter Richtárik, and Nati Srebro. Mini-batch primal and
dual methods for svms. In ICML (3), pages 1022–1030, 2013.

[51] Peng Xu, Farbod Roosta-Khorasan, and Michael W Mahoney. Second-order optimization for
non-convex machine learning: An empirical study. arXiv preprint arXiv:1708.07827, 2017.

[52] Peng Xu, Farbod Roosta-Khorasani, and Michael W Mahoney. Newton-type methods for non-
convex optimization under inexact hessian information. arXiv preprint arXiv:1708.07164,
2017.

9

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

Appendix A. Brief Literature Review

Quasi-Newton methods, such as BFGS [8, 21, 23, 49] and SR1 [11, 14, 29] and their limited-
memory variants LBFGS [34, 41] and LSR1 [9, 36], respectively, have been studied extensively in
the deterministic nonlinear optimization literature. These methods incorporate curvature (second-
order) information using only gradient (first-order) information, have good theoretical guarantees,
and have proven to be effective in practice.

In the context of deep neural networks, both full batch and stochastic quasi-Newton methods
seem to perform worse than (stochastic) first-order methods. Nevertheless, several stochastic quasi-
Newton methods have been proposed; see e.g., [1, 13, 48]. What distinguishes these methods from
one another is the way in which curvature pairs are constructed. Our methods borrow some of the
ideas proposed in [13, 24, 35]. Specifically, we use Hessian vector products in lieu of gradient
displacements.

Possibly the closest works to ours are Block BFGS [22] and its stochastic variant [24]. These
methods construct multiple curvature pairs to update the quasi-Newton matrices. However, there
are several key features that are different from our approach; in these works (1) the Hessian approx-
imation is not updated at every iteration, and (2) they enforce that multiple secant equations hold
simultaneously.

Appendix B. Theoretical Results and Proofs

We first restate the Assumptions that we use in the Convergence Analysis section (Section 3). We
them prove all the results that appear in the main paper (Lemmas 3.2 & 3.5; Theorems 3.3 & 3.6).

B.1. Assumptions

Assumption 3.1 The function F is twice continuously differentiable. The function F (w) is bounded
below by a scalar F̂ . The gradients of F are L-Lipschitz continuous for all w ∈ Rd.

Assumption 3.4 For all k,

mk(0)−mk(pk) ≥ ξ‖∇F (wk)‖min

[
‖∇F (wk)‖

βk
,∆k

]
,

where ξ ∈ (0, 1) and βk = 1 + ‖Bk‖.

B.2. Proof of Lemma 3.2

Lemma 3.2 Suppose that Assumption 3.1 holds. Let {Hk} be the inverse Hessian approximations
generated by Algorithm 2, with the modification that the inverse approximation update is performed
using only the curvature pairs that satisfy (3.1), for some ε > 0, and Hk = I if no curvature pairs
satisfy (3.1). Then, there exist constants 0 < µ1 ≤ µ2 such that

µ1I � Hk � µ2I, for k = 0, 1, 2, (B.1)

Proof First, note that there is a chance that no curvature pairs are selected in Algorithm 1. In this
case, the inverse Hessian approximation is Hk = I , and thus µ1 = µ2 = 1 and condition (B.1) is
satisfied.

10

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

We now consider the case where at least one curvature pair is selected by Algorithm 1. Instead
of analyzing the inverse Hessian approximation Hk, we study the direct Hessian approximation
Bk = H−1

k . In this case, the sampled LBFGS updating formula is given as follows. Let m̃k ∈
{1, ...,m} denote the number of curvature pairs that satisfy (3.1) at the kth iteration, where m is the
memory. At the kth iteration, given a set of curvature pairs (sk,j , yk,j), for j = 1, . . . , m̃k

1. Set B(0)
k =

yTk,lyk,l

sTk,lyk,l
I , where l is chosen uniformly at random from {1, . . . , m̃k}.

2. For i = 1, . . . , m̃k compute

B
(i)
k = B

(i−1)
k −

B
(i−1)
k sk,is

T
k,iB

(i−1)
k

sTk,iB
(i−1)
k sk,i

+
yk,iy

T
k,i

yTk,isk,i
.

3. Set Bk+1 = B
(m̃k)
k .

In our algorithm, there are two options for updating the curvature pairs sk,j and yk,j :

sk,j = wk − w̄j , yk,j = ∇2F (wk)sk Option II, (B.2)

for j = 1, . . . ,m. Let m̃k ∈ {1, ...,m} denote the number of curvature pairs that satisfy (3.1) at the
kth iteration, where m is the memory.

In this setting, the skipping mechanism (3.1) provides both an upper and lower bound on the
quantity ‖yk,j‖

2

yTk,jsk,j
, for both Options, which in turn ensures that the initial sampled LBFGS Hessian

approximation is bounded above and away from zero.
The lower bound is attained by repeated application of Cauchy’s inequality to condition (3.1).

We have from (3.1) that

ε‖sk,j‖2 ≤ yTk,jsk,j ≤ ‖yk,j‖‖sk,j‖ ⇒ ‖sk,j‖ ≤
1

ε
‖yk,j‖.

It follows that

sTk,jyk,j ≤ ‖sk,j‖‖yk,j‖ ≤
1

ε
‖yk,j‖2 ⇒

‖yk,j‖2

sTk,jyk,j
≥ ε. (B.3)

The upper bound is attained by the Lipschitz continuity of gradients,

yTk,jsk,j ≥ ε‖sk,j‖2

≥ ε
‖yk,j‖2

L
⇒

‖yk,j‖2

sTk,jyk,j
≤ L2

ε
. (B.4)

Combining (B.3) and (B.4), we have

ε ≤
‖yk,j‖2

yTk,jsk,j
≤ L2

ε
. (B.5)

The bounds on ‖yk,j‖
2

yTk,jsk,j
prove that for any l chosen uniformly at random from {1, . . . , m̃k} the

eigenvalues of the matrices B(0)
k =

yTk,lyk,l

sTk,lyk,l
I at the start of the sampled LBFGS update cycles are

bounded above and away from zero, for all k and l.

11

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

We now use a Trace-Determinant argument to show that the eigenvalues of Bk are bounded
above and away from zero.

Let Tr(B) and det(B) denote the trace and determinant of matrix B, respectively. The trace of
the matrix Bk+1 can be expressed as,

Tr(Bk+1) = Tr(B
(0)
k)− Tr

m̃k∑
i=1

B(i−1)
k sk,is

T
k,iB

(i−1)
k

sTk,iB
(i−1)
k sk,i

+ Tr

m̃k∑
i=1

yk,iy
T
k,i

yTk,isk,i

≤ Tr(B(0)
k) +

m̃k∑
i=1

‖yk,i‖2

yTk,isk,i

≤ Tr(B(0)
k) + m̃k

L2

ε

≤ Tr(B(0)
k) +m

L2

ε
≤ C1, (B.6)

for some positive constant C1, where the inequalities above are due to (B.5), the fact that the eigen-
values of the initial L-BFGS matrix B(0)

k are bounded above and away from zero, and the fact that
m̃k ≤ m for all k.

Using a result due to Powell [43], the determinant of the matrix Bk+1 generated by the sampled
LBFGS method can be expressed as,

det(Bk+1) = det(B
(0)
k)

m̃k∏
i=1

yTk,isk,i

sTk,iB
(i−1)
k sk,i

= det(B
(0)
k)

m̃k∏
i=1

yTk,isk,i

sTk,isk,i

sTk,isk,i

sTk,iB
(i−1)
k sk,i

≥ det(B
(0)
k)
(ε

C1

)m̃k

≥ det(B
(0)
k)
(ε

C1

)m
≥ C2, (B.7)

for some positive constant C2, where the above inequalities are due to the fact that the largest
eigenvalue of B(i)

k is less than C1 and (B.5).
The trace (B.6) and determinant (B.7) inequalities derived above imply that largest eigenvalues

of all matrices Bk are bounded above, uniformly, and that the smallest eigenvalues of all matrices
Bk are bounded away from zero, uniformly.

B.3. Proof of Theorem 3.3

Theorem 3.3 Suppose that Assumption 3.1 holds. Let {wk} be the iterates generated by Algo-
rithm 2, with the modification that the inverse Hessian approximation update is performed using

12

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

only the curvature pairs that satisfy (3.1), for some ε > 0, and Hk = I if no curvature pairs satisfy
(3.1), where

0 < αk = α ≤ µ1

µ2
2L
,

and w0 is the starting point. Then,

lim
k→∞

‖∇F (wk)‖ → 0, (B.8)

and, moreover, for any τ > 1,

1

τ

τ−1∑
k=0

‖∇F (wk)‖2 ≤
2[F (w0)− F̂]

αµ1τ

τ→∞−−−→ 0.

Proof We have that

F (wk+1) = F (wk − αHk∇F (wk))

≤ F (wk) +∇F (wk)
T (−αHk∇F (wk)) +

L

2
‖αHk∇F (wk)‖2

≤ F (wk)− α∇F (wk)
THk∇F (wk) +

α2µ2
2L

2
‖∇F (wk)‖2

≤ F (wk)− αµ1‖∇F (wk)‖2 +
α2µ2

2L

2
‖∇F (wk)‖2

= F (wk)− α
(
µ1 − α

µ2
2L

2

)
‖∇F (wk)‖2

≤ F (wk)− α
µ1

2
‖∇F (wk)‖2, (B.9)

where the first inequality is due to Assumption 3.1, the second and third inequalities arise as a
consequence of Lemma 3.2 and the last inequality is due to the choice of the steplength.

Summing both sides of the above inequality from k = 0 to τ − 1,

τ−1∑
k=0

(F (wk+1)− F (wk)) ≤ −
τ−1∑
k=0

α
µ1

2
‖∇F (wk)‖2.

The left-hand-side of the above inequality is a telescoping sum and thus,

τ−1∑
k=0

[F (wk+1)− F (wk)] = F (wτ)− F (w0) ≥ F̂ − F (w0),

where the inequality is due to F̂ ≤ F (wτ) (Assumption 3.1). Using the above, we have

τ−1∑
k=0

‖∇F (wk)‖2 ≤
2[F (w0)− F̂]

αµ1
. (B.10)

13

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

Taking limits we obtain,

lim
τ→∞

τ−1∑
k=0

‖∇F (wk)‖2 <∞,

which implies (B.8). Dividing (B.10) by τ we conclude

1

τ

τ−1∑
k=0

‖∇F (wk)‖2 ≤
2[F (w0)− F̂]

αµ1τ
.

B.4. Proof of Lemma 3.5

Lemma 3.5 Suppose that Assumptions 3.1 and 3.4 hold. Let {Bk} be the Hessian approximations
generated by Algorithm 3, with the modification that the approximation update is performed using
only the curvature pairs that satisfy (3.2), for some ε > 0, and Bk = I if no curvature pairs satisfy
(3.2). Then, there exists a constant ν2 > 0 such that

‖Bk‖ ≤ ν2, for k = 0, 1, 2, (B.11)

Proof As in the proof of Lemma 3.2, note that there is a chance that no curvature pairs are selected
in Algorithm 1. In this case, the Hessian approximation is Bk = I , and thus ν2 = 1 and condition
(B.11) is satisfied.

We now consider the case where at least one curvature pair is selected by Algorithm 1. In this
case, the sampled LSR1 updating formula is given as follows. Let m̃k ∈ {1, ...,m} denote the
number of curvature pairs that satisfy (3.2) at the kth iteration, where m is the memory. At the kth
iteration, given a set of curvature pairs (sk,j , yk,j), for j = 1, . . . , m̃k

1. Set B(0)
k = γkI , where 0 ≤ γk < γ.

2. For i = 1, . . . , m̃k compute

B
(i)
k = B

(i−1)
k +

(yk,i −B
(i−1)
k sk,i)(yk,i −B

(i−1)
k sk,i)

T

(yk,i −B
(i−1)
k sk,i)T sk,i

.

3. Set Bk+1 = B
(m̃k)
k .

In our algorithm (Algorithm 1), there are two options for constructing the curvature pairs sk,j
and yk,j . At the current iterate wk we sample points w̄j for j = 1, . . . ,m and set

sk,j = wk − w̄j , yk,j = ∇F (wk)−∇F (w̄j) Option I, (B.12)

sk,j = wk − w̄j , yk,j = ∇2F (wk)sk Option II. (B.13)

Given a set of m̃k curvature pairs that satisfy (3.2), we now prove an upper bound for ‖Bk‖. We
first prove the bound for a given iteration k and for all updates to the Hessian approximation i =
0, 1, . . . , m̃k (‖Bi

k‖), and then get an upper bound for all k (‖Bk‖).

14

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

For a given iteration k, we prove a bound on ‖Bi
k‖ via induction, and show

‖B(i)
k ‖ ≤

(
1 +

1

ε

)i
γk +

[(
1 +

1

ε

)i
− 1

]
γ̄k. (B.14)

For i = 0, the bound holds trivially since B(0)
k = γkI . Now assume that (B.14) holds true for some

i ≥ 0. Note that all the curvature pairs that are used in the update of the Hessian approximation
satisfy (3.2). By the definition of the SR1 updates, we have for some index i+ 1 that

B
(i+1)
k = B

(i)
k +

(yk,i+1 −B
(i)
k sk,i+1)(yk,i+1 −B

(i)
k sk,i+1)T

(yk,i+1 −B
(i)
k sk,i+1)T sk,i+1

,

and thus

‖B(i+1)
k ‖ ≤ ‖B(i)

k ‖+

∥∥∥∥∥(yk,i+1 −B
(i)
k sk,i+1)(yk,i+1 −B

(i)
k sk,i+1)T

(yk,i+1 −B
(i)
k sk,i+1)T sk,i+1

∥∥∥∥∥ ,
≤ ‖B(i)

k ‖+
‖(yk,i+1 −B

(i)
k sk,i+1)(yk,i+1 −B

(i)
k sk,i+1)T ‖

ε‖yk,i+1 −B
(i)
k sk,i+1‖‖sk,i+1‖

≤ ‖B(i)
k ‖+

‖yk,i+1 −B
(i)
k sk,i+1‖

ε‖sk,i+1‖

≤ ‖B(i)
k ‖+

‖yk,i+1‖
ε‖sk,i+1‖

+
‖B(i)

k sk,i+1‖
ε‖sk,i+1‖

≤ ‖B(i)
k ‖+

‖yk,i+1‖
ε‖sk,i+1‖

+
‖B(i)

k ‖
ε

=

(
1 +

1

ε

)
‖B(i)

k ‖+
γ̄k
ε

where the first inequality is due to the application of the triangle inequality, the second inequality is
due to condition (3.2), the fourth inequality is due to the application of the triangle inequality, and
the fifth inequality is due to application of Cauchy’s inequality and in the last inequality we used
that γ̄k ≥ γ̄k,i+1 =

‖yk,i+1‖
‖sk,i+1‖ > 0. Substituting (B.14),

‖B(i+1)
k ‖ ≤

(
1 +

1

ε

)[(
1 +

1

ε

)i
γk +

[(
1 +

1

ε

)i
− 1

]
γ̄k

]
+
γ̄k
ε

=

(
1 +

1

ε

)i+1

γk +

[(
1 +

1

ε

)i+1

− 1

]
γ̄k

which completes the inductive proof. Thus, for any k we have an upper bound on the Hessian ap-
proximation. Therefore, sinceBk+1 = B

(m̃k)
k , the sampled SR1 Hessian approximation constructed

at the kth iteration satisfies

‖Bk+1‖ ≤
(

1 +
1

ε

)i+1

γk +

[(
1 +

1

ε

)i+1

− 1

]
γ̄k.

15

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

Now we generalize the result for all iterations k. For k = 0, the bound holds trivially, since the
first step of the sampled LSR1 method is a gradient method (B0 = I). For k ≥ 1, we assume that
γk ≤ γ <∞ and γ̄k ≤ γ̄ <∞ for all k, and thus

‖Bk+1‖ ≤
(

1 +
1

ε

)i+1

γk +

[(
1 +

1

ε

)i+1

− 1

]
γ̄k

≤
(

1 +
1

ε

)i+1

γ +

[(
1 +

1

ε

)i+1

− 1

]
γ̄ = ν2,

for some ν2 > 0. This completes the proof.

B.5. Proof of Theorem 3.6

Theorem 3.6 Suppose that Assumptions 3.1 and 3.4 hold. Let {wk} be the iterates generated by
Algorithm 3, with the modification that the Hessian approximation update is performed using only
the curvature pairs that satisfy 3.2, for some ε > 0, and Bk = I if no curvature pairs satisfy (3.2).
Then,

lim
k→∞

‖∇F (wk)‖ = 0.

Proof Assume, for the purpose of a establishing contradiction, that there is a subsequence of suc-
cessful iterations (where ρk > η1, Line 6, Algorithm 3), indexed by ti ⊆ S where S = {k ≥
0|ρk ≥ η1}, such that

‖∇F (wti)‖ ≥ 2δ > 0 (B.15)

for some ε > 0 and for all i. Theorem 6.4.5 from [15] then ensures the existence for each ti of a
first successful iteration `(ti) > ti such that

‖∇F (w`(ti))‖ < δ > 0.

Let `i = `(ti), we thus obtain that there is anotehr subsequence of S indexed by {`i} such that

‖∇F (wk)‖ ≥ δ, for ti ≤ k < `i and ‖∇F (w`i)‖ < δ. (B.16)

We now restrict our attention to the subsequence of successful iterations whose indices are in the
set

K = {k ∈ S|ti ≤ k < `i},

where ti and `i belong to the subsequences S and K, respectively.

16

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

Using Assumption 3.4, the fact that K ⊆ S and (B.16), we deduce that for k ∈ K

F (wk)− F (wk) ≥ η1[mk(0)−mk(pk)] ≥ ξδη1 min

[
δ

ν2 + 1
,∆k

]
(B.17)

where we used the result of Lemma 3.5. Since the sequence {F (wk)} is monotonically decreasing
and bounded below (Assumption 3.1), it is convergent, and the left-hand-side of (B.17) must tend
to zero as k →∞. Thus,

lim
k→∞, k∈K

∆k = 0. (B.18)

As a consequence, the term containing ∆k is the dominant term in the min (B.17) and we have,
for k ∈ K sufficiently large,

∆k ≤
F (wk)− F (wk+1)

(ν2 + 1)δη1
. (B.19)

From this bound, we deduce that, for i sufficiently large

‖wti − w`i‖ ≤
`i−1∑

j=ti, j∈K
‖wj − wj+1‖ ≤

`i−1∑
j=ti, j∈K

∆j ≤
F (wti)− F (w`i)

(ν2 + 1)δη1
. (B.20)

As a consequence of Assumption 3.1 and the monotonicity of the sequence {F (wk)}, we have that
the right-hand-side of (B.20) must converge to zero, and thus ‖wti − w`i‖ → 0 as i→∞.

By continuity of the gradient (Assumption 3.1), we thus deduce that ‖∇F (wti)−∇F (w`i)‖ →
0. However, this is impossible because of the definitions of {ti} and {`i}, which imply that
‖∇F (wti) − ∇F (w`i)‖ ≥ δ. Hence, no subsequence satisfying (B.15) can exist, and the theo-
rem is proved.

17

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

Appendix C. Additional Numerical Experiments and Method Details

In this section, we present additional numerical results and expand on some details about the meth-
ods.2

C.1. Motivation Figure

In this section, we present more motivating plots showing the accuracy vs. iterations and accuracy
vs. epochs for a toy classification problem. In the following experiments, we ran each method from
10 different initial points.

0 200 400 600 800 1000
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
Adam
BFGS
LBFGS
SR1
LSR1
Newton-TR(CG)
Newton-TR(Exact)

0 200 400 600 800 1000
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
Adam
BFGS
LBFGS
SR1
LSR1
Newton-TR(CG)
Newton-TR(Exact)

0 100 200 300 400 500
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
Adam
BFGS
LBFGS
SR1
LSR1
Newton-TR(CG)
Newton-TR(Exact)

0 100 200 300 400 500
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
Adam
BFGS
LBFGS
SR1
LSR1
Newton-TR(CG)
Newton-TR(Exact)

Figure 5: Comparison of Gradient Descent (GD), ADAM, BFGS, LBFGS, SR1, LSR1, Newton-TR (Exact),
Newton-TR (CG) on a toy classification problem in terms of iterations and epochs.

2. All experiments we run on a machine with the following specifications: 24 cores Intel(R) Xeon(R) CPU E5-2620 v3
@ 2.40GHz; 128 GB RAM; 2 K80 GPUs; Linux Debian GNU/Linux 8.10 (jessie); TensorFlow 1.12.2; CUDA 8.0;
Python 2.7.

18

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

C.2. Eigenvalue Figures

In this section, we describe the procedure in which Figure 2 was constructed. We plot the same
figure below for ease of exposition, and also plot a similar figure for another network.

0 5 10 15 20 25 30 35 40
Iterations

10−2

10−1

No
rm

 G
ra
d

A

C

B

SR1

0 5 10 15 20 25 30 35

10−18

10−15

10−12

10−9

10−6

10−3

100
Point A

Full Hessian(+)
Full Hessian(-)
LSR1
SR1
S-LSR1

0 5 10 15 20 25 30 35

10−19

10−16

10−13

10−10

10−7

10−4

10−1

Point B

Full Hessian(+)
Full Hessian(-)
LSR1
SR1
S-LSR1

0 5 10 15 20 25 30 35

10−18

10−15

10−12

10−9

10−6

10−3

100

Point C

Full Hessian(+)
Full Hessian(-)
LSR1
SR1
S-LSR1

Figure 6: Comparison of the eigenvalues of SR1, LSR1 and S-LSR1 at different points for a toy classification
problem.

To calculate the eigenvalues for SR1, LSR1 and S-LSR1 we used the following procedure.

1. We ran the SR1 method for T iterations on a toy classification problem. During the optimiza-
tion, we computed the eigenvalues of the SR1 Hessian approximation at several points (e.g.,
A, B and C); black × marks on plots.

2. We stored all the curvature pairs {sk, yk}Tk=1 and the iterates {wk}Tk=1.

3. We constructed the true Hessian at all iterations and computed the eigenvalues of the true
Hessian; dark blue • (positive eigenvalues) and light blue • (negative eigenvalues) marks on
plots.

4. We then computed the limited-memory SR1 Hessian approximations at several points (e.g., A,
B and C) using the m most recent pairs and computed the eigenvalues of the approximations;
orange H marks on plots.

5. Finally, we used the iterate information at points A, B and C, sampled m points at random
around those iterates with sampling radius r, constructed the sampled LSR1 Hessian approx-
imations and computed the eigenvalues of the approximations; red • marks on plots.

19

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

0 10 20 30 40 50 60 70
Iterations

10 3

10 2

10 1

100

No
rm

 G
ra

d
A

B

C

SR1

0 25 50 75 100 125 150 175

10 20

10 17

10 14

10 11

10 8

10 5

10 2

101

Point A

Full Hessian(+)
Full Hessian(-)
LSR1
SR1
S-LSR1

0 25 50 75 100 125 150 175

10 19

10 16

10 13

10 10

10 7

10 4

10 1

102
Point B

Full Hessian(+)
Full Hessian(-)
LSR1
SR1
S-LSR1

0 25 50 75 100 125 150 175

10 22

10 18

10 14

10 10

10 6

10 2

102
Point C
Full Hessian(+)
Full Hessian(-)
LSR1
SR1
S-LSR1

Figure 7: Comparison of the eigenvalues of SR1, LSR1 and S-LSR1 at different points for a toy classification
problem.

Note: for Figure 6 we used T = 40, m = 16 and r = 0.01, and for Figure 7 we used T = 70,
m = 32 and r = 0.01.

As is clear, the eigenvalues of the sampled LSR1 Hessian approximations better match the
eigenvalues of the true Hessian. Similar results were obtained for other problems and for different
parameters m and r.

20

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

C.3. Trust-Region Management Subroutine

In this section we present, in detail, the Trust-Region management subroutine (∆k+1 = adjustTR(∆k, ρk))
that is used in Algorithm 3. See [42] for further details.

Algorithm 4 ∆k+1 = adjustTR(∆k, ρk, η2, η3, γ1, ζ1, ζ2): Trust-Region manage-
ment subroutine
Input: ∆k (current trust region radius), 0 ≤ η3 < η2 < 1, γ1 ∈ (0, 1), ζ1 > 1,
ζ2 ∈ (0, 1) (trust region parameters).

1: if ρk > η2 then
2: if ‖pk‖ ≤ γ1∆k then
3: Set ∆k+1 = ∆k

4: else
5: Set ∆k+1 = ζ1∆k

6: end if
7: else if η3 ≤ ρk ≤ η2 then
8: Set ∆k+1 = ∆k

9: else
10: ∆k+1 = ζ2∆k

11: end if

C.4. Hessian-Free Implementation of Limited-Memory SR1 Methods

In this section, we discuss the implementation details for all the methods.3

• For ADAM, we tuned the steplength and batch size for each problem independently. We used a
batch size of 1.
• For GD and BFGS-type methods, we computed the steplength using a backtracking Armijo line

search [42].
• For SR1-type methods, we solved the trust-region subproblems (2.2) using CG-Steihaug [42].
• For BFGS and SR1, we constructed the full (inverse) Hessian approximations explicitly, whereas

for the limited-memory we never constructed the full matrices.
• For limited-memory BFGS methods we used the two-loop recursion to compute the search

direction [42].
• Implementing the limited memory SR1 methods is not trivial; we made use of the compact

representations of the SR1 matrices [10] and computed the steps dynamically.

3. All codes to reproduce the results presented in this section are available at: http://github.com/
ANONYMOUS/LINK. The code will be released upon acceptance of the paper.

21

http://github.com/ANONYMOUS/LINK
http://github.com/ANONYMOUS/LINK

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

C.5. Toy Example

In this section, we present additional numerical results for the toy classification problem described
in Section 4. In the following experiments, we ran each method from 100 different initial points.
The details of the three networks are summarized in Table 1.

0.0 0.2 0.4 0.6 0.8 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Class 1
Class 2

Figure 8: Toy Classification Problem

Network Structure d

small 2-2-2-2-2-2 36

medium 2-4-8-8-4-2 176

large 2-10-20-20-10-2 908

Table 1: Toy Classification Problem: Neural Network
Details

C.5.1. PERFORMANCE OF METHODS ON SMALL, MEDIUM AND LARGE TOY CLASSIFICATION

PROBLEMS - BOX-PLOTS

The following box-plots show the accuracy achieved by different methods for different budgets
(epochs) and iterations.

10 20 50 100 200 500 1000
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

20 50 100 200 500 1000 2000
Budget

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

Figure 9: Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classifi-
cation problem (small network).

10 20 50 100 200 500 1000
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

20 50 100 200 500 1000 2000
Budget

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

Figure 10: Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classifi-
cation problem (medium network).

22

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

10 20 50 100 200 500 1000
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

20 50 100 200 500 1000 2000
Budget

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

Figure 11: Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classifi-
cation problem (large network).

23

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

C.5.2. PERFORMANCE OF METHODS ON SMALL, MEDIUM AND LARGE TOY CLASSIFICATION

PROBLEMS

In this section, we present more experiments showing accuracy vs. iterations and accuracy vs.
epochs for different methods on toy classification problem.

0 200 400 600 800 1000
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

Figure 12: Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classifi-
cation problem (small network).

0 200 400 600 800 1000
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

Figure 13: Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classifi-
cation problem (medium network).

0 200 400 600 800 1000
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

Figure 14: Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classifi-
cation problem (large network).

24

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

C.5.3. COMPARISON OF BFGS-TYPE METHODS

In this section, we present more experiments showing the accuracy achieved in terms of iterations
and epochs for BFGS-type methods on toy classification problem.

0 50 100 150 200 250 300 350 400
Iteration

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Algorithm
BFGS
LBFGS
S-LBFGS

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Algorithm
BFGS
LBFGS
S-LBFGS

Figure 15: Performance of BFGS-type methods on toy classification problem (small network).

0 50 100 150 200 250 300 350 400
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Algorithm
BFGS
LBFGS
S-LBFGS

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Algorithm
BFGS
LBFGS
S-LBFGS

Figure 16: Performance of BFGS-type methods on toy classification problem (medium network).

0 50 100 150 200 250 300 350 400
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Algorithm
BFGS
LBFGS
S-LBFGS

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Algorithm
BFGS
LBFGS
S-LBFGS

Figure 17: Performance of BFGS-type methods on toy classification problem (large network).

25

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

C.5.4. COMPARISON OF SR1-TYPE METHODS

In this section, we present more experiments showing the accuracy achieved in terms of iterations
and epochs for SR1-type methods on toy classification problem.

0 100 200 300 400 500 600 700 800
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Algorithm
SR1
LSR1
S-LSR1

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Algorithm
SR1
LSR1
S-LSR1

Figure 18: Performance of SR1-type methods on toy classification problem (small network).

0 100 200 300 400 500 600 700 800
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Algorithm
SR1
LSR1
S-LSR1

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Algorithm
SR1
LSR1
S-LSR1

Figure 19: Performance of SR1-type methods on toy classification problem (medium network).

0 100 200 300 400 500 600 700 800
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Algorithm
SR1
LSR1
S-LSR1

0 200 400 600 800 1000 1200 1400
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Algorithm
SR1
LSR1
S-LSR1

Figure 20: Performance of SR1-type methods on toy classification problem (large network).

26

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

C.6. MNIST and CIFAR10

In this section, we show additional numerical experiments on the MNIST and CIFAR10 datasets.
The details of these problems are summarized in Table 2.

Table 2: Details for MNIST and CIFAR10 Problems.

Problem Structure d

MNIST 784− C5,3 − C5,5 − 10− 10 990
CIFAR10 1024, 3− C5,3 − C5,5 − 16− 32− 10 2312

Ck,ch: convolution with kernel k and ch output channels.

C.6.1. PERFORMANCE OF METHODS ON MNIST

In this section, we present more experiments showing the accuracy and objective function value of
different methods on the MNIST problem.

0 50 100 150 200 250 300 350 400
Epochs

0.2

0.4

0.6

0.8

1.0

Tr
ai
n
Ac

cu
ra
cy

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 50 100 150 200 250 300 350 400
Epochs

0.2

0.4

0.6

0.8

1.0

Te
st
 A
cc
ur
ac
y

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 50 100 150 200 250 300 350 400
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Ob
j F
un

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

Figure 21: Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on MNIST
problems.

C.6.2. PERFORMANCE OF ADAM ON MNIST

In this section, we show the performance of ADAM with different steplenghts on the MNIST prob-
lem. As is clear from the results in Figure 22, the performance of well-tuned ADAM is very good,
however, when the steplength is not chosen correctly, the performance of ADAM can be terrible.
Note, we have omitted runs for which ADAM diverged (i.e., when the steplength was chosen to be
too large).

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

1.0

TE
ST

 A
cc
ur
ac
y

ADAM - 64, 0.1
ADAM - 128, 0.1
ADAM - 64, 0.01
ADAM - 128, 0.01
ADAM - 256, 0.01
ADAM - 64, 0.001
ADAM - 128, 0.001
ADAM - 256, 0.001
ADAM - 64, 0.0001
ADAM - 128, 0.0001
ADAM - 256, 0.0001

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

1.0

Te
st
 A
cc
ur
ac

y

ADAM - 64, 0.1
ADAM - 128, 0.1
ADAM - 64, 0.01
ADAM - 128, 0.01
ADAM - 256, 0.01
ADAM - 64, 0.001
ADAM - 128, 0.001
ADAM - 256, 0.001
ADAM - 64, 0.0001
ADAM - 128, 0.0001
ADAM - 256, 0.0001

0 20 40 60 80 100
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Ob
j F

un

ADAM - 64, 0.1
ADAM - 128, 0.1
ADAM - 64, 0.01
ADAM - 128, 0.01
ADAM - 256, 0.01
ADAM - 64, 0.001
ADAM - 128, 0.001
ADAM - 256, 0.001
ADAM - 64, 0.0001
ADAM - 128, 0.0001
ADAM - 256, 0.0001

Figure 22: Performance of ADAM with different steplengths on MNIST.

27

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

C.6.3. PERFORMANCE OF METHODS ON CIFAR10

In this section, we present more experiments showing the accuracy and objective function value of
different methods on the CIFAR10 problem.

0 50 100 150 200 250 300 350 400
Epochs

0.1

0.2

0.3

0.4

0.5

Tr
ai
n
Ac

cu
ra
cy

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 50 100 150 200 250 300 350 400
Epochs

0.1

0.2

0.3

0.4

0.5

Te
st
 A
cc
ur
ac
y

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 50 100 150 200 250 300 350 400
Epochs

1.4

1.6

1.8

2.0

2.2

2.4

Ob
j F
un

GD
ADAM
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

Figure 23: Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on CIFAR
problems.

28

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

Appendix D. Distributed Computing and Cost

In this section, we first discuss why the cost of communication can be an issue, and then describe
the communication and computation cost of our proposed methods. For a fully distributed imple-
mentation of the sampled LSR1 method see [26].

D.1. Cost of Communication

In this section, we show experiments conducted on a HPC cluster using a Cray Aries High Speed
Network. The bandwidth ranges depending on the distance between nodes. We compiled the C++
code with the provided cray compiler.

In Figure 24, we show how the duration (seconds) of Broadcast and Reduce increases when
vectors of longer length are processed.

10 12 14 16 18 20 22 24 26 28
log2(d)

10 6

10 5

10 4

10 3

10 2

10 1

100

101

tim
e

[s
ec

]

of MPI processes: 4
operation
Broadcast FP64
Broadcast FP32
Reduce FP64
Reduce FP32

10 12 14 16 18 20 22 24 26 28
log2(d)

10 5

10 4

10 3

10 2

10 1

100

101

tim
e

[s
ec

]

of MPI processes: 8
operation
Broadcast FP64
Broadcast FP32
Reduce FP64
Reduce FP32

10 12 14 16 18 20 22 24 26 28
log2(d)

10 5

10 4

10 3

10 2

10 1

100

101

tim
e

[s
ec

]

of MPI processes: 16
operation
Broadcast FP64
Broadcast FP32
Reduce FP64
Reduce FP32

10 12 14 16 18 20 22 24 26 28
log2(d)

10 5

10 4

10 3

10 2

10 1

100

101

tim
e

[s
ec

]

of MPI processes: 32
operation
Broadcast FP64
Broadcast FP32
Reduce FP64
Reduce FP32

10 12 14 16 18 20 22 24 26 28
log2(d)

10 5

10 4

10 3

10 2

10 1

100

101

tim
e

[s
ec

]

of MPI processes: 64
operation
Broadcast FP64
Broadcast FP32
Reduce FP64
Reduce FP32

10 12 14 16 18 20 22 24 26 28
log2(d)

10 5

10 4

10 3

10 2

10 1

100

101

tim
e

[s
ec

]

of MPI processes: 128
operation
Broadcast FP64
Broadcast FP32
Reduce FP64
Reduce FP32

Figure 24: Duration of Broadcast and Reduce for various number of MPI processes and different length of
the vector.

In Figure 25, we show how long it takes (seconds) to perform Broadcast and Reduce operations
for vectors of a given length if performed on different numbers of MPI processes. We have per-
formed each operation 100 times and are showing the average time and 95% confidence intervals.

 4 8 16 32 64 128
MPI

10 5

10 4

tim
e

[s
ec

]

Message length: 215

operation
Broadcast FP64
Broadcast FP32
Reduce FP64
Reduce FP32

 4 8 16 32 64 128
MPI

10 3

10 2

tim
e

[s
ec

]

Message length: 220

operation
Broadcast FP64
Broadcast FP32
Reduce FP64
Reduce FP32

 4 8 16 32 64 128
MPI

10 1

100

tim
e

[s
ec

]

Message length: 225

operation
Broadcast FP64
Broadcast FP32
Reduce FP64
Reduce FP32

Figure 25: Duration of Broadcast and Reduce as a function of # of MPI processes for various lengths of
vectors.

29

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

 16 32 64 128 256 512 1024 2048
batch_size

102

103

104

105

Im
ag

es
 /

se
co

nd

Performance on P100 GPU, single precision

model
vgg a
LeNet
alexnet v2
method
Function Value
Hessian Vector
Gradient

 4 8 16 32 64 128
MPI

102

103

104

tim
e

[s
ec

on
ds

]

vgg a
method
SGD 16
SGD Default
S-LSR1

 4 8 16 32 64 128
MPI

100

101

102

103

tim
e

[s
ec

on
ds

]

LeNet
method
SGD 16
SGD Default
S-LSR1

 4 8 16 32 64 128
MPI

101

102

103

104

tim
e

[s
ec

on
ds

]

alexnet v2
method
SGD 16
SGD Default
S-LSR1

Figure 26: Performance (Images/second) as a function of batch size for different DNN models and operations
on a single NVIDIA Tesla P100 GPU (left). Time (sec) to complete 1 epoch of SG and to perform 1 iteration
of S-LSR1 on a dataset with 1M images using varying number of MPI processes (bar charts).

D.2. Distributed Computing and Computational Cost

In this section, we show the scalability and computation cost of the sampled quasi-Newton methods.

Distributed Computing In Figure 26 (left), we show how the batch size affects the number of
data points processed per second to compute the function, gradient and Hessian vector products on
a NVIDIA Tesla P100 GPU for various deep neural networks; see Table 3. Using small batch sizes
one is not able to fully utilize the power of GPUs; however, using larger batches in conjunction with
SG-type algorithms does not necessarily reduce training time [18, 50]. Moreover, we observe that
for these networks the cost of computing function values, gradients and Hessian vector products is
comparable4. In Figure 26 (bar graphs), we compare the time to perform 1 epoch of SG (assuming
we have 1M images) with the time to perform 1 iteration of S-LSR1. For SG, we show results for
different batch sizes on each GPU5: (1) batch size 16 (SGD 16); and, (2) batch size 32, 64 and 128
for vgg a, LeNet and alexnet v2, respectively, (SGD Default). The reason there is no significant
benefit when using more GPUs for SG is that the cost is dominated by the communication. This is
not the case for S-LSR1; significant performance gains can be achieved by scaling up the number
of MPI processes since much less communication is involved. See Section D.1 for more details.

Table 3: Deep Neural Networks used in the experiments.6

Model d Input # classes

LeNet 3.2M 28× 28× 3 10
alexnet v2 50.3M 224× 224× 3 1,000
vgg a 132.8M 224× 224× 3 1,000

Cost, Storage and Parallelization The cost per iteration of the different quasi-Newton methods
can be deconstructed as follows: (1) the cost of computing the gradient, and (2) the cost of forming
the search direction and taking the step. Note, motivated by the results in Figure 26, we assume
that the cost computing a function value, gradient and Hessian vector product is comparable and is
O(nd). The cost of computing the gradient is common for each method, whereas the search direc-
tions are computed differently for BFGS-type methods and SR1-type methods. More specifically,
for BFGS methods we employ a line search and for SR1 method we use trust-region and solve the
subproblem (2.2) using CG [42]. We denote the number of line search iterations and CG iterations

4. We assume that the cost of computing function values, gradients and Hessian vector products is O(nd).
5. Each GPU has 1 MPI process that is used for communicating updates. Note, we are running 4 MPI

processes for each physical node, i.e., each node has 4 P100 GPUs

30

SAMPLED QUASI-NEWTON METHODS FOR DEEP LEARNING

as κls and κtr, respectively. Table 4 summarizes the computational cost and storage for the different
quasi-Newton methods.

Table 4: Summary of Computational Cost and Storage (per iteration) for different Quasi-Newton methods.

Method Computational cost Storage

BFGS nd+ d2 + κlsnd d2

LBFGS nd+ 4md+ κlsnd 2md
S-LBFGS nd+mnd+ 4md+ κlsnd -
SR1 nd+ d2 + nd+ κtrd

2 d2

LSR1 nd+ nd+ κtrmd 2md
S-LSR1 nd+mnd+ nd+ κtrmd -

As is clear from Table 4, the proposed sampled quasi-Newton methods do not have a signifi-
cantly higher cost per iteration than the classical limited memory variants of the methods. In the
regime where m� n, d, the computational cost of the methods are O(nd). Moreover, the sampled
quasi-Newton methods do not have any storage requirements. We should also note, that several
computations that are required in our proposed methods are easily parallelizeable. These compu-
tations are the gradient evaluations, the function evaluations and the construction of the gradient
displacement curvature pairs y.

31

	Introduction
	Sampled Quasi-Newton Methods
	Sampling Curvature Pairs
	Sampled LBFGS (S-LBFGS)
	Sampled LSR1 (S-LSR1)

	Convergence Analysis
	Numerical Experiments
	Final Remarks and Future Work
	Brief Literature Review
	Theoretical Results and Proofs
	Assumptions
	Proof of Lemma 3.2
	Proof of Theorem 3.3
	Proof of Lemma 3.5
	Proof of Theorem 3.6

	Additional Numerical Experiments and Method Details
	Motivation Figure
	Eigenvalue Figures
	Trust-Region Management Subroutine
	Hessian-Free Implementation of Limited-Memory SR1 Methods
	Toy Example
	Performance of Methods on small, medium and large toy classification problems - Box-plots
	Performance of Methods on small, medium and large toy classification problems
	Comparison of BFGS-type methods
	Comparison of SR1-type methods

	MNIST and CIFAR10
	Performance of Methods on MNIST
	Performance of ADAM on MNIST
	Performance of Methods on CIFAR10

	Distributed Computing and Cost
	Cost of Communication
	Distributed Computing and Computational Cost

