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Abstract

The multi-block ADMM has received much attention from optimization researchers due to its
excellent scalability. In this paper, the multi-block ADMM is applied to solve two large-scale
problems related to isotonic regression. Numerical experiments show that the multi-block ADMM
is convergent when the chosen parameter is small enough and the multi-block ADMM scales well
compared with baselines.

1. Introduction

In recent years, the Alternating Direction Method of Multipliers (ADMM) has received consider-
able attention from the community of machine learning researchers. This is because it is a natural
fit for wide large-scale data applications, including deep learning [23], phase retrieval [25], vaccine
adverse event detection [21, 22] and compressive sensing [4]. The direct extension of the classic
ADMM is multi-block ADMM (i.e. ADMM with no less than three variables), which is written
mathematically as follows:
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where f; : R™ — R(i = 1,--- ,n) are convex functions, x; € R™i(i = 1,--- ,n) are vectors
of length m;. A; € RP*™i(j = 1,--- n) are matrices. The augmented Lagrangian function is
formulated as L (1, -, 2n,y) = >0y fi(w:) + (p/2)|| Yoiy Aiwi + y/pl/3 where y € RP is a
dual variable and p > 0 is a penalty parameter. The multi-block ADMM is solved by the following
steps:
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A variety of related works on the convergence of the multi-block ADMM are detailed in Section B in
the Appendix.

While the multi-block ADMM can solve problems with linear equality constraints, it cannot
directly be applied to the problems with multiple inequality constraints such as the isotonic regression
problem [9]. In this paper, we propose new strategies based on the multi-block ADMM to address
existing computational challenges in the isotonic regression problems. The well-known isotonic
regression aims to return a sequence of responses given a predictor and pre-defined order constraints,
which has been addressed by many previous works. See [1, 2, 8, 9, 14, 16] for more information.
However, The main drawback is that their computational cost is very expensive when solving large-
scale problems.

To deal with the challenge of scalability, we leverge the advantage of parallel computing of the
multi-block ADMM by integrating objective variables into several vectors. The following questions
are addressed for the proposed multi-block ADMM frameworks on two isotonic regression problems:
1. Does the multi-block ADMM converge? 2. Does the multi-block ADMM scale well?

© J. Wang & L. Zhao.
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2. Isotonic Regression Problems

Algorithm 1 The Multi-block ADMM Algorithm to Solve Problem 1

1: mnitialize p.q,u,y1,y2.p > 0,k =0.

2: repeat
3: Update u* 1 in Equation (1).
4: Update pk+1 in Equation (2).
5: Update qk+1 in Equation (3).
6: Update ri”drl — phtl gkt 4 gkttt
. k+1 k+1 k41, k+1 k+1 k+1
7: Updale’rzt — piil - q; + (i=1,---,n—2), 7‘2+ < [7‘2ﬁ HE ;7‘2;72],
8: Update 5]f+1 — p(pF Tl — gFtl — pF 4 gF).
9: Update s§+1 — p(q}C — qk+1)A
10: Update rF+1 |\7"f+1 H% + ||7"2C+1 H% ## Calculate the primal residual.
11: Update s*+1 « / ||slf+1 H% + HS;+1 Hg ## Calculate the dual residual.
12: Update y)erl +— y’f —+ p7']f+1.
13: Update y§+1 — yé + pr§+1,

14: k<« k+ 1.

15: until convergence.
16: Output p, g and .

2.1. The Multi-block ADMM for Smoothed Isotonic Regression

The classic isotonic regression is a problem to return a non-decreasing response given a predictor.
However, the fitted response resembles a step function while a response is expected to be smooth and
continuous in many applications [18]. To achieve this, Sysoev and Burdakov proposed a smoothed
isotonic regression problem to eliminate sharp ‘jumps’ of the response function given a predictor
zi(t=1,---,n)[18]:

Problem 1 (Smoothed Isotonic Regression)

n n—1
Mg, ... .8, Zi:l wi(w; — Bi)* + A Zi:l (Bi — Bis1)?
Stﬁl <ﬁ2 ggﬁn

where w; > 0(i = 1,--- ,n) are assigned weights, 3;(¢ = 1,--- ,n) are fitted predictors, and
A > 01is a penalty parameter. The multi-block ADMM is applied to realize parallel computing:
we introduce two vectors p and ¢ of length n — 1 such that p; = $;(i = 1,--- ,n — 1) and
qi = Bi+1(i = 1,--- ;n — 1), respectively. The problem can be reformulated as

n—1
ming, g w1 (21 — p1)2+zi:2 ((wi/2) (i = pi)®+(wi/2) (w0 = gi-1)?) Fwn (@ — gu-1)*+ A3
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where p = [p1, -+ ,pp—1]andq = [q1, - - , go—1]. The augmented Lagrangianis L,(u,p, q,y1,y2) =
wi(z1 — p1)? + 7y (wi/2) (2 — Pz‘)22+ (wi/2) (i = ¢i-1)?) + wn(Tn — gn-1)* + Aull3 +
(p/2)|lp — a +u+y1/pll3 + (p/2) 3727 (Piv1 — @i + y2,i/p)* Where y1 = [yi,1,+ , y1n-1],
Y2 = [Y2.1, - ,Y2.n—2] and p > 0. The multi-block ADMM to solve Problem 1 is shown in Algo-
rithm 1. Each subproblem has a closed-form solution and can be implemented in parallel, which is
shown as follows:
1. Update u.

The variable w is updated as follows:

uF T argming (p/2)Ip" — ¢" +u + yt/pl5 + Aul3, st.u>0. (1)
« max((p(q" —p*) — y1)/(p +2A),0).
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2. Update p.
The variable p is updated as follows:

P argming, wi (o — p1) + (p/2) 1 — af +ub 4yl
— 2wy + pgf — puft — yfl)/@wl +p)

Pyt argminy, (wi/2)(zi — pi)* + (p/2)|lpi — aF + it + yF/pll3

+(p/2)|Ipi — @ + Y51 /pl3(E =2, ,n—1).
— (wizi + pgf — pui Tt =yt + gl —yh i)/ (wi+2p)(i =2, ,n—1). 2

3. Update q.
The variable g is updated as follows:

¢+ argming, (wi1/2)(zi1 — @0)* + (p/2)pf T — @ +ui T+ yf/oll3

+ (/W —ai+ysi/p)i=1,-- ,n—2). 3)
— (wipripr + ool T+ pu T yf 4 op A 0E ) /(Wi +20) (i =1, 0 —2)

qﬁti < argming, , wp (T, — CJnfl)2 + (p/2)||p,]§ﬂ —Qqn-1+t Uﬁt% + yf,n—l/ﬂ”%'
— (wpry, + pr{tll + puﬁtll + ylf,n—l)/@wn +p).

Due to space limit, the convergence of Algorithm 1 is discussed in Section A in the Appendix.

2.2. The Multi-block ADMM for Multi-dimensional Ordering

The previous smoothed isotonic regression only considers linear orders, while multi-dimensional orders are
more general in isotonic regression applications [17]. A multi-dimensional order is defined in a m—dimensional
space Z; = (zi1, -, %im). Zi < Zjifand only if z;1 < zj1, -+ ,2Zim < zjm. It can be represented

equivalently as Directed Acyclic Graph (DAG) G = (V, E) where (Z;, Zj) € kif Z; < Z; [17]. Formally,
the multi-dimensional ordering problem is formulated as follows:

Problem 2 (Multi-dimensional Ordering)

n
ming, .. o, Zi:l w; (Y; — a;)?
st.oa; <ojiff Z; < Zj(1<i,j <n).

where w; > 0(i = 1,--- ,n) are assigned weights, Y;(i = 1,--- ,n) are predictors, and «;(i =
1,---,n) are fitted predictors.

To handle large-scale multi-dimensional ordering problems, we leverage the advantage of parallel
computing of the multi-block ADMM to solve it in an exact form. By introducing two vectors g and
h, this problem is equivalent of

ming , WH((Y —g) © (Y —9))/2+ W (Y —h) © (Y — h))/2
st. Fig— FEsh+v=0,v>0, g=h.

where W = (wy, -+ ,wy), Y = (Y1,--+,Y,) and © is the Hadamard product. F; € RIEI*n and
Ey € RIEIX™ are representations of the edge set E: the k-th edge (4,7) € E means that £y j,; = 1
and Fyp; = 1 while By, = 0(1 < p <n,p#i)and Ey, = 0(1 < ¢ < n,q # j). The
augmented Lagrangian is L, (v, g, h,y1,y2) = W (Y —g) @ (Y —g))/2+ WT((Y —h) O (Y —
m)/2 + (p/2)||Erg — Eah 4+ v +y1/pll3 + (p/2)lg — h + y2/pl|3- where p > 0. The multi-block
ADMM to solve Problem 2 is shown in Algorithm 2. Each subproblem has a closed-form solution
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Algorithm 2 The Multi-block ADMM Algorithm to Solve Problem 2

1: mitialize g, k. v, y1.y2.p > 0,k = 0.

2: repeat

3: Update vkt1lin Equation (4).

4. Update gk+1 in Equation (5).

5: Update Rt 1lin Equation (6).

6: Update v‘f"'l — Elgk+1 - Egh’CJrl + LS

7. Update 1'§+1 — gk+1 — pktL

8 Updae sk — p(B1gF Y — EahF T — B g% 4 EoRF).

9:  Update sE+1 < pEo(hF — nFHL).

10: Update s§'+1 — p(hk — hk+1).

11: Update rF+1 Hrlf+l H% + ||1"éCJrl H% # Calculate the primal residual.
12: Update sF+1 « \/||5]f+1 12 + Hngrl 12 + \|s§+1 [|3. # Calculate the dual residual.
13: Update yf+1 — y{‘ + p'r’erlA

14: Update y§+1 — y’; + pr12c+1.

150 kek+1
16: until convergence.
17: Output g, h and v.

and can be implemented in parallel, which is shown as follows:
1. Update v.
The variable v is updated as follows:

P argmin, (p/2)||E1g* — Exh® + v 4 y¥/pll3, s.t.v > 0. (4)
— max(—FEyg* + Eoh® —y¥/p,0).

2. Update g.
The variable g is updated as follows:

gFt < argming W ((Y — g) © (Y = 9))/2+ (p/2)|| Erg — Exh® + "™ + 4 /p|I3
+ (p/2)llg — h* + v /pll3.
« (diag(W) + pE{ E1 + pI)~ ! (diag(W)Y + pE[ E2h* — pE{ 0" — Efyy + ph* —y3)  (5)

where [ is an identity matrix and diag(W/) is a diagonal matrix where the main diagonal is W.
3. Update h.
The variable £ is updated as follows:

R argming WH((Y = h) © (Y = h))/2+ (p/2)| Erg™™ — E2h + 0" + 47 /13
+ (/219" = b+ w5/ pll3. ©6)
 (diag(W) + pE3 Bz + pI) ™! (diag(Y) + pEy Erg™™ + pE3 o™ + B3yt + pg™t + y5).
Due to space limit, the convergence of Algorithm 2 is discussed in Section A in the Appendix.

3. Experiment

In this section, we validate the multi-block ADMM using simulated datasets and compare it with
existing state-of-the-art methods. All experiments were conducted on a 64-bit machine with Intel(R)
core(TM)processor (i7-6820HQ CPU@ 2.70GHZ) and 16.0GB memory.

3.1. Data Generation and Parameter Settings
Due to space limit, data and parameters are detailed in Section C in the Appendix.
3.2. Baselines

Two methods Smoothed Pool-Adjacent-Violators (SPAV) [18] and Interior Point Method (IPM)
[9] are used for comparison. The details can be found in Section D in the Appendix.
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3.3. Experimental Results

In this section, the experimental results on two problems are explained in detail.
1. Does the multi-block ADMM converge? Figure 1 illustrates the convergence properties of
the multi-block ADMM when n = 1000 on the smoothed isotonic regression problem and the
multi-dimensional ordering problem. Two choices of p = 0.1 and p = 10 are shown on Figure 1.
Overall, Figure 1 (a)-(c) shows that the multi-block ADMM converges while Figure 1(d) shows the
divergence: r and s drop drastically at the beginning and then decrease smoothly through the end
in the Figures 1 (a)-(c); however, Figure 1(d) displays a surge of . Moreover, when p = 0.1, r is
located above s while when p = 10 the situation is the opposite. Obviously, the multi-block ADMM
can obtain a reasonable solution within tens of iterations as long as p is small and hence it is suitable

for large-scale optimization.
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Figure 1: Convergence of the multi-block ADMM when n = 1000 on two problems.
2. Does the multi-block ADMM scale well? As Figure 2 shown, the running time of the

multi-block ADMM increases linearly with the number of observations on two problems. In Figure
2(a), the SPAV is more efficient than the multi-block ADMM when the number of observations 7 is
less than 20,000 but needs more time since then; as for Figure 2(b), the multi-block ADMM is more
efficient than the IPM no matter how many observations there are.
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Figure 2: Scalability of the multi-block ADMM on two problems.

4. Conclusion

The multi-block ADMM is an interesting topic in the optimization community in recent years. In
this paper, we apply the multi-block ADMM to two problems related to isotonic regression: smoothed
isotonic regression and multi-dimensional ordering. Most existing methods are not efficient enough
to run on large-scale datasets. However, the main advantage of the multi-block ADMM is parallel
computing and hence it is scalable to large datasets. We find that the multi-block ADMM converges
when p is small and its running time increases linearly with the scalability of observations.
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Appendix

Appendix A. The Convergence of Algorithms 1 and 2

In addition to the advantage of parallel computing, the convergence of the Algorithm 1 can be
guaranteed by the following theorem:

Theorem 1 There exists d > 0 such that if p < d, the Algorithm I converges globally to the optimal
point with sublinear convergence rate.

Proof Because the objective function is strongly convex in p and ¢, all assumptions in [10] are
satisfied and hence the Theorem 3.2 and Theorem 4.2 in [10] ensure the global sublinear convergence
if p is smaller than a threshold d. |

As for the convergence properties of Algorithm 2, the below theorem guarantees the convergence if p
is small.

Theorem 2 There exists d > 0 such that if p < d, then the Algorithm 2 converges globally to the
optimal point with sublinear convergence rate.

Proof The proof is the same as Theorem 1. |

Appendix B. Related Work on the Multi-block ADMM

The multi-block ADMM was firstly studied by Chen et al. [5] when they concluded that the multi-
block ADMM does not necessarily converge by giving a counterexample. He and Yuan explained
why the multi-block ADMM may diverge from the perspective of variational inequality framework
[7]. Since then, many researchers studied sufficient conditions to ensure the global convergence
of the multi-block ADMM. For example, Robinson and Tappenden and Lin et al. imposed strong
convexity assumption on the objective function f;(x;)(i = 1,--- ,n) [10, 15]. Tao and Yuan did not
require all objective functions f;(z;)(i = 1,--- ,n) to be strongly convex, but imposed full-rank
assumption on A;(i = 1,---,n) [19]. Lin et al. weakened the strong convexity assumption on
the objective function f;(z;)(i = 1,--- ,n) by imposing the additional cocercity assumption on
fi(xi)(i =1,--- ,n) [12]. Deng et al. proved that the multi-block ADMM preserved convergence if
multiple variables z;(i = 1, --- ,n) were updated in the Jacobian fashion rather than Gauss-Seidel
fashion [6]. Lin et al. proved that the multi-block ADMM converged for any p > 0 in the regularized
least squares decomposition problem [11]. Moreover, some work extended the multi-block ADMM
into the nonconvex settings. See [13, 20, 24] for more information.

Appendix C. Data Generation and Parameter Settings

The experimental data and parameters for two applications are explained in this section. Com-
monly, the maximal number of iteration was set to 10,000. We set the tolerance ¢ = 0.01y/n
according to the recommendation by Boyd et al. [3]. For the smoothed isotonic regression problem,
we generated simulated observations x;(i = 1,--- ,n) from a uniform distribution in (0, 1000); we
setw; = 1(i = 1,--- ,n) and A = 1. For the multi-dimensional ordering problem, we generated
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simulated observations Y;(i = 1,--- ,n) from a uniform distribution in (0, 1000). w;(i = 1,--- ,n)
were set to 1. '} and E9 were generated from a 2-dimensional random grid graph to simulate the
ordering of the 2-dimensional space.

Appendix D. Baselines

In order to test the scalability of the multi-block ADMM on two applications, two baselines were
utilized for comparison:
1. Smoothed Pool-Adjacent-Violators(SPAV) [18]. The SPAV algorithm is a extension of the PAV
algorithm designed for the smoothed isotonic regression problem. It partitions all 5;(i = 1,--- ,n)
into many blocks according to the feasibility of inequality constraints. The iteration ends when all
constraints are feasible.
2. Interior Point Method(IPM) [9]. The IPM method is an efficient algorithm to solve multi-
dimensional ordering with convergence guarantee. Its time complexity is O(|E|" log? | V| log?(|V'|/0))
where 4 is a tolerance.
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