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Abstract
We develop a convex analytic framework for ReLU networks and study their function space char-
acteristics. We show that the optimal parameters of two layer over-parameterized networks can be
described as extreme points of a certain convex set. For one dimensional regression, our theory
explains why ReLU networks yield linear spline interpolation. In higher dimensions, we show that
the training problem can be cast as a convex optimization problem with infinitely many constraints.
We then provide convex relaxations to approximate the solution, and a cutting-plane algorithm to
improve the relaxations.

1. Introduction

Understanding the fundamental reason why training over-parameterized Deep Neural Networks
(DNNs) converges to minimizers that generalize well remains an open problem. Recently, it was
empirically observed that ReLU NNs exhibit an interesting structure, where only finitely many
simple functions can be obtained as optimal solutions [13, 18]. In [18], the function space of one
dimensional (1D) ReLU regression networks was studied, where it was shown that among infinitely
many two layer ReLU networks that perfectly fit the training data, the one with the minimum
Euclidean norm parameters yields a linear spline interpolation. It is possible that the structure
induced by over-parameterization explains remarkable generalization properties of DNNs. Despite
the dramatic surge of interest in NNs, the fundamental mechanism behind these simple structures is
largely unknown.

A line of research [4, 13, 23] explored the behavior of ReLU networks in finite size cases. In [23],
the authors indicated that NNs are implicitly regularized during training since Stochastic Gradient
Descent (SGD) converges to a solution with small norm. The idea of implicit regularization was
also extended to the networks trained with GD as well as SGD. Particularly, the authors in [13]
showed that implicit regularization has a strong connection with the initialization of a network and
showed that network weights tend to align along certain directions determined by the input data,
which implies that there are only finitely many possible simple functions for the given dataset. In
order to explain generalization capabilities of ReLU networks, another line of research in [2, 3, 6, 22]
focused on infinitely wide two layer ReLU networks. In [3], the authors introduced an algorithm that
can train a regularized NN with infinite width in an incremental manner. In [22], the authors adopted
a margin-based perspective, where they showed that the optimal point of a weakly regularized loss
has the maximum margin property, thus, over-parameterization can improve generalization bounds.

Our contributions in this work are as follows: 1) We develop a convex analytic framework for two
layer ReLU NNs to provide a deeper insight into over-parameterization and implicit regularization.
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We show that over-parameterized NNs behave like convex regularizers, where simple structures
are encouraged in the solution via the extreme points of a well-defined regularizer; 2) For one
dimensional regression, we prove that hidden layers form a linear spline interpolation. We also
provide an intuitive convex geometric explanation of this fact; 3) We provide a convex relaxation
based training procedure, which is proven to be exact under certain assumptions on the training set.

Notation: We denote the matrices and vectors as uppercase and lowercase bold letters, respec-
tively. To denote a vector or matrix of zeros or ones, we use 0 or 1, respectively, where the sizes are
understood from the context. Additionally, Ik represents the identity matrix of the size k. We also
use (x)+ = max{x, 0} for ReLU. We use the notation [n] to denote the set of integers from 1 to n.

2. Preliminaries

Given n data samples, i.e., {ai}ni=1,ai ∈ Rd, we consider two layer NNs with m hidden neurons
and ReLU activations. Initially, we focus on the scalar output case for simplicity, i.e.,

f(A) =
m∑
j=1

wj(Auj + bj1)+, (1)

where A ∈ Rn×d is the data matrix, uj ∈ Rd and bj ∈ R are the parameters of the jth hidden
neuron, and wj’s are the weights for the output layer. For a more compact representation, we also
define U ∈ Rd×m, b ∈ Rm, and w ∈ Rm as the hidden layer weight matrix, the bias vector, and the
output layer weight vector, respectively. Thus, (1) can be written as f(A) = (AU + 1bT )+w. We
emphasize that all the derivations in the sequel can be extended to a vector case with o outputs. In
this case, we have f(A) =

(
AU + 1bT

)
+
W , where W ∈ Rm×o 1.

Note that we can assume that the bias term for the output layer is zero without loss of gener-
ality, since we can recover the general case [13]. Given A, the label vector y ∈ Rn, θ ∈ Θ =
{(U,b,w) |U ∈ Rd×m,b ∈ Rm,w ∈ Rm}, andR(θ) = ‖w‖22+‖U‖2F , we consider the following
problem

min
θ∈Θ

R(θ) s.t. fθ(A) = y, (2)

where the over-parameterization allows us to reach zero training error over A via the ReLU network
in (1). The next lemma shows that the minimum squared Euclidean norm is equivalent to minimum
`1 norm after a suitable rescaling. This result was also presented in [15, 18].

Lemma 2.1 ([15, 18]) The following two optimization problems are equivalent:

P ∗ = min
θ∈Θ

R(θ) s.t. fθ(A) = y = min
θ∈Θ
‖w‖1 s.t. fθ(A) = y, ‖uj‖2 = 1, ∀j.

Lemma 2.2 Replacing ‖uj‖2 = 1 with ‖uj‖2 ≤ 1 does not change the value of the above problem.

By Lemma 2.1 and 2.2, we can express (2) as

min
θ∈Θ
‖w‖1 s.t. fθ(A) = y, ‖uj‖2 ≤ 1, ∀j. (3)

1. We refer the reader to appendix for details.
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However, (3) is a quite challenging optimization problem due to the complicated behavior of an
affine mapping along with the ReLU activation. In particular, depending on the properties of A, e.g.,
singular values, rank, and dimensions, the geometry of the objective function might considerably
change as detailed in the next section.

In order to illustrate the geometry, we particularly focus on a simple case where we have a single
neuron with no bias and regularization, i.e., m = 1 and b1 = 0. Thus, the problem reduces to

min
u1

∥∥w1(Au1)+ − y
∥∥2

2
s.t. ‖u1‖2 ≤ 1. (4)

The solution of (4) is completely determined by the behavior of the set QA = {(Au)+|u ∈
Rd, ‖u‖2 ≤ 1}. It is evident that (4) is solved via scaling this set by |w1| to minimize the distance to
+y or −y, depending on the sign of w1. We first note that since ‖u‖2 ≤ 1 describes a d-dimensional
unit ball, Au describes an ellipsoid whose shape and orientation is determined by the singular values
and the output singular vectors of A.

2.1. Rectified ellipsoid and spike-free matrices

A central object in our analysis is the rectified ellipsoidal set introduced in the previous section,
which is defined as QA =

{(
Au
)

+
|u ∈ Rd, ‖u‖2 ≤ 1

}
. The set QA is non-convex in general.

However, there exists data matrices A for which the set QA is convex, e.g., diagonal data matrices.
However, the aforementioned set of matrices are, in fact, a more general class.

We say that a matrix A is spike-free if it holds thatQA = AB2 ∩Rn+ , where AB2 = {Au |u ∈
B2}, and B2 is the unit `2 ball defined as B2 = {u | ‖u‖2 ≤ 1}. Note that QA is a convex set if
A is spike-free. In this case we have an efficient description of this set given by QA = {Au|u ∈
Rd, ‖u‖2 ≤ 1, Au ≥ 0}.

If QA = {(Au)+|u ∈ Rd, ‖u‖2 ≤ 1} can be expressed as Rn+ ∩ {Au|u ∈ Rd, ‖u‖2 ≤ 1},
then (4) can be solved via convex optimization after the rescaling u = u1w1

min
u

∥∥Au− y
∥∥2

2
s.t. u ∈ {Au < 0} ∪ {−Au < 0}, ‖u‖2 ≤ 1 .

The following lemma provides a characterization of spike-free matrices

Lemma 2.3 A matrix A is spike-free if and only if the following condition holds

∀u ∈ B2, ∃z ∈ B2 such that we have
(
Au
)

+
= Az . (5)

If A is full row rank, then the above condition simplifies to

max
u : ‖u‖2≤1

‖A†
(
Au
)

+
‖2 ≤ 1 . (6)

The following lemmas show that whitened matrices with n ≤ d are spike-free.

Lemma 2.4 Whitened data matrices with n ≤ d are spike-free.
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2.2. Polar convex duality

It can be shown that the dual of the problem (3) is given by2

max
v

vTy s.t. v ∈ Q◦A , − v ∈ Q◦A (7)

where Q◦A is the polar set [16] of QA defined as Q◦A = {v|vTu ≤ 1 ∀u ∈ QA} .

2.3. Extreme Points

We first define the extreme point of QA along v as argmaxz∈QA
vT z. Here, we show that the

extreme points of QA are given by data samples and convex mixtures of data samples in 1D.

Lemma 2.5 In a one dimensional data set (d = 1), for any vector v ∈ Rn, an extreme point of QA

along v is achieved when uv = ±1 and bv = −sign(uv)ai for a certain index i ∈ [n].

Combined with Theorem 3.1, we prove that the optimal network outputs the linear spline interpola-
tion.

3. Main results

3.1. Convex duality

Theorem 3.1 The dual of the problem in (3) is given by

D∗ = max
v∈Rn

vTy = max
v∈Rn

vTy , (8)

s.t.
∣∣vT (Au

)
+

∣∣ ≤ 1 ∀u ∈ B2 s.t. v ∈ Q◦A,−v ∈ Q◦A

and we have P ∗ ≥ D∗. For infinite size NNs3 (m→∞) we have strong duality, i.e., P ∗ = D∗, and
an optimal U for (3) satisfies ‖(AU∗)T+v

∗‖∞ = 1 , where v∗ is dual optimal.4

Remark 1 Note that (8) is a convex optimization problem with infinitely many constraints, and
in general not polynomial-time tractable. In fact, even checking whether a point v is feasible is
NP-hard: we need to solve maxu:‖u‖2≤1

∑n
i=1 vi

(
aTi u

)
+

. This is related to the problem of learning
halfspaces with noise, which is NP-hard to approximate within a constant factor (see e.g. [2, 9]).

Corollary 3.1 Theorem 3.1 implies that the optimal neuron weights are extreme points which solve

argmax
u:‖u‖2≤1

|v∗T
(
Au
)

+
|.

We are now ready to present our results on the structure induced by the extreme points. The following
corollary directly follows from Lemma 2.5.

Corollary 3.2 Let {ai}ni=1 be a one dimensional training set i.e., ai ∈ R, ∀i ∈ [n]. Then, a set of
solutions to (3) that achieve the optimal value are extreme points, and therefore satisfy {(ui, bi)}mi=1,
where ui = ±1, bi = −sign(ui)ai.

2. We refer the reader to appendix for the proof. For the remaining analysis, we drop the bias term, however, similar
arguments also hold for a case with bias as illustrated in appendix.

3. We refer the reader to appendix for a rigorous definition and the details of infinite size networks.
4. Similar results hold for other loss functions (e.g. hinge loss), penalized versions and vector output networks. Here we

present our results in this simplified version.
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Table 1: Classification Accuracies (%) and test errors

MNIST CIFAR-10 Bank Boston California Elevators News20 Stock

One Layer NN (Least Squares) 86.04% 36.39% 0.9258 0.3490 0.8158 0.5793 1.0000 1.0697
Two Layer NN (Backpropagation) 96.25% 41.57 % 0.6440 0.1612 0.8101 0.4021 0.8304 0.8684
Two Layer NN Convex 96.94% 42.16% 0.5534 0.1492 0.6344 0.3757 0.8043 0.6184

3.2. A cutting plane method

In this section, we introduce a cutting plane based training algorithm for the NN in (1). Among
infinitely many possible unit norm weights, we need to find the weights that violate the inequality
constraint in (8). However, this is not a convex problem since ReLU is a convex function. There
exist several methods and relaxations to find the optimal parameters. Here, we show how to relax the
problem using our spike-free relaxation as follows

û1 = argmax
u:Au<0,‖u‖2≤1

vTAu û2 = argmin
u:Au<0,‖u‖2≤1

vTAu, (9)

where we relax the set {(Au)+|u ∈ Rd, ‖u‖2 ≤ 1} as {Au|u ∈ Rd, ‖u‖2 ≤ 1} ∩ Rn+. Now, we
can find the weights for the hidden layer using (9). In the cutting plane method, we first find a
violating neuron using (9). After adding these parameters to U as columns, we solve (3). If we
cannot find a new violating neuron then we terminate the algorithm. Otherwise, we first find the dual
parameter for the updated U. We then repeat this procedure till we find an optimal solution (see
Algorithm 1 in appendix for the pseudocode of the cutting-plane method).

Proposition 3.1 When A is spike-free, the cutting plane based method globally optimizes (8).

4. Numerical experiments

We first consider classification tasks and report the performance5 of the algorithms on MNIST
[12] and CIFAR-10 [10] In Table 1, we observe that our approach denoted as Convex, which is
solely based on convex optimization techniques, outperforms the non-convex backpropagation based
approach. We also evaluate the performances on several regression data sets [14, 20]. In Table 1, we
provide the test errors for each approach. Here, our approach outperforms the backpropagation, and
the Least Squares approach.

5. Concluding remarks

We have studied two layer ReLU networks via a convex analytic framework that explains why simple
solutions are achieved even when networks are over-parameterized. In particular, we showed that the
extreme points characterize simple structures and explain why training of regularized NNs yields a
linear spline interpolation in 1D. Using these observations, we have also provided a training algorithm
based on a cutting plane method, which achieves global optimality under certain assumptions.

5. Further information about our experimental setup can be found in the supplementary material.
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Appendix

In this section, we present proofs of the main results, details on the algorithms and numerical results
and extra figures that are not included in the main paper due to the page limit.

Appendix A. Additional details on the numerical experiments

In this section, we provide further information about our experimental setup:
In the main paper, we evaluate the performance of the introduced approach on several real

data sets. For comparison, we also include the performance of a two layer NN trained with the
backpropagation algorithm and the well-known linear least squares approach. For all the experiments,
we use the regularization term (also known as weight decay) to let the algorithms generalize well
on unseen data [11]. In order to solve the convex optimization problems in our approach, we use
CVX [8]. However, notice that when dealing with large data sets, e.g., CIFAR-10, plain CVX solvers
might take a lot of time or give memory errors. In order to circumvent these issues, we use SPGL1
[21] and SuperSCS [19] for large data sets. We also remark that all the data sets we use are publicly
available and further information, e.g., training and test sizes, can be obtained through the provided
references [1, 10, 12, 20]. Furthermore, we use the same number of hidden neurons for both our
approach and the conventional backpropagation based approach to have a fair comparison.

Appendix B. Cutting plane algorithm with no bias term

In this section, we present the pseudocode for the algorithm provided in the main paper in the case of
no bias term.

In the cutting plane method, we first find a violating neuron using (9). After adding these
parameters to U as columns, we solve (3). If we cannot find a new violating neuron then we
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terminate the algorithm. Otherwise, we find the dual parameter for the updated U. We repeat this
procedure till we find an optimal solution (see Algorithm 1).

Algorithm 1 Cutting Plane based Training Algorithm for Two Layer NNs (without bias)
1: Initialize v = y
2: while there exists a violating neuron do
3: Find û1 and û2 via (9)
4: U← [U û1 û2]
5: Find v using the dual problem in (8)
6: Check the existence of a violating neuron via (9)
7: end while
8: Solve (3) using U
9: Return θ = (U,w)

Appendix C. Cutting plane algorithm with a bias term

Here, we include the cutting plane algorithm which accommodates a bias term. This is slightly more
involved than the case with no bias because of extra constraints. We have the corresponding dual
problem as in Theorem 3.1

max
v∈Rn,1Tv=0

vTy s.t.
∣∣vT (Au + b1

)
+

∣∣ ≤ 1 , ∀u ∈ B2 (10)

and an optimal U and b satisfies

‖(AU∗ + 1b∗T )T+v
∗‖∞ = 1 ,

where v∗ is the optimal dual variable.
Among infinitely many possible unit norm weights, we need to find the weights that violate the

inequality constraint in the dual form, which can be done by solving the following optimization
problems

u∗1 = arg max
u,b

vT (Au + b1)+ s.t. ‖u‖2 ≤ 1

u∗2 = arg min
u,b

vT (Au + b1)+ s.t. ‖u‖2 ≤ 1.

However, the above problem is not convex since ReLU is a convex function. In this case, we can
further relax the problem by applying the spike-free relaxation as follows

(û1, b̂1) = arg max
u,b

vTAu + bvT1 s.t. Au + b1 < 0, ‖u‖2 ≤ 1

(û2, b̂2) = arg min
u,b

vTAu + bvT1 s.t. Au + b1 < 0, ‖u‖2 ≤ 1,

where we relax the set {(Au + b1)+|u ∈ Rd, ‖u‖2 ≤ 1} as {Au + b1|u ∈ Rd, ‖u‖2 ≤ 1} ∩ Rn+.
Now, we can find the weights and biases for the hidden layer using convex optimization. However,
notice that depending on the sign of 1Tv one of the problems will be unbounded. Thus, if 1Tv 6= 0,
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then we can always find a violating constraint, which will make the problem infeasible. Note that
1Tv = 0 will be enforced via the dual.

Based on our analysis, we propose the following convex optimization approach to train the two
layer NN. We first find a violating neuron. After adding these parameters to U as a column and to
b as a row, we try to solve the original problem. If we cannot find a new violating neuron then we
terminate the algorithm. Otherwise, we find the dual parameter for the updated U. We repeat this
procedure until the optimality conditions are satisfied (see Algorithm 2 for the pseudocode). Since
the constraint is bounded below and ûj’s are bounded, Algorithm 2 is guaranteed to converge in
finitely many iterations Theorem 11.2 of [7].

Algorithm 2 Cutting Plane based Training Algorithm for Two Layer NNs (with bias)

1: Initialize v such that 1Tv = 0
2: while there exists a violating neuron do
3: Find û1, û2, b̂1 and b̂2
4: U← [U û1 û2]
5: b← [bT b̂1 b̂2]T

6: Find v using the dual problem
7: Check the existence of a violating neuron
8: end while
9: Solve the problem using U and b

10: Return θ = (U,b,w)

Appendix D. Infinite size neural networks

Here we briefly review infinite size, i.e., infinite width, two layer NNs [2]. We refer the reader to
[3, 22] for further background and connections to our work. Consider an arbitrary measurable input
space X with a set of continuous basis functions φu : X → R parametrized by u ∈ B2. We then
consider real-valued Radon measures equipped with the uniform norm [17]. For a signed Radon
measure µ, we define the infinite size neural network output for the input x ∈ X as

f(x) =

∫
u∈B2

φu(x)dµ(u) .

The total variation norm of the signed measure µ is defined as the supremum of
∫
u∈B2 q(u)dµ(u)

over all continuous functions q(u) that satisfy |q(u)| ≤ 1. Now we consider the ReLU basis functions
φu(x) =

(
xTu

)
+

. For finitely many neurons as in (2), the network output is given by

f(x) =
m∑
j=1

φuj (x)wj ,

which corresponds to the signed measure µ =
∑m

j=1wjδ(u−uj) where δ is the Dirac delta function.
And the total variation norm ‖µ‖TV of µ reduces to the `1 norm ‖w‖1.

The infinite dimensional version of the problem (3) corresponds to

min ‖µ‖TV
s.t. f(xi) = yi ,∀i ∈ [n] .
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For finitely many neurons, i.e., when the measure µ is a mixture of Dirac delta basis functions, the
equivalent problem is

min ‖w‖1
s.t. f(xi) = yi ,∀i ∈ [n] .

which is identical to (3). Similar results also hold with regularized objective functions, different loss
functions and vector outputs.

Appendix E. Proofs of the main results

In this section, we present the proofs of the theorems and lemmas provided in the main paper.
Proof of Lemma 2.1 For any θ ∈ Θ, we can rescale the parameters as ūj = αjuj , b̄j = αjbj and
w̄j = wj/αj , for any αj > 0. Then, (1) becomes

fθ̄(A) =
m∑
j=1

w̄j(Aūj + b̄j1)+ =

m∑
j=1

wj
αj

(αjAuj + αjbj1)+ =

m∑
j=1

wj(Auj + bj1)+,

which proves fθ(A) = fθ̄(A). In addition to this, we have the following basic inequality

m∑
j=1

(w2
j + ‖uj‖22) ≥ 2

m∑
j=1

(|wj | ‖uj‖2),

where the equality is achieved with the scaling choice αj =
( |wj |
‖uj‖2

) 1
2 . Since the scaling operation

does not change the right-hand side of the inequality, we can set ‖uj‖2 = 1, ∀j. Therefore, the
right-hand side becomes ‖w‖1.

Proof of Lemma 2.2 Consider the following problem

min
θ∈Θ
‖w‖1 s.t. fθ(A) = y, ‖uj‖2 ≤ 1, ∀j,

where the unit norm equality constraint is relaxed. Let us assume that for a certain index j, we obtain
‖uj‖2 ≤ 1 with wj 6= 0 as the optimal solution of the above problem. This shows that the unit norm
inequality constraint is not active for uj , and hence removing the constraint for uj will not change
the optimal solution. However, when we remove the constraint, ‖uj‖2 →∞ reduces the objective
value since it yields wj = 0. Hence, we have a contradiction, which proves that all the constraints
that correspond to a nonzero wj must be active for an optimal solution.

Proof of Lemma 2.3 The first condition immediately implies that {
(
Au
)

+
|u ∈ B2} ⊆ AB2. Since

we also have {
(
Au
)

+
|u ∈ B2} ⊆ Rn+, it holds that {

(
Au
)

+
|u ∈ B2} ⊆ AB2 ∩ Rn+. Since the

projection of AB2 ∩ Rn+ onto the positive orthant is a subset of QA, we have QA = AB2 ∩ Rn+.
The second condition follows from the min-max representation

max
u∈B2

min
z:Az=(Au)+

‖z‖2 ≤ 1 ⇐⇒ (5) ,

10
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and the fact that the minimum norm solution to Az = (Au)+ is given by A†(Au)+ under the full
row rank assumption on A.

Proof of Lemma 2.4 We have

max
u : ‖u‖2≤1

‖AT (AAT )−1
(
Au
)

+
‖2 ≤ σmax(AT (AAT )−1) max

u : ‖u‖2≤1
‖
(
Au
)

+
‖2

= σ−1
min(A) max

u : ‖u‖2≤1
‖
(
Au
)

+
‖2

≤ σ−1
min(A) max

u : ‖u‖2≤1
‖Au‖2

≤ σ−1
min(A)σmax(A)

≤ 1 .

where the last inequality follows from the fact that A is whitened.

Proof of Lemma 2.5 The extreme point along the direction of v can be found as follows

max
u,b

n∑
i=1

vi(aiu+ b)+ s.t. |u| = 1, (11)

Since each neuron separates the samples into two sets, for some samples, ReLU will be active, i.e.,
S = {i|aiu + b ≥ 0}, and for the others, it will be inactive, i.e., Sc = {j|aju + b < 0} = [n]/S.
Thus, we modify (11) as

max
u,b

∑
i∈S

vi(aiu+ b) s.t. aiu+ b ≥ 0, ∀i ∈ S, aju+ b ≤ 0, ∀j ∈ Sc, |u| = 1. (12)

In (12), u can only take two values, i.e., ±1. Thus, we can separately solve the optimization
problem for each case and then take the maximum one as the optimal. Let us assume that
u = 1. Then, (12) reduces to finding the optimal bias. We note that due to the constraints
in (12), −ai ≤ b ≤ −aj ,∀i ∈ S,∀j ∈ Sc. Thus, the range for the possible bias values is
[maxi∈S(−ai), minj∈Sc(−aj)]. Therefore, depending on the direction v, the optimal bias can be
selected as follows

bv =

{
maxi∈S(−ai), if

∑
i∈S vi ≤ 0

minj∈Sc(−aj), otherwise
. (13)

Similar arguments also hold for u = −1 and the min version of (11).

Proof of Theorem 3.1 and Corollary 3.1
Using an indicator function, we can reformulate the problem as follows

P ∗ = min
θ∈Θ\{w}

max
v

vTy + I(‖(AU)T+v‖∞ ≤ 1), s.t. ‖uj‖2 ≤ 1,∀j,

where I(x ≤ a) = 0, if x ≤ a, I(x ≤ a) = −∞, otherwise. Since the set ‖(AU)T+v‖∞ ≤ 1 is
closed, the function Φ(v,U) := vTy + I(‖(AU)T+v‖∞ ≤ 1) is the sum of a linear function and an
upper-semicontinuous indicator function and therefore upper-semicontinuous. The constraint over U

11
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is convex and compact. We use P ∗ to denote the value of the above min-max program. Exchanging
the order of min and max we obtain the dual problem given in (8), which establishes a lower bound
D∗ for the above problem:

P ∗ ≥ D∗ = max
v

min
θ∈Θ\{w}

vTy + I(‖(AU)T+v‖∞ ≤ 1), s.t. ‖uj‖2 ≤ 1, ∀j,

We now show that strong duality holds for infinite size NNs. The dual of the semi-infinite program in
(8) is given by (see Section 2.2 of [7] and also [2])

min ‖µ‖TV

s.t.
∫
u∈B2

(
Au
)

+
µ(du) = y ,

where TV is the total variation norm of the Radon measure µ. This expression coincides with the
infinite-size neural network as given in Section D, and therefore strong duality holds. Next we invoke
the semi-infinite optimality conditions for the dual problem in (8), in particular we apply Theorem
7.2 of [7]. We first define the set

K = cone

{(
s
(
Au
)

+

1

)
,u ∈ B2, s ∈ {−1,+1};

(
0
−1

)}
.

Note that K is the union of finitely many convex closed sets, since the function
(
Au
)

+
can be

expressed as the union of finitely many convex closed sets. Therefore the set K is closed. By
Theorem 5.3 [7], this implies that the set of constraints in (8) forms a Farkas-Minkowski system. By
Theorem 8.4 of [7], primal and dual values are equal, given that the system is consistent. Moreover,
the system is discretizable, i.e., there exists a sequence of problems with finitely many constraints
whose optimal values approach to the optimal value of (8). The optimality conditions in Theorem 7.2
[7] implies that y =

(
AU∗

)
+
w∗ for some vector w∗. Since the primal and dual values are equal,

we have v∗Ty = v∗T
(
AU∗

)
+
w∗ = ‖w∗‖1, which shows that the primal-dual pair ({w∗,U∗},v∗)

is optimal. Thus, the optimal neuron weights U∗ satisfy ‖(AU∗)T+v
∗‖∞ = 1.

Proof of Proposition 3.1 Since the constraint in (9) is bounded below and the hidden layer weights
are constrained to the unit Euclidean ball, the convergence of the cutting plane method directly
follows from Theorem 11.2 of [7].

Appendix F. Polar convex duality

In this section we derive the polar duality and present a connection to minimum `1 solutions to linear
systems. Recognizing the constraint v ∈ QA can be stated as

v ∈ Q◦A, v ∈ −Q◦A ,

which is equivalent to

v ∈ Q◦A ∩ −Q◦A .

12
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Note that the support function of a set can be expressed as the gauge function of its polar set (see e.g.
[16]). The polar set of Q◦A ∩ −Q◦A is given by(

Q◦A ∩ −Q◦A
)◦

= Co
(
QA ∪ −QA

)
.

Using this fact, we express the dual problem (8) as

D∗ = inf
t∈R

t (14)

s.t. y ∈ tCo
(
QA ∪ −QA

)
,

where Co
( )

represents the convex hull of a set.
Let us restate dual of the two layer ReLU neural network training problem given by

max
v

vTy s.t. v ∈ Q◦A , − v ∈ Q◦A (15)

where Q◦A is the polar dual of QA defined as Q◦A = {v|vTu ≤ 1 ∀u ∈ QA} .

Remark 1 The dual problem given in (15) is analogous to the convex duality in minimum `1 norm
solutions to linear systems. In particular, for the latter it holds that

min
w :Aw=y

‖w‖1 = max
v∈Co

(
{
)
â1,...,âd}◦, −v∈Co

(
{
)
â1,...,âd}◦

vTy ,

where â1, ..., âd are the columns of A. The above optimization problem can also be put in the gauge
optimization form as follows.

min
w :Aw=y

‖w‖1 = inf
t∈R

t s.t. y ∈ tCo
(
{
)
± â1, ...âd},

which parallels the gauge optimization form in (14).

Appendix G. Regularized two layer ReLU networks

A penalized version can also be formulated instead of the equality form in (3). We next present a
duality result for the penalized case.

Theorem G.1 An optimal U for the following regularized version of (3) given by

min
θ∈Θ

1

2
‖(AU)+w − y‖22 + β‖w‖1 s.t. ‖uj‖2 ≤ 1,∀j, (16)

as m→∞ can be found through the following dual problem

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t. v ∈ βQ◦A,−v ∈ βQ◦A ,

where β is the regularization (weight decay) parameter.

The proof follows from a similar argument as in the proof of Theorem 3.1, and is omitted.

13
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Appendix H. Two layer ReLU networks with general loss functions

Now we consider the scalar output two layer ReLU networks with an arbitrary loss function

min
θ∈Θ

`(AU)+w,y) + β‖w‖1 s.t. ‖uj‖2 ≤ 1,∀j, (17)

where `(·,y) is a convex loss function.

Theorem 1 The dual of (17) is given by

max
v
−`∗(v) s.t. v ∈ βQ◦A,−v ∈ βQ◦A ,

where `∗ is the Fenchel conjugate function defined as

`∗(v) = max
z

zTv − `(z,y) .

The proof follows from classical Fenchel duality [5], and a similar argument as in the proof of
Theorem 3.1. We omit the details. The general form of the dual can be easily extended to vector
output networks.

Appendix I. Extension to vector output neural networks

In this section, we describe the implementation of the cutting plane algorithm when we have vector
outputs, particularly, o outputs. In this case, we have Y ∈ Rn×o and f(A) =

(
AU

)
+
W , where

W ∈ Rm×o. Then, we formulate the following dual problem

max
V

tr(VTY) s.t. ‖VT
(
Au
)

+
‖∞ ≤ 1 ,∀u ∈ B2

and an optimal U satisfies

‖(AU∗)T+V
∗‖∞ = 1 ,

where V∗ is the optimal dual variable and tr represents the trace of a matrix. Note that we can also
consider block `1-`2 norms and their duals in formulating the vector output objective. We use this
particular form as it admits a simpler solution with the cutting-plane method.

We again relax the problem using the spike-free relaxation and then we solve the following
problem for each k ∈ [o]

ûk,1 = arg max
u

vTkAu s.t. Au < 0, ‖u‖2 ≤ 1

ûk,2 = arg min
u

vTkAu s.t. Au < 0, ‖u‖2 ≤ 1,

where vk is the kth column of V. After solving these optimization problems, we select the two
neurons that achieve the maximum and minimum objective value among o neurons for each problem.
Thus, we can find the weights for the hidden layers using convex optimization.
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